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Abstract—Solution of some practical problems is reduced to the 

solution of the integro-differential equations. But for the numerical 
solution of such equations basically quadrature methods or its 
combination with multistep or one-step methods are used. The 
quadrature methods basically is applied to calculation of the integral 
participating in right hand side of integro-differential equations. As 
this integral is of Volterra type, it is obvious that at replacement with 
its integrated sum the upper limit of the sum depends on a current 
point in which values of the integral are defined. Thus we receive the 
integrated sum with variable boundary, to work with is hardly. 
Therefore multistep method with the constant coefficients, which is 
free from noted lack and gives the way for finding it’s coefficients is 
present. 
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I. INTRODUCTION 
 

 is known, from 1908 to 1913 Volterra was persistently 
engaged in the theory of residual action and proved that 

differential equations of mechanics and electrodynamics of 
continuum are only approximations of more exact integro-
differential equations. Heat he applied to investigation of some 
problems of geophysics considering heat elastic properties of 
the earth’s crust preserve residual effect responding to very 
large time intervals [1-2]. If we generalize these integro-
differential equations we can get the following nonlinear 
Volterra integro-differential equations.   
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Let's admit that continuous functions ),( yxf  and 

),,( ysxK are defined on their respective domain 

},{ 0 ayXxxG ≤≤≤=  

and },{ 0 ayXxsxG ≤+≤+≤≤= εε  (ε  tend to 

zero as 0→h ) and satisfy a Lipchitz condition in the 
variable y, and the solution of the equation (1) at the point 

0x satisfies following condition: 

00 )( yxy = .                                 (2) 
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Suppose that the initial-value problem (1) - (2) has a 

unique solution defined on some segment ],[ 0 Xx . The 
main of this report is to obtain a numerical solution of the 
initial-value problem (1) - (2). Therefore the segment 

],[ 0 Xx  is divided in to N equal parts by the positive and 
constant step size h. The mesh points are defines as 
the ),...,2,1,0(0 Nmmhxxm =+= . Denote by the 

mm yy ′,  approximate and )(),( nn xyxy ′  exact values 

of function )(xy  and it’s derivative on the 

point ,..)2,1,0( =mxm . It is known that the initial value 
problem (1)-(2) can be reduced to an equivalent problem 
which has the following form [3]: 
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After application of the multistep method to the 
solution of problem (3) and equation (4) (see [3]), we 
receive the following system of difference equations: 
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where coefficients ),....,1,0,(,,, , kjijiiii =′ γβαα  are 

some real numbers, and 0,0 ≠′≠ kk αα . If we apply the 
quadrature method for finding solution of the initial value 
problem (1) and (2) then we receive the following [4], [5]: 
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The received correlation is the approximation of 

problem (1) - (2) whose error is defined by the remainder 
term of quadratures methods. We will notice that 
correlation (7) is initial value problem for the ordinary 
differential equations of the first order. Difficulty at the 
numerical solution of a problem (7) is that with increase in 
values of n , the quantity of members in the integrated 
sum increases, and also there appears of necessity 

As 
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calculations of the values of kernel 
),...,2,1,0(),,( niysxK iin = . 

There are many methods for the numerical solution of the 
initial value problem (7). Among them we can note classical 
methods of Runge-Kutta and Adams. Now semi implicit and 
implicit methods of Runge-Kutta, and also generalisation of 
Adams methods which is called a multistep method with 
constant coefficients or in the more general form – multistep 
method of Obreshkov type  investigated in [6] are used. 
Unlike the methods, the method here is applied to the 
numerical solution of a problem (1) - (2). 

One of the important questions at researching the method 
(5) – (6) is how much closer the found values of the solution 
of a problem (1) - (2) by the scheme (5) - (6) to exact values of 
the solution of a problem (1) - (2). Similar researches for the 
equation (4) were carried out in [7]-[8]. 

For solving initial value problem (1) and (2) we suggested a 
multistep method with the constant coefficients to construction 
of which the next paragraph is devoted 

 
II. DEFINITION OF COEFFICIENTS IN FORMULAS (6) 

 
As it is known, accuracy and some properties of methods 

depend on the values of their coefficients. Here we will 
consider definitions of coefficients in formulas (6). 
Concerning definition of coefficients 

),...,2,1,0(, kiii =βα  in the formula (5) notice that their 
values coincide with the values coefficients of the finite-
difference methods which were well investigated. Therefore 
we will consider definition of values of 
coefficients ),...,2,1,0,(, , kjijii =′ γα . 

Considering that function )(xy  depends from )(xν , the 
correlation (5) can be considered as the integral equation from 
which we will receive the following [9]: 
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After using the Lagrange theorem, we will have: 

      

,))(,,(

))(,,()()(

1

1

0

1

∫

∫
+

−+

−+

+

+−++ +′=−

kn

kn

kn

x

x
kn

x

x
knxknkn

dssysxK

dssysKhxx ξνν

(9) 

where .1 knknkn xx ++−+ << ξ   
It is easy to show that from a correlation (4) we can write 

the following: 
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Here we will put knx += ξ . Then we have: 
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After the account received in equality (1.2), we have: 
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Using replacement of values of derivatives of function 
through its values we have: 

∑
=
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Considering (13) in equality (12) we can write: 
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Applying the formula (13) to value ))(,,( sysK knx +′ ξ  
and replacement of integrals corresponding quadrature 
formulas and rejecting remainder terms in (14) we will 
receive a multistep method after which generalization it is 
had: 
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Coefficients ),...,2,1,0,(, , kjijii =βα  in a method 

(15) can be defined with the help above the described 
schemes. However, with that end in view, one scheme in 
which result for definition of coefficients the known 
system of the linearly-algebraic equations turns out here is 
suggested. 

Let's consider a special case when function 
),,( ysxK is independent of x and we will put 

).,,(),( ysxKysF =  Then from (4) we have: 

                    .0)(),,( 0 ==′ xyxF νν            (16) 
Let's apply to the numerical solving of a problem (16) 

the following finite difference method: 
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It is easy to be convinced that if ratio (1.8) we will put 

),,(),( ysxKysF =  and designate by ∑
=

=
k

j
jii

0
,βγ ,  then 

from (15) follows (18). 
As it is known, coefficients ),...,1,0(, kiii =γα  finite-

difference method (17) can be defined from the following 
system of the linearly-algebraic equations: 
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In this system quantity of the equations equally 1+p , and 

quantity of unknown equally 22 +k . It is easy to show that 
systems (19) to have not trivial solution there should 
be 221 +<+ kp . Hence kp 2≤ . 

Let's consider a case 2=k . As it is known, in this case by, 
solving system (18), we will find coefficients of method with 
the maximum degree of accuracy 4max =p , which have the 
following appearance: 

.3/4,3/1,0,1 120102 =====−= γγγααα  
The corresponding method registers in a kind: 

.3/)4( 122 nnnnn h ννννν ′+′+′+= +++        (20) 
This method is well-known Simpson's method which is 

unique at 2=k  and has the degree 4=p  , and there is no 

method with the degree 4>p . 
 On the basis of Simpson's method we will construct 

method of type (15). With that end in view we will solve the 
following system of the linearly-algebraic equations: 
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Let's notice that in this system quantity of unknown persons 
more than quantity of the equations; hence it has a solution 
more than one. Therefore the method of type (15) with degree 

4=p  at 2=k  is not unique. One them looks like: 
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However, by means of selection of 

coefficients ),...,2,1,0,(, kjiji =β  it is possible to expand 

area of stability or to reduce absolute value of coefficients at a 
body in asymptotic decomposition of an error of a method. 

For using the method (22) we must to find 2+ny  the value 

of )(xy at the point 2+nx . For this aim we here suggested the 
next sequence of multistep method: 
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Here 
,)(),,( mmmmm xyxff νν ==  

,...)2,1,0(),,(ˆ),,( === myxffyxff mmmmmm . 

But for the calculation 2+nν  the value of )(xν at the 

point 2+nx , we present the next predictor-corrector 
method: 
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Let's note that above used constructed methods there is 

a necessity of calculations a kernel of integral in points 
being above diagonal xs = . It is obvious, that at 0→h  
these points come nearer to points being on a 
diagonal xs = . That is what a domain of definition of a 
kernel of integral we’ll expand toε . With such situations 
one faces in application of some approximated methods. 
However, from above offered multistep methods with 
constant coefficients it is possible to receive methods 
which answer to the requirement of the classical theory of 
Volterra integral equations. For this purpose it is enough 
to put 0=jiβ  at ij < ( kji ,...,1,0, = ). Below some 

concrete methods are present: 
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To approximate the solution of the initial-value 

problem 
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At N equally spaced numbers in the interval ],[ 0 Xx : 

INPUT end point Xx ,0 ; integer N, initial conditions 

.;;; 1010 ννyy  

OUTPUT approximation ny  to )( nxy at the N values 
of x . 

Step 1 Set ;/)( 0 NxXh −=  

  ;0 ax =  

  ;0 by =  

  OUTPUT ( 00 , yx ). 
Step 2  For i=2,3,…N do Steps 3-8. 
Step 3  Set ).( ii xcomputihax ++  

Step 4   iiy ν̂;  iiycomput ν̂,(  by the 
predictor methods (1.16) and (1.19) 
or (1.21)) 

Step 5  iiy ν;  iiycomput ν,(  by the 
predictor methods (1.17) and (1.20) 
or (1.22)) 

Step 6  iy (comput values of the initial-
value problem by the corrector 
method 
 (1.18)) 

Step 7   OUTPUTS ( ii yx , ) 
Step 8   STOP. 

 
III. CONCLUSION 

In an inference we’ll note, that methods constructed in view 
of property of Volterra integral are simpler (see for example 
methods (28) and (29)), however they in some cases can be 
less exact than methods of type (27). We investigated 
approximately 10 Volterra integral equations which have the 
solution of different properties - increase, decrease, 
oscillation, etc. In many cases outcomes of evaluations on 
methods (22) and (29) almost coincided, but in some cases the 
method (22) has appeared more exact. It shows that in the 
given method (22) we use more amount of the information 
about solutions of the considered equation, than in the method 
(29). 
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