
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

65

ne
ele
us
so
Ce
an
It
ca
re
in

De

sa
va
so
m
do
an
in
on
ar
ap
th

m
ag
so
so
re
of
En

so
in
ou

an
So

So
in

U

Abstract—U
eglected at the
ements of usab
sability focuse
oftware usabilit
entred Design
nd is shown to l

achieves this
ases, by conduc
fining requirem

n UgCD is descr

Keywords—R
esign.

SABILITY
ensuring

atisfaction, et
arious reason
oftware design

methods, are in
o attempt to in
n additional
nadequate [3].
nly more usab
re given, but m
pproach betwe
he other.

Usage-Centr
methodology th
gile framewor
oftware usabil
oftware usabil
equirements ga
f requirement
ngineering.
This paper

oftware engin
nadequacy of
utlines the ne

Andrew M. Gra
nd Software Sys
outhampton. (pho

Kholod J. Alo
outhampton, UK's
Software Usabili

Req
Us

U

Usability is an im
design stage. A

bility engineerin
d methods th
ty for users. In
is explored wi

lead to high sof
through its fo

cting task mode
ments, and so on
ribed in detail.

Requirements

I. INT

Y is an impor
software

tc. and for
ns however,
n [2], and ma
ncapable of en
ncorporate ele
component o
. It is establis
bility focused
methods that
een being plan

ed Design (U
hat incorporat
rk that is spe
lity [4]. The
lity is explor
athering phase
ts gathering

thus introduc
neering, justi
f many meth
eed for more

avell is a PhD Su
tems, Electronic

one: +44 (0)23 80
otaibi is a PhD
s School of Elect
ity Engineering, (

quirem
sabilit

mportant softwa
Although metho
ng, there is a n

hat can enhanc
n this regard, th
ith respect to r
ftware usability
cus on usage,
eling, encourag
n. The requirem

gathering, Usa

RODUCTION

rtant software
learnability,
improved pr
usability is

any methods,
nsuring usabi
ements of usa
of design are
shed that the
methods, for
also provide

n-driven on on

UgCD) is a so
tes a model-d
cially designe
potential of U

red with respe
e after first pr
and the fiel

ces the conc
ifies its imp
hods in ensu
e usability fo

upervisor and Aca
cs and Compute
059 2741, e-mail:
 research stude
tronics and Comp
(e-mail: kja1g09@

ments
ty and

are quality that
ods exist to inc
need for more b
ce the experi

he potential for
requirements g

y besides other b
defining essen

ging user collab
ments gathering

ability, Usage-

e quality attrib
reliability,

roductivity [1
often neglec
including pur

ility while tho
ability enginee
e also found

need arises
which two ex
for a more ba
ne hand and a

oftware devel
driven phase
ed for ensurin
UgCD for im
ect to the im
roviding an ov
ld of Requir

cept of usab
ortance, deta
uring usabilit
ocused and ba

ademic staff in E
r Science, Univ
amg@ecs.soton.

ent at the Univ
puter Science spe
@ecs.soton.ac.uk

Gathe
 the P

Kholod J. A

t is often
orporate
balanced
ence of
r Usage-
gathering
benefits.
ntial use
boration,
g process

-Centred

bute for
user

1]. For
cted in
re agile
ose that
ering as
d to be

for not
xamples
alanced
agile on

opment
into an

ng high
mproved
mportant
verview
rements

ility in
ails the
ty, and
alanced

Electronic
versity of
ac.uk).

versity of
ecialising

k).

me

sof
lea
ha

pro
use
rec
im
eff
sub
wh
ma
an
no
[9]
lea

ye
esp
he
pe
of
res
de

ering f
Potenti

Desig
Alotaibi, And

ethods.
It then intro
ftware develo
ading to impr
andles the gath

II.

Usability is
oduct to be u
er, when us
cognised as a

mpinges upon
ficiency, learn
b-attributes co
hich more ca
apping [6], ef

nd few errors
oticeable as it
], whereas ens
ad, for exampl

Fig. 1 Nielse

As such, usab
t often it is no
pecially impo
lps to develop
dagogical app

f attention to e
source intens
veloper mind

1 ISO/IEC 912

for Im
ial for
gn
drew M. Grav

oduces the U
opment metho
oved software

hering of usab

 USABILITY A

defined as “
understood, le
sed under s
a key softwar

other essent
nability, and
omprise the c
n be added,

ffectiveness an
[8], etc. An
would cause

suring a high
le, to greater p

en’s five dimens

bility is a ver
ot given suffi
rtant, for exam
p better syste
proaches, but
ensuring usabi
sive nature an
dset [11]. It th

26-1

mprove
Usag

vell

Usage-Centre
odology as h
e usability foc
ility requirem

AND ITS IMPOR

“the capabili
earned, used a
specified con
re quality att
ial attributes
overall satis

classical attrib
such as cons
nd engaging [

ny lacking in
dissatisfactio
degree of sof

productivity [

sional breakdow

ry important f
cient rigorous
mple, for e-lea
ms with impr
it is often neg
ility can be pa
nd requireme
herefore requ

ed Soft
ge-Cen

ed Design (U
having potent
cusing in the

ments.

RTANCE

ty of the so
and attractive
nditions [5].
tribute1, whic

such as relia
faction. Thes
butes of usabi
sistency and n
[7], remember
usability wo

on with the so
ftware usabili
1].

wn of usability

feature for sof
s attention [10
arning softwa
roved didactic
glected [2]. Th
artly explained
ent of a con
ires special tr

ftware
ntred

UgCD)
tial for
way it

oftware
to the
It is

ch also
ability,
se four
ility to
natural
rability

ould be
oftware
ty, can

[8]

ftware,
0]. It is
are as it
cal and
he lack
d by its
nducive
raining

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

66

and close coordination. Also, usability testing can become
tedious, least rewarding, and expensive [12], and in some
cases, as with e-learning software, there is a lack of studies to
show how usability can be evaluated [13]. Ian et al. [14] even
reported an almost non-existent awareness of usability
standards (among Malaysian developers).

III. INADEQUACY OF MANY METHODS IN ENSURING

USABILITY

Pure agile methods lack the capability of ensuring software
usability [15], as has been noted for Scrum [16] and XP [17].
Any claim to provide software having high usability is
therefore questionable [18] because agile methods tend to
simply ignore usability for end-users [19], and they use
inadequate techniques for modeling tasks and users [20]. The
original agile manifesto, which popularized agile methods, did
not even allow for usability engineering, as it stated to favor
'individuals and interactions over processes and tools'. So
unless additional design elements are incorporated, software
developed using agile methods alone is not usually renowned
for its usability.

Consequently, various attempts have been made to integrate
elements into agile methods to ensure greater usability, such
as methods based on User-Centred Design (UrCD), which is
by nature user-centric. Incorporating elements of usability in
an overall agile method is referred to as 'agile usability', and it
usually involves elements of Usability Engineering or
Interaction Design [4]. However, even many of these methods
are inadequate at ensuring usability adequately because they
are usually developed independently from traditional
techniques established in the software engineering community
that incorporate usability concerns more stringently [3].

IV. NEED FOR MORE USABILITY FOCUSED AND BALANCED

METHODS

Accommodating for usability and detecting potential
usability issues as early as possible is important because it can
prevent costly late-cycle changes [21] among other benefits.
Two notable attempts to adapt agile methods to deal with
usability concerns are Scenario-based Design (SBD), and
eXtreme Scenario-based Design (XSBD).

SBD was designed to specifically address certain technical
challenges in software development [22] using a combined
plan-driven and agile approach. SBD is interesting from the
perspective of usability because it permits a range of possible
usability consequences to be examined in the form of
interdependencies and trade-offs. XSBD streamlines usability
and development practices, involves usability testing, and also
adopts practices to facilitate communication and information
sharing [23]. However, whereas XSBD is able to focus on the
most critical areas to ensure high-level goals are met, many
other requirements tend to be uncovered too late. This
suggests the need for more initial planning and earlier
gathering of requirements.

An important aspect of usability focused software
development is therefore to follow an approach that is able to

take advantage of both plan-driven and agile approaches.
Moreover, The actual method used should be adaptable
according to the user requirements [24]. Despite an aversion to
detailed planning in software development nowadays,
especially among proponents of agile methods, some upfront
planning provides three key potential advantages: (1) a
reduction in uncertainty due to consideration of the likely
outcomes and early adoption of corrective measures, (2)
increase in understanding of the project goals and objectives,
and (3) improvement in efficiency [25]. Consequently, a well-
planned project is more likely to be of better quality, finish
sooner, and cost less. Although this may be a 'painful' process
to begin with, good planning pays off as a project progresses.
On the other hand, spending too much time in planning poses
a risk of 'high loss probability' due to the time that could have
been spent more usefully getting on with the project itself
[26], and it could also become a very expensive undertaking
[27].

A more balanced approach can provide both essential
qualities of control and discipline on one hand and agility or
flexibility on the other [28]. The former is essential for dealing
with highly specific requirements and constraints while the
latter is desirable to allow for improvisation and adjustment.
In addition to these technical aspects, social aspects of
software development should also be considered in order to
benefit from applying agile methods [29] through improved
communication and collaboration. One such approach is
introduced in the section that follows.

V. INTRODUCTION TO USAGE-CENTERED DESIGN

Usage-Centered Design (UgCD) is a software development
methodology (developed by Constantine & Lockwood) that
incorporates a model-driven phase in which requirements
gathering is an important component, into an agile framework.
It is specially designed for high software usability [4], [6], and
has been demonstrated to do so [30]. It does this through
ensuring the tasks users will have to carry out can be
accomplished effectively and efficiently [31]. Thus, unlike
with UrCD, the main focus is on usage rather than on users per
se, hence the name UgCD. As acknowledged by Norman [32]
who coined the term 'User-Centred Design', usage is more
important than both the user and user interface.

UgCD makes use of essential use cases, which is based on
Ivar Jacobson's concept of use cases in Object-Oriented
Software Engineering, but “simplified and generalized down
to the essential core of usage” [33]. Likewise, the modeling
has its roots in Steve McMenamin and John Palmer's concept
of 'essential modeling', which focuses on what the software is
designed to do as an aid to conceptualizing the processes [34].
Modelling is characteristic of many traditional methodologies,
but in UgCD, the models are designed to provide “conceptual
and creative leverage for the least amount of effort on the part
of analysts and designers” [35].

Besides the potential to enhance usability, UgCD can also
cope well with scaling to larger projects [36], which is a
problem for agile methods [37]. It also helps to make the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

67

process of development run more smoothly [38], and guide
decisions about the functionality to be incorporated into a
design [39]. It is particularly effective for dealing with
complex situations in which user performance is critical [35].
In short, UgCD provides 'a powerful punch' from its iterative
process while delivering software of high quality that meets
user expectations [40]. Table I highlights key characteristics of
UgCD and how these differ from UrCD so as to make the
distinctions clearer.

TABLE I

KEY DIFFERENCES BETWEEN URCD AND UGCD

 User-Centred
(UrCD)

Usage-Centred
(UgCD)

Focus Users (people) Usages (activities)
Objectives Improve user experience and

satisfaction
Improve tools to support

task accomplishment
Driven by User input Models

User involvement Varied Selective and collaborative
Specification User descriptions and

characteristics
User-system relationships

Design models Realistic or representational Abstract
Method of design Iterative prototyping Modelling and refinement

Processes
/Design

Usually informal and varied Fully specified and
systematic

Coherence Tends to be lower Tends to be greater

VI. REQUIREMENTS GATHERING

The requirements gathering phase in the Software
Development Lifecycle (SDLC) can play a major role in
ensuring software usability. In practice, many developers tend
to allocate insufficient time and effort to requirements
gathering, such that requirements are usually either not
documented at all or they get documented very late in the
SDLC [41]. It is important however, as it provides the basis
for the development work to follow [42]. Determining
requirements prior to programming helps to better understand
the software development project at hand, select an
appropriate developmental method, and to satisfy the
requirements [24]. The practice resulting in improved
communication of requirements was shown recently to lead to
a one-third drop in failed software projects [43].
Consequently, there is a growing renewed interest in the
whole field of Requirements Engineering (RE) [44].

As for requirements gathering techniques, common
methods include meetings, facilitated sessions, questionnaires,
observations, document analysis and prototyping. A broad
classification made by Nuseibeh & Easterbrook [45] is shown
in Table II. IEEE recommendations in regard to gathering
requirements specify that they should be correct,
unambiguous, complete, consistent, ranked for
importance/stability, verifiable, modifiable, and traceable [46].
Some of these characteristics are facilitated by documenting
requirements while adhering to some set of standards, such as
the use of graphical notations specified by the Unified
Modelling Language (UML).

TABLE II
CLASSIFICATION OF REQUIREMENTS GATHERING TECHNIQUES

Description Examples
Traditional: A broad class of generic techniques Questionnaires, interviews,

analysis of existing
documentation

Group: Aim to foster stakeholder agreement
while exploiting team dynamics

Brainstorming, focus
groups, consensus-building

workshops
Prototyping: Used when there is great

uncertainty about requirements or if early
feedback is needed

Mockups

Model-driven: Provide a specific model to drive
the elicitation process

Scenarios, rich pictures

Cognitive: Originally developed for knowledge
based systems

Protocol analysis,
laddering, car sorting,

repertory grids
Contextual: Emerged in the 1990s as an

alternative to traditional/cognitive techniques
Ethnography

A traditional way of constructing models of requirements is

using Jacobson's use case model, which involves identifying
actors, use cases, and the system/sub-system boundary. Use
cases are useful in that they highlight actor value linked with
specific stakeholder goals [47], but as use cases are focused on
a system's functionality, they are better suited only for
documenting functional requirements [48]. The requirements
themselves are only effective if they are complete, specific,
measurable, achievable, connected, and signed off by clients
[49].

Usually, the way requirements are gathered, is guided by an
overall methodology or framework, of which there are many.
Of interest in this paper are UgCD itself and others listed
below that share some similar characteristics to UgCD to
enable them to be compared.

Activity-Centred Design (ACD) – Activity modeling is used
for systematic organization and contextual representation of
tools with a focus on user activities and on tasks to be
performed.

Joint Application Design (JAD) – A joint structured
meeting is held which focuses on how the system will work in
which user involvement is elicited using dynamic group
techniques.

Participatory Design (PD) – Structured, facilitated
interactions are held between designers and users.

Scenario-Based Design (SBD) – HCI scenarios are used to
specifically overcome certain technical challenges.

Usage-Centered Design (UgCD) – Activity theory is
applied with a methodological scaffolding involving task
modeling and Just-in-Time Requirements (JITR) for further
refinements with a focus on ensuring usability.

VII. USABILITY REQUIREMENTS

Requirements can be divided into functional and non-
functional, system and user, or conceptual and organizational,
and so on. Another distinction of relevance herein, is between
usability and non-usability requirements. Usability
requirements are those that ensure “a good match between the
system that is developed and both the users of that system and
the tasks that they will undertake when using it” [48]. An

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

68

extensive breakdown of usability requirements was made by
[50], in which they were shown to encompass conceptual,
functional, non-functional, and also business requirements.

Identifying usability requirements helps to prioritize
usability work and ensure usability goals are achieved,
especially concerning efficiency and satisfaction [51], because
usability requirements encapsulate usability goals [50]. Given
this importance, Requirements Engineering (RE) cannot be
ignored, especially in the development of customer-oriented
systems [43]. An RE framework typically involves the three
core activities of elicitation, documentation, and negotiation
[52], and should be treated as a dynamic and cooperative
process.

Usability is best assured when usability requirements are
elicited at the beginning [44] in line with user goals and
objectives, and when a usability assessment is undertaken at
the conceptual stage of the SDLC [53]. Gathering
requirements at this stage is important because this is the
earliest point in time that potential performance issues can be
addressed while the architecture is still being formulated [54].
The requirements should also be checked for correctness,
completeness, and for being non-ambiguous and non-
contradictory [55].

This plan-based approach is typical of traditional methods
in software engineering. Pure agile methods on the other hand,
are generally considered to be inadequate at handling
requirements [56]. Their priority is for speedier and responsive
software development [57], so they are better able to handle
changing requirements instead due to their incremental
development approach [58].

VIII. REQUIREMENTS GATHERING UNDER UGCD

UgCD adapts Jacobson's Use Case driven approach by
conducting exploratory modeling of task cases to identify the
roles and tasks and ascertain user requirements [59]. A user
role is understood in UgCD to be “an abstract collection of
needs, interests, expectations, behaviors, and responsibilities
characterizing a relationship between a class or kind of users
and a system” [60], and a role model contains a list of
expected user roles described in terms of needs, interests,
behaviors, responsibilities, etc.

The way requirements are gathered in UgCD takes the form
of a dialogue in which there is mutual exploration and
negotiation until a consensus is reached between the
developers and users. Questions are raised and potential areas
for investigation are identified based on information available
at the time. This makes requirements gathering in UgCD a
highly collaborative process due to the significant user
involvement. In this way, UgCD is also distinguished from
UrCD in that UgCD is not just user-centered, but also more
user-involved. The collaboration is facilitated by the face-to-
face meetings in a cooperative atmosphere, which are
conversational rather than inquisitive, and organized around
specific topic or aspects. Moreover, UgCD takes an 'essential'
approach to gathering requirements in which the attention is
on goals and objectives so as to ensure a focus on actual needs

and requirements [60].
UgCD's ability to enhance software usability is due to its

special consideration of usability arising from the gathering of
requirements through task modeling [6]. Moreover, UgCD
provides a very systematic way of establishing requirements,
which particularly helps to prevent 'creep', which concerns
expanding the system beyond the initial agreement, and
'leakage' of requirements, which refers to additional
requirements that may arise and become part of the system
without offering any benefits [60]. In short, UgCD by design
ensures all those requirements are captured that help to
accomplish each possible task, which is what ensures high
software usability.

Table III summarizes key details of what takes place during
the initial stages of the UgCD process with respect to
modeling and requirements gathering. After the initial main
meeting, any remaining omissions, irregularities, or
ambiguities about the requirements are dealt with during the
frequent subsequent meetings and continuous consultations
that are characteristic of JITR. Notably, assistance and
feedback is sought from users throughout the process at each
stage.

TABLE III

INITIAL STAGES OF THE MODELING AND REQUIREMENTS GATHERING
PROCESS IN UGCD

Stage Details of what takes place
1. Pre-
modelling

Identifying roles and tasks of users through defining
essential use cases; discussion of purpose; requirements
dialogue

2. Model
construction

Statement of purpose; Modelling tasks with a focus on
satisfying software usability

3. Model
presentation

Model is presented and feedback is sought during the main
meeting; Capturing of usability requirements

4. Model
refinement

Continuous consultations and further meetings to test and
refine the requirements

IX. SUMMARY AND PLANS FOR EVALUATION

Usability is an important software quality for ensuring
software can be easily learned, understood, used and made
attractive and pleasing to its users, but it is often neglected at
the design stage. This neglect is often due to the resource
intensive nature of the challenge and tediousness of usability
testing, but there is also a lack of studies in this area,
especially in relation to e-learning software. Pure agile
methods did not even allow for usability engineering, and
whilst methods do exist to incorporate elements of usability
engineering in both traditional and agile methods and promote
a more user centered-design, they are usually found to be
inadequate. The reason is that they are usually incorporated
independently from traditional methods that specifically target
usability.

There is a need for more balanced usability focused
methods with initial planning and early gathering of
requirements that can enhance the experience of software
usability for users. Some upfront planning can provide the
necessary control and discipline to deal with highly specific
requirements by reducing uncertainty, increasing
understanding of goals and objectives, and improving

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

69

efficiency. And, at the same time, some agility is necessary to
allow for adjustments and refinements. The initial
requirements gathering phase is therefore very important in
software design for guiding the development of the software,
particularly for capturing usability requirements for
prioritizing usability concerns and ensuring high software
usability.

In this regard, the potential for Usage-Centered Design
(UgCD) was explored with respect to requirements gathering,
which incorporates a model-driven phase into an overall agile
framework. UgCD is shown to lead to high software usability
besides other benefits such as scalability and suitability for
user performance critical situations. It achieves this through its
focus on usage over users per se, defining essential use cases,
by conducting exploratory task modeling to identify roles and
tasks, encouraging user-developer collaboration from the
outset, engaging in mutual exploration and negotiation,
allowing for refining requirements through continuous
feedback, and so on. In short, UgCD is not just user-centred,
but also more user involved, and it takes an 'essential'
approach in gathering requirements by focusing on goals and
objectives to ensure actual needs and requirements are met
satisfactorily. The enhancement of software usability is a
natural outcome of the special and systematic attention to
usability concerns throughout the software development
lifecycle.

In order to further establish the potential for UgCD,
research has been planned to examine the existing
requirements gathering process implemented for e-learning
software development at a higher educational institution in
Saudi Arabia. This focus on the initial requirements gathering
phase contrasts with another study that also investigated
UgCD's potential in the e-learning context [30], but which
applied usability testing instead without attempting to
recapture usability requirements. The UgCD approach will be
applied in this study for specifically capturing usability
requirements, and demonstrating how their capture is
improved with respect to the attributes of completeness and
preciseness. It is assumed that showing UgCD can 'better'
capture usability requirements, can indicate its potential in
creating more highly usable software.

REFERENCES
[1] Xavier Ferre & Natalia Juristo. (2001). “Usability basics for software

developers”. IEEE Software, January/February issue, pp. 22-29.
[2] K. Kruse. (2002). “E-Learning and the Neglect of User Interface

Design”, E-LearningGuru.com.
[3] Ahmed Seffah & Eduard Metzker. (2004). “The obstacles and myths of

usability in software engineering: Avoiding the usability pitfalls
involved in managing the software development life cycle”.
Communications of the ACM, vol. 47, no. 12

[4] Jeremy T. Barksdale & D. Scott McCrickard. (2012). “Software product
innovation in agile usability teams: an analytical framework of social
capital, network governance, and usability knowledge management”.
International Journal of Agile and Extreme Software Development, vol.
1, no. 1.

[5] UsabilityNet. (2006). “International standards for HCI and usability”.
Usability Net. Available at http://www.usabilitynet.org/tools/
r_international.htm#9126-1 (accessed August 2013).

[6] Natalia Juristo, Marta Lopez, Ana M. Moreno & M. Isabel Sanchez.
(2003). “Improving software usability through architectural patterns”.

ICSE 2003 International Conference on Software Engineering, held in
Portland, Oregon on May 3-11, 2003.

[7] Maria Paula Gonzalez, Carlos Ivan Chesnevar, Niels Pinkwart &, Mauro
J. G. Lucero. (2010). “Developing argument assistant systems from a
usability viewpoint”. Proceedings of the International Conference on
Knowledge Management and Information Sharing, pp. 157-163.

[8] J. Nielsen. (1994). “Usability engineering. Morgan Kaufmann series in
Interactive Technologies”. Morgan Kaufmann.

[9] Jeffrey Rubin & Dana Chisnell. (2008). “Handbook of usability testing:
How to plan, design and conduct effective tests”. Second edition. Wiley
Publishing.

[10] C. Larman. (2002). “Applying UML and patterns: An introduction to
object-oriented analysis and design and the unified process”. Second
edition. Prentice Hall.

[11] Jakob Otkjaer Bak, Kim Nguyen, Peter Risgaard & Jan Stage. (2008).
“Obstacles to usability evaluation in practice: a survey of software
development organizations”. Proceedings of the 5th Nordic Conference
on Human-Computer Interaction: Building Bridges, held in New York,
pp. 23-32.

[12] C. J. Mueller. (2009). “An economical approach to usability testing”.
33rd Annual IEEE International Computer Software and Applications
Conference 2009, pp. 124-129.

[13] Shirish C. Srivastava, Shalini Chandra & Hwee Ming Lam. (2009).
Usability evaluation of e-learning systems. IGI Global.

[14] I. Ian, J. Douglas, & Zhengjie Liu. (2011). Global usability. Springer.
[15] David Kane. (2003). “Finding a place for discount usability engineering

in agile development: Throwing down the gauntlet”. Proceedings of the
Agile Development Conference 2003.

[16] M. Singh. (2008). “U-SCRUM: An agile methodology for promoting
usability”. Proceedings of the Agile 2008 Conference, held in
Washington, D.C. Institute of Electrical and Electronics Engineers.

[17] T. Jokela & P. Abrahamsson. (2004). “Usability assessment of an
Extreme Programming project: Close co-operation with the customer
does not equal to good usability”. PROFES 2004, Lecture Notes in
Computer Science, vol. 3009, pp. 393-407. Springer-Verlag.

[18] Daniel Turk, Robert France & Bernhard Rumpe. (2005). “Assumptions
underlying agile software-development processes”. Journal of Database
Management, vol. 16, no. 4, pp. 62-87.

[19] Larry L. Constantine. (2002). “Process Agility and Software Usability:
Toward Lightweight Usage-Centered Design”. Information Age,
August/September issue.

[20] S. Blomkvist. (2005). Towards a model for bridging agile development
and user-centered design. In A. Seffah, J. Gulliksen & M. C. Desmarais,
(Ed's). Human-centered software engineering – integrating usability in
the development process. Springer.

[21] T. Memmel, C. Bock & H. Reiterer. (2007). “Model-driven prototyping
for corporate software specification. In Gulliksen, Jan. & Harning,
Morten Borup. (Eds.). Engineering interactive systems: EIS 2007 Joint
Working Conferences EHCI 2007, DSV-IS 2007, HCSE 2007,
Salamanca, Spain, March 22-24, 2007. Selected Papers. Springer.

[22] John M. Carroll. (2000). “Five reasons for scenario-based design”.
Interacting with Computers, vol. 13, pp. 43-60.

[23] Lee, Jason Chong Lee, Tejinder K. Judge & D. Scott McCrickard.
(2011). “Evaluating eXtreme scenario-based design in a distributed agile
team”. CHI 2011, held on 7-12 May, in Vancouver, BC, Canada.

[24] Ian Sommerville. (2007). “Software engineering: International computer
science series”. 8th edition. Addison-Wesley.

[25] Robert K. Wysocki (2011). “Effective project management: traditional,
agile, extreme”. John Wiley & Sons.

[26] Barry Boehm. (2002). “Get ready for agile methods, with care”.
Computer, vol. 35, no. 1, pp. 64-69.

[27] F. Guerrero, & Y. Eterovic. (2004). “Adopting the SW-CMM in a small
IT organization”. Software, vol. 21, issue 4, pp. 29-35. IEEE Computer
Society.

[28] Barry W. Boehm & Richard Turner. (2003). “Balancing agility and
discipline: a guide for the perplexed”. Addison-Wesley Professional.

[29] Ani Liza Asnawi, Andrew M. Gravell & Gary B. Wills. (2010). “An
empirical study: Understanding factors and barriers for implementing
agile methods in Malaysia”. 5th International Doctoral Symposium on
Empirical Software Engineering (IDoESE), 15 September 2010,
Bolzano-Bozen Italy.

[30] Nada Dabbagh. (2012). “Performance support for advanced learning
technologies selection and integration”. American Institute of Higher
Education – The 7th International Conference, held at Williamsburg,
VA on 7-9 March, 2012, pp. 78-84.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

70

[31] Larry Constantine, Robert Biddle & James Noble. (2003). “Usage-
centered design and software engineering: models for integration.”
Proceedings of the 2003 International Conference on Software
Engineering, pp. 3-9.

[32] Donald A. Norman. (2005). “Human-centred design considered
harmful”. Interactions, vol. 12, no. 4, pp. 14-19.

[33] Larry L. Constantine. (2000). What do users want? Engineering
usability into software, p. 5. Constantine & Lockwood, Ltd.

[34] Derrick, Brown. (2008). “The how to of essential modelling. IRM
Training – White paper”. Available at www.irm.com.au (accessed June
2012).

[35] Larry Constantine. (2003). Proceedings of DSV – IS'2003 – 10th
International Workshop on Design, Specification and Verification of
Inter-active Systems, Lecture Notes in Computer Science, Berlin:
Springer-Verlag.

[36] Larry Constantine & Helmut Windl. (2003). Usage-centred design:
scalability and integration with software engineering. The Second
International Conference on Usage-Centered Design, held on 18-22
October, 2003.

[37] Jean-Guy Schneider & Lorraine Johnston. (2005). “eXtreme
Programming––helpful or harmful in educating undergraduates?”
Journal of Systems and Software, vol. 74, issue 2, pp. 121-132.

[38] Jeff Patton. (2003). “Improving on agility: adding usage-centered design
to a typical agile software development environment.” ForUse 2003:
Proceedings of the Second International Conference on Usage-Centred
Design.

[39] Jennifer Ferreira, James Noble & Robert Biddle. (2005). “The semiotics
of usage-centered design”. Eighth International Workshop on
Organisational Semiotics, held in Toulouse, France.

[40] J. Patton. (2002). “Hitting the target: Adding interaction design to agile
software development”. OOPSLA 2002 Practitioners Reports. ACM
Digital Library.

[41] Michitaka Hirose. (2001). Human-computer interaction: INTERACT
'01: IFIP TC: 13th International Conference on Human-Computer
Interaction, held on 9-13 July, 2001, in Tokyo, Japan.

[42] Ralph R. Young. (2003). “Requirements Engineering Handbook”.
Artech House Print.

[43] Klaus Pohl & Chris Rupp. (2011). “Requirements engineering
fundamental: a study guide for the certified professional for
requirements engineering exam – foundation level – IREB compliant”.
O'Reilly Media Inc.

[44] Tao Zhang. (2010). “Complementary Classification Techniques based
Personalized Software Requirements Retrieval with Semantic Ontology
and User Feedback”. 2010 IEEE 10th International Conference on
Computer and Information Technology (CIT), pp. 1358-1363.

[45] Bashar Nuseibeh & Steve Easterbrook. (2000). “Requirements
engineering: a roadmap”. Proceedings of the ICSE 2000 Conference on
the Future of Software Engineering, pp. 35-46.

[46] Valerie E. Zelenty (Ed.). (1998). “IEEE recommended practice for
software requirements specification”. Software Engineering Standards
Committee. IEEE Std 830-1998. IEEE Computer Society.

[47] Peter Haumer. (2004). “Use case-based software development”. Book
chapter in Alexander, Ian & Maiden, Neil (Ed.). Scenarios, stories, use
cases: through the systems development life-cycle. Wiley.

[48] Bennett. (2004). “Object-oriented systems analysis and design using
UML”, p. 121. Tata McGraw-Hill Education.

[49] Lesley Harschnitz. (2011). “Gathering effective requirements”. Golden
Horseshoe SAS Users Group. ArcelorMittal. Available at
www.sas.com/offices/NA/canada/...Fall.../Harschnitz-Requirements.pdf

)accessed April 2013.(
[50] Ramesh R. Manza (2010). “Computer vision and information

technology: advances and applications”. I. K. International Pvt Ltd.
[51] Judy Hammond, Tom Gross, & Janet Wesson. (2002). “Usability:

gaining a competitive edge”. Springer.
[52] Klaus Pohl. (2010). “Requirements Engineering: Fundamental,

principles, and techniques”. Berlin, Heidelberg: Springer-Verlag.
[53] A. Hussey, I. MacColl, & D. Carrington. (2001). “Assessing usability

from formal user-interface designs”. Proceedings of Software
Engineering Conference 2001, held in Australia on 27-28 August, 2001,
pp. 40-47.

[54] Dorin Petriu. (2002). “Analysing software requirements specifications
for performance”. Conference Proceedings of the 3rd International
Workshop on Software and Performance, pp. 1-9. Association of
Computing, Mach., New York.

[55] Sofia. (2010). “Software development process – activities and steps”.
Available at
www.uacg.bg/filebank/acadstaff/userfiles/publ_bg_397_SDP_activities_
and_steps.pdf (accessed June 2013).

[56] C. R. Kavitha & Sunitha Mary Thomas. (2011). “Requirement gathering
for small projects using agile methods”. IJCA Special on 'Computational
Science – New Dimensions & Perspectives', NCCSE, 2011.

[57] R. Baskerville, B. Ramesh & L. Levine et al. (2003). “Is 'Internet speed'
software development different?” IEEE Software, vol. 20, issue 6, pp.
70-77.

[58] Barry W. Boehm & Richard Turner. (2005). “Management challenges to
implementing agile processes in traditional development organizations”.
Software, IEEE, Vol. 22, Issue 5.

[59] Larry L Constantine & Lucy A. D. Lockwood. (2001). “Usage-centred
engineering for web applications”. IEEE Software, vol. 19, no. 2, pp. 42-
50.

[60] Larry L. Constantine. (2011). “Software for use: A practical guide to the
models and methods of usage-centred design”, p. 79. Addison-Wesley
Professional.

Kholod Jeza Alotaibi is a PhD research student at the University of
Southampton, UK's School of Electronics and Computer Science specialising
in Software Usability Engineering. She is currently engaged in a project titled
'Framework for Improved Capture of Usability Requirements through Usage-
Centred Design'. This will involve soliciting the views and experiences of
both developers and users of e-learning software at Saudi universities with the
aim of showing ways to improve the software's usability. This research is
under the supervision of Professor Andrew Gravell.

Professor Andrew Gravell is a senior member of the academic staff in
Electronic and Software Systems at the University of Southampton, UK's
School of Electronics and Computer Science. His interests include agile
methods, e-administration, software development, and technology enhanced
education.

