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Abstract—The Integrated Performance Modelling Environment 
(IPME) is a powerful simulation engine for task simulation and 
performance analysis. However, it has no high level cognition such 
as memory and reasoning for complex simulation. This article 
introduces a knowledge representation and reasoning scheme that can 
accommodate uncertainty in simulations of military personnel with 
IPME. This approach demonstrates how advanced reasoning models 
that support similarity-based associative process, rule-based abstract 
process, multiple reasoning methods and real-time interaction can be 
integrated with conventional task network modelling to provide 
greater functionality and flexibility when modelling operator 
performance.

Keywords—Computer-Generated Forces, Human Behaviour 
Representation, IPME, Modelling and Simulation, Uncertainty 
Reasoning

I. INTRODUCTION

UMAN behaviour representation (HBR) refers to 
computer-based models that mimic either the behaviour 

of a single human or the collective actions of a team of 
humans [1]. Most Computer-Generated Forces (CGF) 
approaches used for military simulations lack plausible 
support from the human sciences. In a number of cases, these 
approaches have been found to be brittle, producing 
implausible behaviours for even minor deviations from the 
design criteria, and have insufficient representation power to 
provide adequate performance, particularly for training 
simulations. Models of perception, cognition and behaviour 
moderators (such as physiological and psychological 
stressors) from the human sciences are thought to be a means 
of extending a pure Artificial Intelligence (AI) approach to 
create a more plausible representation of observed behaviour 
for the military operators that the HBR is replacing [1]. 

Rule-based approaches are dominating the current human 
behaviour representation and used in various applications of 
CGF [1]. Examples include the situation awareness for aircraft 
and pilot simulation [2]-[6], threat event detection [7], and  
decision-making in combat pilot target selection [8], land 
forces [9] and navy tasks [10]. 
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Propositional-logic-driven systems are appropriate, in 
particular, for deterministic parameters or system models. 
However, many parameters related to environment, cognition 
and moderators are uncertain, such as intentions of enemy 
forces, or operators’ emotions. 

The Integrated Performance Modelling Environment 
(IPME) is a powerful analytical tool for task execution and 
performance prediction using discrete event simulation. IPME 
constrains task execution by providing an interface to 
incorporate human performance models. IPME has imbedded 
attentional and workload models that affect the flow of tasks. 
Unfortunately, it lacks high-level cognitive tools such as 
memory and reasoning for complex tasks undertaken by 
simulated military operators. The Simulated Operators for 
Networks (SimON) project [11] is attempting to extend IPME 
and develop architecture for modelling military personnel in 
CGF that can readily add human science information to 
HBRs.

We proposed a representation [12] supporting various 
reasoning in SimON. This approach can accommodate 
deterministic and uncertainty reasoning for simulations of 
military personnel with IPME. It is also able to deal with the 
impacts of behaviour moderators, for example, personality and 
emotion, in variable levels. The implemented reasoning 
system interacts with IPME in real-time to support decision-
making and reasoning within simulated tasks. 

This paper focuses on the uncertainty representation of 
simulated operators in SimON. In Section II, we will analyze 
uncertainty in CGF and review the systems with uncertainty 
reasoning in military applications. We will, then, in Section 
III, introduce a representation approach for uncertainty 
reasoning in virtual operators. Section IV will deal with the 
military applications with our approach. Section V will 
conclude our efforts. 

II. UNCERTAINTY IN COMPUTER-GENERATED FORCES

Uncertainty exists in most military activities and 
simulations of these activities should incorporate this 
uncertainty when predicting the performance of personnel 
who may be involved in areas as command and control, 
piloting military aircraft, remotely controlling unmanned 
vehicles, directing helicopters during landing on ships, or 
search and rescue. In many cases, commanders cannot get 
exact and deterministic situation information, such as, strength 
of adversary forces. It is also hard for pilots to foresee weather 
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conditions or potential threats. For an unmanned vehicle 
controller, the data related to an upcoming situation, e.g. 
terrain shapes and obstacles, is often vague. The decision-
making process for a landing safety officer directing a 
helicopter to land on a rolling ship is complicated because 
many factors are uncertain, for instance, the helicopter pilots’ 
technical skills or the stability of the flight deck. In search and 
rescue, there are also many imprecise factors, such as the 
exact position of a target.

Behaviour moderators are conditions or factors that affect 
behaviour, such as physiological or psychological state. It is 
difficult to measure many subjective behaviour moderators, 
such as emotion and personality, with deterministic values. 

A variety of researchers have explored uncertainty 
representation in military simulation. In the simulation of 
command and control area, fuzzy logic [13], [14], [9] and 
probabilistic methods [15]–[18] are being used for situational 
assessments and decision-making. For pilot and aircraft 
simulations, a number of projects assist pilots’ situation 
recognition and decision-making [19]–[22]. Some other 
examples use uncertainty methods for helicopter control [19] 
[23] and diagnosis of faults [24]. For unmanned vehicle 
control, some projects use fuzzy and other uncertainty 
methods for keeping safe speeds [25], obstacle avoidance and 
path control [26]–[29]. Richards’ efforts [30] demonstrate the 
potential using fuzzy logic and neural networks to predict the 
trajectory of a landing helicopter. In the search and rescue 
area, a couple of researchers simulate target positioning with 
the Bayesian method [31] while others have used fuzzy logic 
to plan rescue activities [32]. Fuzzy reasoning has been used 
to assess the ease of traversing terrain [33]. Picard proposed a 
theory called affecting computing [34] that deals with the 
recognition and effect of emotions using the hidden Markov 
model. There are also projects focusing on the impact of 
emotions on intelligent agents [35]. 

In summary, there are a great number of factors in CGF that 
are vague, incomplete and uncertain. Human beings often 
infer conclusions based on such uncertainty information. 
Therefore, it is necessary to develop tools for uncertainty 
reasoning in simulation engines, such as IPME, to support 
reasoning-related tasks, including situation awareness, 
decision-making, planning, and action in task network 
simulations within IPME. 

III. REPRESENTING UNCERTAINTY IN VIRTUAL OPERATORS

LAMP (Language of Agents for Modelling Performance) is 
an approach of knowledge representation for various 
reasoning required by simulated task nodes in IPME [12], 
[36], or other task modelling tools. It is able to represent 
deterministic and uncertain knowledge and support similarity-
based associative reasoning and rule-based abstract reasoning, 
interacting with IPME in real-time. 

Fig. 1 is a conceptualization of LAMP (lower portion) 
interacting with a task network in IPME (upper portion). The 
communication between LAMP and IPME is through a 

TCP/IP (Transmission Control Protocol /Internet Protocol) 
socket interface. LAMP encompasses a Reasoning Interface,
Reasoning Engines and Aspect networks. The Reasoning 
Interface module receives data from IPME, activates the 
reasoning system to get conclusions or solutions, and sends 
the results to IPME to affect task execution. The Reasoning 
Engines activate Aspect networks within LAMP and provide 
computational support to various reasoning methods, such as 
probability, fuzzy, propositional and analogical reasoning. 

 The Aspect networks are the knowledge base in LAMP, in 
which each Aspect is a knowledge unit with InputInterface,
ReasoningKnowledge, OutputInterface, LearningInterface and 
SocialInterface. In the simulation process of IPME task 
networks, any simulated task node can communicate with 
LAMP’s Reasoning Interface to activate the reasoning system, 
send requests to and get conclusions from the reasoning 
system, and then use the reasoning results for further task 
simulation. The following describes the details of main 
components in Aspects.

Fig. 1 Overview of LAMP and IPME

InputInterface holds data from the task simulation in IPME 
and converts the data into an internal representation. 
OutputInterface sends the reasoning results to the task 
simulation in an appropriate format. LearningInterface and 
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SocialInterface are future components in LAMP to provide 
mechanisms for automated knowledge acquisition or 
interactions with other Aspects.

At the core of Aspect, the ReasoningKnowledge defines a 
dual-process knowledge representation [37] [38] [39] [40] 
with abstract derivations and associative mappings. The 
abstract derivation process is certainty-related and rule-based 
system for probability, fuzzy and proposition inferencing. The 
associative mapping process is memory-based analogical 
model. Both the abstract and associative processes can interact 
to support hybrid reasoning.  

ReasoningKnowledge is organized into features, items,
nexuses, traces and rules. A feature is a pair of name-values, 
such as “shape=circle”. An item represents a concept, object 
or fact with a group of features. For example, a vehicle is an 
item with features including “maker”, “model” “color”, etc. A 
nexus embodies a union of data items, with a certainty and a 
set of features. For instance, “[Travel, UAV123, Toronto, 
NewYork] represents a nexus named “Travel” that associates 
the vehicle “UAV123”, the departure city “Toronto” and the 
destination city “NewYork”. A trace models an event or 
experience with groups of nexuses representing background, 
description, plans, solutions, etc.  

A rule is a pair of conditions and actions in which each 
condition or action is a nexus. Rules correspond to abstract 
derivation knowledge for a variety of reasoning methods. 
Each rule may also contain meta-attributes for behaviour 
moderators or statistical data of reasoning performance. For 
example, each rule has a firing priority that can be used to 
affect precision and effectiveness of reasoning process. The 
following schema describes a rule:  
Rule = <Id, Type, Conditions, Actions, MetaAttributes>,

where Id is the identifier of this rule; Type may be proposition, 
fuzzy, probability or analogy; Conditions consist of a group of 
nexuses as arguments, while Actions include outcomes of the 
rule; MetaAttributes characterize behaviour moderator effects 
or other meta-properties, for example, personality and 
emotion, that affect this rule’s reaction features such as firing 
priority or response delay. An example of rule is as follows: 

Rule = {  /* RPM: Revolutions Per Minute */ 
Id = RotorRPMControlRule1;
Type = fuzzy;
Conditions  = ( [ RotorRPMChangeRate, Negative],

                                 [RotorRPMError, Negative]
Actions = ([RPMAdjustment, Positive])
MetaAttributes = {FiringPriority = getRPMPatternPriority

                                               (AnxietyDegree, Emotionality),
ResponseDelay = getRPMPatternResponseDelay 

(AnxietyDegree)}

In this example, the reasoning type is fuzzy, using fuzzy logic 
to make a judgment, and the Id is RotorRPMControlRule1.
There are two nexuses in the Conditions,
RotorRPMChangeRate and RotorRPMError, each of which 
contains an item identifying relevant fuzzy set and a certainty.
The MetaAttributes comprises two attributes (FiringPriority
and ResponseDelay) that are computed through functions 

based on the current operator’s personality traits including 
anxiety degree and emotionality, and used to affect the 
effectiveness and speed of this rule’s reaction. 

The reasoning system works with IPME to offer various 
reasoning required by simulated tasks. When an IPME task 
activates the reasoning system, the InputInterface receives 
associated data and queries from IPME. The reasoning system 
activates the corresponding reasoning engine and employs a 
related derivation mechanism to draw conclusions or 
solutions. Finally, the OutputInterface sends the solutions or 
conclusions as variable values back to the IPME task for 
further use. 

IV. SUPPORTING MILITARY APPLICATIONS

In this section, we describe an example for helicopter 
control with fuzzy reasoning. Typically, helicopter control is 
modelled as a task layer, such as “take off”, “hover”, 
“descend,” “forward” and “backward”, and a behaviour layer 
including “heading”, “lateral”, “longitude” and “altitude” 
controls. In order to perform a task, one or more behaviour 
functions have to be activated to make adjustment for the 
desired output. For example, for “hovering”, pilots should 
look for small changes in the helicopter’s lateral, longitudinal 
and height controls.  

There are a variety of strategies to represent helicopter 
control, such as PID (Proportional-Integral-Derivative), fuzzy 
logic and neural networks [27]. PID control is a traditional 
and powerful method, but it is abstract and the parameter 
tuning can be time consuming. Neural networks can also be 
used for helicopter control, but it cannot explain its reasoning 
process and need more computation efforts affecting real-time 
applications. Fuzzy logic is a human-like approach and easier 
to relate to a pilot’s description of control and has been found 
to be easy to tune.  

Fig. 2 A photograph of a helicopter control panel and 
flight controls (left) with the corresponding 

representation in the simulator (right)
A helicopter simulator (as shown in Fig. 2) can be 

connected to IPME model of the pilot actions as shown in Fig. 
3, adjusting the controls during a simulation. Fig. 4 is the 
Aspect structure for the reasoning used in the IPME task 
network. The piloting tasks invoke the corresponding Aspects 
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to derive relevant control adjustments for heading, position, 
altitude controls, et cetera.  

We describe the details of the Aspect “InferLongitude” in 
Fig. 4. Pitch angle change rate and pitch angle error are used 
to derive the adjustment amount of longitudinal cyclic. The 
allowable ranges of pitch angle change rate, pitch angle error 
and the longitudinal cyclic as conclusion are partitioned 
respectively by the following five fuzzy sets expressing the 
approximate  nature  of  the  measurements:  “VeryNegative”,

“Negative”, “Zero”, “Positive”, and “VeryPositive”.

Fig. 3 A simplified IPME task network for the simulation of 
helicopter control 
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Fig. 4 The Aspect structure for the simulation of helicopter control

The fuzzy membership functions for the longitudinal cyclic 
control are shown in Fig. 5, where the longitudinal cyclic L is 
output and the pitch angle change rate R and the pitch angle 
error E are inputs. The dependence relationships between 
longitudinal cyclic and pitch angle change rate and pitch angle 
error are shown in Fig. 6, which form the Conditions and 
Actions in fuzzy rules. For example, in the Fig. 6, if the RPM 
change rate is Negative (denoted as N), and the RPM error is 
Negative (N), then the current RPM adjustment should be 
Positive (P).

When the IPME task that controls position invokes the 
reasoning system to correct an error in the lateral position, the 
fuzzy reasoning engine asks IPME for situation data including 
“SetPoint”, “CurrentPitchAngle” and “LastPitchAngle”. It, 
then, derives the longitudinal cyclic change through rules and 
fuzzy computing. Finally, it returns the derived adjustment 
amount to IPME where it is applied to the helicopter 
simulation controls in a repeating process. 

Fig. 5 Membership functions for pitch angle change rate, pitch angle 
error and longitudinal cyclic
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VN VP VP P P Z

N VP P P Z N

Z P P Z N N

P P Z N N VN

VP Z N N VN VN

RPM Change Rate

RPM 
Error

Fig. 6 Longitudinal cyclic adjustment based on pitch angle change 
rate and pitch angle error 

Fig. 7 Attributes of the Aspect for longitudinal position control 

Fig. 7 is a screen shot of the corresponding Aspect that 
consists of 25 rules related to the relationships in Fig. 6 and 
four methods for data conversion between sense data and 
nexuses in rules. Fig. 8 shows an example of the resulting 
fuzzy conclusions. When SetPoint is 0.0, CurrentPitchAngle
is –3.0 degrees and LastPitchAngle is –7.0 degrees, the 
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reasoning result is “[NumericLongitudinalCyclic, -3.846154, 
C=1.000000], i.e. in this case, the adjustment of the 
longitudinal cyclic is minus 3.846154 degrees. 

Fig. 9 shows the comparison between fuzzy control and a 
PID control for longitudinal-pitch control (initial pitch angle: 
–7.0; set point: 0.0). We found that the fuzzy control curve is 
smoother, while the PID control contains more oscillations for 
similar development time, although further tuning should 
improve the PID controller. 

Fig. 8 Reasoning results of the request “LongitudinalPitch” 

Fig. 9 Result Comparison between fuzzy control and PID control 

V. CONCLUSIONS

Compared to other approaches, LAMP’s distinctions lie in 
(1) being able to interact with the simulation engine IPME in 
real-time for continuous reasoning in simulated tasks to 
represent human behaviour, (2) supporting dual-process 
reasoning including abstract-level deriving and association-
level searching and analogical mapping, (3) providing 
multiple reasoning methods for both deterministic and 
uncertainty inference, and (4) modelling the impacts of 
behaviour moderators in variable levels. 

A number of tentative conclusions and limitations can be 
drawn based on the results in this study. These results have 
also raised issues that may benefit from additional research.  

A literature review and analysis about uncertainty in 
military applications indicated that it is often difficult to get 
deterministic data and models for many military simulation 
areas. In order to support better reasoning and decision-
making in CGF, current simulation engines, such as IPME, 

should be extended with advanced reasoning mechanisms to 
support uncertainty in military simulation and modelling. 

The current implementation of LAMP indicated that it is 
possible to integrate multiple uncertainty reasoning 
approaches for various simulated tasks under a unified 
architecture. At the moment, this system deals with 
proposition, fuzzy and probability methods at the abstract 
level, and the analogy reasoning at the associative level. 
Furthermore, LAMP has the capability to integrate new 
approaches.

With the examples developed in the current system, this 
study provided indication that the reasoning system has the 
potential to be used in different military simulation areas. At 
present, examples are involved in command and control, 
helicopter control, and personnel relationship reasoning in an 
organization. 

The current studies also raised many important issues that 
should be considered in future research, including exploring 
the automatic selection of reasoning methods; refining the 
support to behavior moderator modelling, and developing 
HLA compatible interface; and making more efforts on the 
validation of integration mechanism.  
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