
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1223

Abstract—Coloured Petri net (CPN) has been widely adopted in

various areas in Computer Science, including protocol specification,
performance evaluation, distributed systems and coordination in
multi-agent systems. It provides a graphical representation of a system
and has a strong mathematical foundation for proving various
properties. This paper proposes a novel representation of a coloured
Petri net using an extension of logic programming called abductive
logic programming (ALP), which is purely based on classical logic.
Under such a representation, an implementation of a CPN could be
directly obtained, in which every inference step could be treated as a
kind of equivalence preserved transformation. We would describe how
to implement a CPN under such a representation using common
meta-programming techniques in Prolog. We call our framework
CPN-LP and illustrate its applications in modeling an intelligent
agent.

Keywords—Abduction, coloured Petri net, intelligent agent, logic
programming.

I. INTRODUCTION
N recent years, agent oriented computing becomes one of the
dominant trends of development in Computer Science.

Various approaches have been proposed for solving problems
in this field. An important area of research concerns
communication and coordination amongst different
autonomous agents. Coloured Petri net, which was widely used
in studying coordination and concurrency in distributed
systems [1, 2], has been applied to this research area in
multi-agent systems [3, 4]. The advantages of using CPN are
that a graphical representation of a system is provided and
analytical methods are available for proving various properties,
like place-invariant and deadlock. In parallel, another kind of
approach based on logic programming (LP) has also been
advocated. Logic programming has been extended in various
directions. One of the extensions is called abductive logic
programming [5]. A number of researches have proposed the
use of ALP in multi-agent systems [6, 7]. The advantages of
using logic programming are that logical semantics and
inference procedure are available for specifying and

Manuscript received in July 18, 2006.

 T. H. Fung is Manager – Research and Development in Hong Kong

Examinations and Assessment Authority (phone: (852) 2239 2679; fax: (852)
2834 5933; e-mail: thfung@hkeaa.edu.hk).

implementing a multi-agent system.
This paper proposes a novel representation of a CPN in ALP

such that advantages of both of these approaches could be
resulted. Under such a representation, an implementation of the
CPN using meta-programming techniques in Prolog could be
directly obtained. Each inference step can be regarded as a kind
of equivalence preserved transformation. We would discuss the
application of our proposed framework (CPN-LP) using a
formulation recently proposed by R.A. Kowalski [8] for
modeling an intelligent agent: Thinking = Logic + Control,
where “Control” concerns the manner in using the inference
steps. Following this formulation, we argue that CPN could be
nicely used for modeling the control component when
designing an intelligent agent in a multi-agent system. Using
the logical representation we propose, an implementation could
be directly obtained.

The structure of the rest of the paper is as follows. First, we
would briefly introduce the formal definition of a CPN and
ALP in the coming sections. Second, we outline the way to
represent a CPN in ALP and illustrate the steps with a simple
example. We show how to implement the representation of a
CPN. Then we formally define the inference procedure and
discuss its properties. Finally, we mention its applications in
modeling an intelligent agent and discuss possible future
developments.

II. COLOURED PETRI NET
In Petri net, the possible states of a system are represented by

means of ellipses or circles, which are called places. The
actions or events, which may occur in the system, are
represented by means of rectangles, which are called
transitions. The net also contains a set of directed arrows
called arcs. Each arc connects a place with a transition or a
transition with a place. The current state of a system is
represented by using a number of tokens. An arbitrary
distribution of tokens on the places is called a marking. In
coloured Petri net, each token contains values of certain type or
called colour.

A. Simple Example
In Figure 1, which is borrowed from [2], there are 3 places,

namely: B, C, and S. T2 is a transaction. The marking is that two
tokens with values equal to (p, 0) are in the place B and another

Representation of Coloured Petri Net in
Abductive Logic Programming (CPN-LP) and

Its Application in Modeling an Intelligent Agent
T. H. Fung

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1224

three tokens with values equal to e are in the place S. Thus a
place could contain a multi-set of tokens of certain type or
colour. Also, each variable in the figure is also declared with a
type.

Fig. 1 A simple example of a CPN

Declarations:
type U = with p|q;
type I = int;
type P = product U*I
type E = with e;
var x : U;
var i : I;

There are 3 arcs in Figure 1 connecting a place to a transition or
a transition to a place. An arc may be inscribed with an arc
expression, which results in a multi-set of tokens when
evaluating. In the figure, the transition T2 is enabled and could
be fired. When firing the transition, one token of (p, 0) and two
tokens of e would be respectively removed from B and S,
another token of (p, 0) would be added to C. Sometimes, a
transition may be associated with a Boolean expression called a
guard which has to be evaluated to true when enabling or firing
a transition. The formal definitions of these intuitive notions are
given in the following.

B. Formal Definitions
Formally, a CPN is defined as a tuple, (Σ, P, T, A, N, C, G,

E, I) where
(i) Σ is called colour sets.
(ii) P is a finite set of places.
(iii) T is a finite set of transitions.
(iv) A is a finite set of arcs.
(v) N is called node function mapping from A into P x T ∪

T x P.
(vi) C is a colour function mapping from P into Σ.
(vii) G is called guard function, mapping a transition in T

into a Boolean expression.
(viii) E is called an arc expression function mapping an arc

into a multi-set of tokens.
(ix) I is an initialization function mapping a place into a

multi-set of tokens.

The following is the formal definitions for a transition being
enabled and the resultant marking after firing an enabled
transition.

 A binding of a transition t, (t, b) is a function b defined on
variables of t, Var(t) such that b(v) ∈ Type(v) for all variables v
occurring in t and G(t) is evaluated to be true (where
G(t) stands for the Boolean expression with all the
variables in t being replaced with the values as dictated by b).
 A binding (t, b) is enabled in a marking M if-and-only-if the
following property is satisfied.
 ∀p∈P: E(p,t) ≤ M(p).

Accordingly, the binding, <T2, {(x, p), (i, 0)}> is enabled in
Figure 1. When a (t, b) is fired in M1, the marking is updated to
another marking, M2 as follows.
 ∀p∈P: M2(p) =(M1(p) –E(p,t)) + E(t, p) .

III. ABDUCTIVE LOGIC PROGRAMMING : A TRADITIONAL
PERSPECTIVE

Traditionally, abduction means inference to a best
explanation and is a pattern of reasoning that occurs in many
diverse areas. It proceeds from an outcome to a hypothesis that
best explains or accounts for the outcome.

 A ← B
 A
__
Conclude B as an explanation for the outcome A

In general, it can be formulated as follows. Given a set of

sentences T (a theory or an agent’s belief) and a sentence Q (an
outcome), to a first approximation, the abductive task can be
characterized as the problem of finding a set of sentences Δ
such that

T ∪ Δ |= Q.

Moreover, we need to restrict Δ so that it conveys some reasons
why the outcome holds. We want to explain one effect in terms
of some causes; instead of other similar effects. Therefore the
explanations are often restricted to a special pre-specified and
domain-specific class of sentences called abducibles. In
addition to T, integrity constraints (also called propagation
rules), IC may be useful to avoid unintended explanations
produced. A simple example below is used to illustrate these
intuitive notions.

A. Simple Example
T: grass_is_wet ← rain_last_night

grass_is_wet ← sprinker_was_on
 no_cloud_last_night
IC: cloudy_last_night ←rain_last_night
 false ← cloudy_last_night, no_cloud_last_night
Ab: rain_last_night, sprinker_was_on, cloudy_last_night
Q: grass_is_wet.

Without the use of integrity constraints, IC, the possible

explanation for the outcome, Q; i.e. grass_is_wet could be
explained by either rain_last_night or sprinker_was_on. In the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1225

presence of IC, the explanation rain_last_night would deduce
falsity and thus unacceptable. In general, a further criterion is
added when constructing an explanation; i.e.

T ∪ Δ |= IC.

It should be noted that from Q to obtain one of the

explanations, backward reasoning is employed. On the other
hand, from one of the plausible explanations, rain_last_night to
obtain the falsity, forward reasoning is employed. Thus in
abductive reasoning, backward reasoning and forward
reasoning are integrated together.

B. Formal Definitions
 Similarly, a ALP is defined as a tuple, (T, IC, Ab, ThC)

(i) T is called the definitions for defined predicates (in the
form of usual Prolog clauses); i.e. those predicates
which are not abducible predicates and built-in
predicates.

(ii) IC is the set of integrity constraints or propagation
rules.

(iii) Ab is the set of abducible predicates; i.e. predicates
without any definitions.

(iv) ThC is some theory in form of logical formulae; but in
general, would not be stated out explicitly. It is mainly
used for justifying those operations when handling
built-in predicates. For example, for handling ≠, =,
ThC includes the Clark equality theory (CET) [9]
which is implemented in Prolog using standard
unification algorithm.

In this paper, ThC is also used for logically justifying the
steps when modeling the removal of tokens after firing a
transition. This would be further explained in a latter section.

IV. REPRESENTATION OF CPN IN ALP
Superficially, these two formalisms seem to be totally

different from each other. Also, destruction of tokens when
firing a transition usually lead one to believe that such an
operation could not be appropriately modeled using classical
logic.

A. Simple example
To clarify our approach, we use the CPN in Figure 1 as an

illustration.
In the representation we propose, a marking in a CPN is

represented as a set of abducible atoms (in the form of token(ID,
Colour, Place)) with abducible, Ab={token}. For the marking
of CPN in Figure 1, it is represented as

{ token(id1, col(p,0), b), token(id2, col(p,0), b),
token(id3, col(e), s), token(id4, col(e), s),
token(id5, col(e),s)}.

Here, we adopt the conventions in Prolog. Names starting
with a small letter stand for constants, while those starting with
a capital letter stand for variables. A (set of) propagation rule(s)
(in the form of trans(ID, ListOfInputs) ← List of tokens

requested) would be responsible for firing a transition in a
CPN. For T2 in Figure 1, the following rules are used.
trans(t2, [p,I])← token(Id1, col(p, I), b), token(Id2,col(e), s),

 token(Id3,col(e),s), Id2 ≠ Id3.
trans(t2, [q,I])← token(Id1, col(p, I), b), token(Id2,col(e), s).

 Thus checking whether a transition is enabled under a

marking and firing the transition in a CPN is just a kind of
forward reasoning commonly used in many production
systems.

For determining the set of output tokens when firing an
enabled transition, the definition of an atom (in the form of
trans(ID, ListOfInputs)←List of tokens generated) for that
transition and backward reasoning are employed. Again, for T2
in Figure 1, the corresponding definition is as follows.
 trans(t2, [X, I])← gensym(id, ID), token(ID, col(X,I), c),
 place(c, col(X, I).
Note that gensym is a built-in predicate available in most Prolog
systems for generating a unique serial number, which should be
logically treated as a distinct skolem constant. The atom
place(c, col(X, I)) is used as a safeguard to check the
appropriateness of the colour of the newly generated token
token(ID, col(X,I), c). The corresponding definition is below.
 place(c, col(p, I)) ← integer(I).
 place(c, col(q, I)) ← integer(I).

 Finally, we define a computation state as a tuple consisting
of two sets S = (S1, S2). At the beginning, S1 consists of
abducible atoms representing the initial marking a CPN and S2
is empty. For Figure 1, the computation state, S is defined as

 S=({ token(id1, col(p,0), b), token(id2, col(p,0), b),
token(id3, col(e), s), token(id4, col(e), s),
token(id5, col(e),s)}, {}).

By forward reasoning with a propagation rule, a transition is
fired and the tokens occurring in the body of the propagation
rule would be removed from S1 to S2 and the head of the rule is
added to S1. Then by backward reasoning with the definition of
the transition, the corresponding new token(s) would be added
to S1. This process is repeated. For firing the transition T2 in
Figure 1, the changes could be described as follows.

 S=({ token(id1, col(p,0), b), token(id2, col(p,0), b),
token(id3, col(e), s), token(id4, col(e), s),
token(id5, col(e),s)}, {})
 forward reasoning

 S’=({ trans(t2, [p,I]), token(id2, col(p,0), b),
token(id3, col(e), s) }, { token(id1, col(p,0), b),
token(id4, col(e), s), token(id5, col(e),s)})
 backward reasoning

S”=({ token(id6, col(p,0), c), token(id2, col(p,0), b),
token(id3, col(e), s) }, { token(id1, col(p,0), b),
token(id4, col(e), s), token(id5, col(e),s)})

S1 contains the tokens in the current marking of a CPN and S2
contains the tokens, which occur in a certain previous state.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1226

B. Comparison
A comparison table is below to highlight the difference

between a CPN and the corresponding logical representation
we propose.

TABLE I
COMPARISON BETWEEN TWO FORMALISMS: CPN VS. ALP

__
CPN ALP

__
Structure: Node function Implicit in the propagation

rules and definitions for
transitions

Place: Name Use the definitions of predicate

Colour set place and functor, col:
 Initial marking place(Place, col(Type)).

Initial state: S=(S1, S2) where S1
is a set of atoms with predicate,
token and S2 is empty

Transition: Name Use the definitions of predicate
Guard trans:

trans(ID, ListOfInputs)←
List of tokens generated

Note: Guard is represented in the
condition of a propagation rule.

Arc expression: It is Represented in the body of a
evaluated to yield a propagation rule for arcs
multi-set of tokens with from place to transition
colour trans(ID, ListOfInputs) ←

List of tokens requested

Binding:<T2,{(x,p), (i,0)}> Prolog unification process when
implementing the propagation
rule

Enable a binding Enable a propagation rule using
an appropriate ground
instantiation

Fire a transition: A Forward reasoning using
multi-set tokens is removed propagation rule and
from each input place and backward reasoning using a
is added to each output place definition in order to update a

computation state

Declarations: Following common Prolog’s
Types, variables conventions: No need
Functions/ operations These could be easily achieved
(for defining an arc using clauses for defined
expression) predicates
__

C. Full Example: Resource Allocation
Before we mention the implementation, and formalize the

inference steps and discuss its properties, we show a full
example borrowing from [2] in Figure 2. Note that the initial
distribution of tokens (if any) in each relevant place of a CPN is
indicated as a multi-set of tokens with an underline. Initially,

there are 11 tokens in the CPN.

Fig. 2 A full example of CPN
Propagation rules:
trans(t1, [q, I]) ← token(Id1, col(q,I), a), token(Id2,col(e),r),

 token(Id3, col(e), s).
trans(t2, [p,I]) ← token(Id1, col(p, I), b),

token(Id2,col(e), s), token(Id3,col(e),s),
 Id2 ≠ Id3.

trans(t2, [q,I]) ← token(Id1,col(q, I), b),token(Id2, col(e), s).
trans(t3, [p,I]) ← token(Id1, col(p,I),c), token(Id2, col(e), t).
trans(t3(q,I) ← token(Id2, col(q,I), c).
trans(t4,[P,I]) ← token(Id1, col(P,I), d), token(Id2, col(e), t).
trans(t5,[P,I]) ← token(Id1, col(P,I), e).
Definitions:
place(a, col(X,I)) ← type(X),integer(I).
place(b, col(X,I)) ← type(X),integer(I).
place(c, col(X,I)) ← type(X),integer(I).
place(d, col(X,I)) ← type(X),integer(I).
place(e, col(X,I)) ← type(X),integer(I).
place(r, col(e)). place(s, col(e)).place(t, col(e)).
type(p). type(q).

trans(t1,[P,I])←place(b, col(P,I),gensym(id, ID),

token(ID, col(P,I), b).
trans(t2,[P,I])← place(c, col(P,I)),gensym(id,ID),

token(ID, col(P,I), c).
trans(t3,[p,I])← place(d, col(p,I)),gensym(id,ID),

 token(ID, col(p,I), d).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1227

trans(t3, [q,I])← place(d, col(q,I)), gensym(id,ID1),
 token(ID1, col(q,I), d), gensym(id, ID2),
token(ID2, col(e), r).

trans(t4,[P, I])←place(e, col(P,I)), gensym(id, ID),
token(ID, col(P,I), e).

trans(t5,[p,I])← place(b, col(p,I)),gensym(id, ID1),
 I1 is I + 1, token(ID1, col(p,I1),b), gensym(id, ID2),

gensym(id,ID3), token(ID2, col(e),s),
 token(ID3, col(e), s), gensym(id, ID4), gensym(id,ID5),
token(ID4, col(e),t), token(ID5, col(e), t).

trans(t5, [q,I])← place(a, col(q,I)), gensym(id, ID1),
 I1 is I + 1, token(ID1, col(p,I1),a),
 gensym(id, ID2),gensym(id,ID3),token(ID2, col(e),s),

 token(ID3, col(e), s), gensym(id, ID4),
 token(ID4, col(e),t).

Initial computation state:
S=({token(id1,col(q,0),a), token(id2, col(q,0),a),

 token(id3,col(q,0),a),token(id4,col(p,0),b),
token(id5,col(p,0),b),token(id6, col(e),r),
token(id7,col(e),s),token(id8,col(e),s), token(id9,col(e),s),
token(id10, col(e),t),
 token(id11, col(e),t)}, {})

V. IMPLEMENTATION

In this section, we briefly sketch how to implement a CPN
using the logical representation proposed above. It is largely in
line with the format shown in the previous section with some
modifications for efficiency of programming.
 We adopt SWI-Prolog [10] for the implementation of a CPN
using the meta-programming techniques. To ease the
programming effort for checking whether a transition is
enabled and firing a transition, each transition rule is
represented using the following format.
 progRule(ID, DefinedAtomAdded,

body(ListOfTokens, Constraints, ListOfVars))

For each propagation rule, we give a unique number, ID for
identification purpose. The tokens required for firing the rule is
represented using the functor body, which has three arguments.
The first argument is the list of tokens required. The second
argument is the constraints on the variables occurring in the
tokens required. The third argument is the list of the variables
occurring in the tokens. For example, the second propagation
rule for the CPN in Figure 2 is represented as follows.

progRule(r2, trans(t2,[p,I], LstOfTokensGenerated),
body([token(Id1, col(p, I), b), token(Id2,col(e), s),
token(Id3,col(e),s)], [not(Id2 =Id3)],[Id1,I,Id2,Id3])).

Based on such a format, all the rules and the corresponding

instantiations that are enabled in a computation state can be
found using the following program clauses and the built-in
meta-predicate setof.
setof(c(RID,LV),

enableRule(RID, LV, TokensInCurrentState),
ListRuleVars)

where enableRule is defined as
enableRule(RID, LV, LstTokens):-

progRule(RID, _, body(LT, LC, LV)),
enable(LT, LC, LV, LstTokens).

enable(LT, LC, LV, LstTokens) :-
subList(LT, LstTokens),

 fulfillAll(LC).

Simply speaking, a rule is enabled when all the tokens could be
found in the current state (subList(LT, LstTokens)), and the
corresponding constraints on the variables are fulfilled
(fulfillAll(LC)).
 After finding all enabled propagation rules, we randomly
choose one to fire; i.e. the head of the propagation rule is added
to the computation state. Next, we mention how to handle a
defined atom. Each defined atom would have a (set of) clause(s)
as its definition. For atoms of predicate trans, their definitions
are in the following format.
 trans(ID, ListOfInputVars, ListOfTokensGen) :-
 B1,B2,….., Bn.

As an illustration, the definition for the transition T5 would
be as follows.
trans(t5,[p,I], [token(ID2, col(e),s), token(ID3, col(e), s),

 token(ID1, col(p,I1), b), token(ID4, col(e), t),
 token(ID5, col(e), t)]):-

place(b, col(p,I)), gensym(id, ID1), I1 is I + 1,
gensym(id, ID2), gensym(id,ID3) ,gensym(id, ID4),
gensym(id,ID5).

trans(t5,[q,I], [token(ID1, col(q,I1),a), token(ID2, col(e),s),
token(ID3, col(e), s), token(ID4, col(e),t)]):-

place(a, col(q,I)), gensym(id, ID1), I1 is I + 1,
 gensym(id, ID2),gensym(id,ID3), gensym(id, ID4).

The third argument, ListOfTokensGen is the list of tokens that
would be generated. The body of the clause, B1,B2,…..,Bn is
used to determine the ground values of the variables occurring
in these tokens based on the values of the input variables.
 The cycle of the reasoning process is established using the
predicate abdemo as shown below.
abdemo(state(prc([],[HTok|Toks]),Ls)) :-

setof(c(RID,LV),
 enableRule(RID, LV, [HTok|Toks]), ListRuleVars),

ListRuleVars=[HRule|TRules],!,
selectOne(ListRuleVars, RuleVars),
fireRule(RuleVars, [HTok|Toks], Ls, LH1, LTok1, Ls1),
abdemo(state(prc(LH1, LTok1), Ls1)).

abdemo(state(prc([trans(ID,ListIn,ListTokens)|Ld],Lt),
 Ls)) :-

call(trans(ID, ListIn, ListTokens)),!,
append(ListTokens, Lt, Lt1),
abdemo(state(prc(Ld, Lt1), Ls)).

abdemo(state(prc([],Lt), Ls)):-
!, write(‘End of the token game ’).

Note that a computation state is represented as an atom

 state(prc(ListofDefinedAtoms, ListofCurrentTokens),
 Listof PreviousTokens).

The first argument of the functor, prc, ListofDefinedAtoms is
the list of defined atoms with predicates equal to trans. The
second argument ListofCurrentTokens is the list of current
ground tokens which reflect the current system state. Finally,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1228

the second argument, Listof PreviousTokens of functor, state is
the list of previous tokens.

The initial marking would be represented using a number of
atoms (in the form of initial(token(ID,Colour,Place)). For the
CPN in Figure 2, the corresponding clauses are shown below.

initial(token(ID,col(q,0),a)):-gensym(id, ID). % ID=id1
initial(token(ID, col(q,0),a)):-gensym(id, ID). % ID=id2
initial(token(ID,col(q,0),a)):-gensym(id, ID). % ID=id3
initial(token(ID,col(p,0),b)):-gensym(id, ID). % ID=id4
initial(token(ID,col(p,0),b)):-gensym(id, ID). % ID=id5
initial(token(ID, col(e),r)):-gensym(id, ID). % ID=id6
initial(token(ID,col(e),s)):-gensym(id, ID). % ID=id7
initial(token(ID,col(e),s)):-gensym(id, ID). % ID=id8
initial(token(ID,col(e),s)):-gensym(id, ID). % ID=id9
initial(token(ID, col(e),t)):-gensym(id, ID). % ID=id10
initial(token(ID,col(e),t)):-gensym(id, ID). % ID=id11

The whole process is started by using the following clause.
start:-
 findall(T, initial(T), ListOfInitialTokens),
 abdemo(state(prc([],ListOfInitialTokens), [])).

The output of firing first two rules when running the logical
representation of the CPN in Figure 2 is shown below.

Firing the rule, r1 (i.e. T1) using tokens of id1, id6 and id7,
the list of current tokens is changed to:

token(id12, col(q, 0), b)
token(id2, col(q, 0), a)
token(id3, col(q, 0), a)
token(id4, col(p, 0), b)
token(id5, col(p, 0), b)
token(id8, col(e), s)
token(id9, col(e), s)
token(id10, col(e), t)
token(id11, col(e), t)

Firing the rule, r2 (i.e. T2 with x=p) using tokens of id5, id9,
id8, the list of current tokens is changed to:

token(id13, col(p, 0), c)
token(id12, col(q, 0), b)
token(id2, col(q, 0), a)
token(id3, col(q, 0), a)
token(id4, col(p, 0), b)
token(id10, col(e), t)
token(id11, col(e), t)

VI. PROOF PROCEDURE AND ITS PROPERTIES
At the introduction, we claim that each inference step can be

regarded as an equivalence preserved transformation. Before
we prove such a property, we introduce some definitions and
formally define the inference steps below. Note that a
conjunction of atoms (or negated atoms) and a set of atoms (or
negated atoms) are used interchangeably.

Definition 1: Given an abductive logic program, P=<T, IC,
Ab, ThC>, the semantics of the program, Sem(P) is defined as

 Sem(P) ≡ Comp(T) ∪ IC ∪ ThC
where Comp(T) is the Clark completion semantics [9] applied
to the (user-) defined predicates. �

Simply speaking, under Clark completion semantics, a general
logic program is a set of if-and-only-if definitions. For example,
we have a number of clauses for a predicate, say p.
 p(t)←B1

 p(t)←B2

 ……………
 p(t)←Bn

Under the Clark completion semantics, these clauses mean the
following if-and-only-if logical statement.
 p(t)↔ B1∨ B2∨….. ∨ Bn

Also, in this paper, Ab would be simply equal to {token}.
 Definition 2: A computation state, S is a tuple of 2 sets of
ground atoms whose predicate could be either of trans or token;
i.e. S=(S1, S2). An initial computation state S0 is equal to (S1,
{ }). �
 Definition 3 (Propagation rule):
A propagation rule in IC is in the form of
 trans(t) ← Ts, C.
All the variables in t and C must occur in Ts, which stands for a
conjunction of atoms with predicates equal to token. The atoms
or negated atoms in C would be of some built-in predicates.
 �
 Definition 4: A propagation step: Given an abductive logic
program, P a computation state, S=(S1, S2), a propagation rule,
trans(t) ← Ts, C and a ground instantiation σ for the variables
in Ts, a propagation step is defined as follows: If Ts.σ
⊆ S1,
 Sem(P) |= C.σ
 Then the next computation state is S’=(S’1, S’2

) with
 S’1 = (S1-Ts.σ) ∪ trans(t) .σ,
 S’2 = S2 ∪ Ts.σ. �

Note that since the S1 contains only ground atoms and all
variables in t must occur in Ts, trans(t).σ must be ground.
 Definition 5 (Definition clause):
(i) A definition clause in T whose head is of predicate trans is in
the form of
 trans(t) ← B, Ts
where Ts is a conjunction of atoms of predicate token whose
variables must occur either in t or in B. And B is a conjunction
of atoms or negated atoms whose predicates are either built-in
or (user-) defined but not trans. The variables in negated
atoms must occur in t or atoms in B.
(ii) A definition clause in T whose head is of other predicates;
instead of trans is in the form of

p(t) ←B
where B could be empty or is a conjunction of atoms or negated
atoms whose predicates would not be of token or trans and the
variables in t must occur in some atoms in B. Also, the variables
in negated atoms must occur in t or atoms in B. �
 Definition 6: An unfolding step: given a definition clause
trans(t)←B, Ts in T of an abductive logic program, P and a
computation state S=(S1, S2), an unfolding step is defined as

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1229

follows:
 If trans(t).σ ∈ S1,
 Sem(P) |= trans(t) .σ←(B, Ts).σ.ρ

 where σ is any ground instantiation for variables in t ,
ρ is any ground instantiation for variables in B,

 then the next computation state is S’=(S’1, S’2
) with

 S’1 = (S1 ∪ Ts.σ.ρ) - trans(t).σ,
 S’2 = S2. �
Note that since the variables in Ts must occur either in t or in B,
Ts.σ.ρ must be ground.

To ensure that any SLD-NF derivation for establishing the
validity of B in a definition clause, trans(t) ← B, Ts would be
terminated within a finite amount of time, we impose the
restriction that T has to be acyclic (please refer to [11] for
details concerning the termination of an acyclic logic program).
Since we request that any definition clause (whose head is of
other predicates; instead of trans), p(t) ←B, the variables in t
must occur in some atoms in B, a ground instantiation of t
would be obtained in any finite successful SLD-NF derivation
for p(t).

To facilitate the presentation, we introduce the following
notation as a short hand.

Definition 7(An answer): Given an abductive logic
program, P and an atom, trans(t), answerp(trans(t).σ) (where σ
is any ground instantiation for variables in t) denotes the set of
ground abducible atoms Ts.σ.ρ such that the following holds.
 Sem(P) |= trans(t) .σ←(B, Ts).σ.ρ
where ρ is a ground instantiation for variables in B. �
If P is obvious in the context, the subscript would be omitted.

Definition 8 (A derivation): A derivation starting from an
initial computation state, S0 is defined as a chain of computation
states.

 S0 → S’→S”→…
where the next state is derived from the current state by
applying either a propagation step or an unfolding step.�

We have formally defined the form of T, IC, Ab and
inference steps. Now we have to define ThC. As mentioned
above, ThC includes CET, which is stated below in the form of
propagation rules.

(1) f(y1,…..,yn)=f(z1,…..,zn) → y1=z1,…..,yn=zn
(2) f(y1,…..,yn)=g(z1,…..,zm), f≠g → false

 (3) y occurs in t, y=t → false

This set of rules justifies the use of unification algorithm for
catering the equality. Similarly, ThC also includes the
pre-conditions and post-conditions of built-in predicates in the
form of propagation rule (built-in predicates theory, BIT) to
justify use of these predicates. For example, for the built-in
predicate integer(I), the corresponding rules could be:
 ground(I), I ∈ INTEGER → integer(I)≡ true
 ground(I), I ∉ INTEGER → integer(I)≡ false
 where INTEGER stands for the integer type;
 ground(I) is evaluated to true when I is without

any variables; otherwise false.
Besides, to capture the characteristics of the execution of a

CPN, we add the following two theories to ThC.
Definition 9 (Theory of Mutually Exclusive): Theory of

mutually exclusive for IC of an ALP is as follows.
For any two rules:

trans(t1) ← T1s, C1,
 trans(t2) ← T2s, C2

in IC, we have
(T1s.σ1 ∩ T2s.σ2 ≠ ∅) →

((T1s∧C1). σ1 ∧ (T2s∧C2).σ2 ≡ false).
where σ1 is any ground instantiation for variables in T1s and
σ2 is any ground instantiation for variables in T2s. �

This theory is to justify the removal of tokens from S1 to S2 in
a propagation step. It is because according to this theory, after a
ground token has been used to fire a selected propagation rule,
the body of any ground instances of other propagation rules
sharing with the same ground token would be automatically
false. Therefore there is no need to consider that ground token
again in subsequent steps. Thus the removal of that ground
token from S1 to S2 is just a kind of housekeeping.

Definition 10 (Theory of Unique Output): Theory of
unique output for T of an ALP is as follows.

For any two definition clauses:
 trans(t1) ← B1, T1s
 trans(t2) ← B2, T2s

in T, we have:
 (trans(t1).σ1 = trans(t2).σ2) →

 answer(trans(t1).σ1)= answer(trans(t1).σ1)
where σ1 is any ground instantiation for variables in t1; σ2 is
any ground instantiation for variables in t2. �

This theory ensures that given a ground instance of trans(t)
in a S1 of a computation state, we obtain a set of ground tokens
using an unfolding step. According to the theory, this set of
ground tokens would be unique. There are no other
alternatives.

Now we are ready to prove the properties of the proof
procedure.

Theorem 1 (Equivalence Preserved): Given a derivation,
 S0 → S’→S”→…
 Sem(P) |= S’ ≡ S” �

Proof:
Case (i) S” is derived from S’ using a propagation step: It is
trivially true.
Case (ii) S” is derived from S’ using an unfolding step:
Consider the definition clause(s) for an atom, trans(t) in the
form of
 trans(t)←Body1
 trans(t)←Body2
 …………
 trans(t)←Bodyn
According to Comp(T), we have
 trans(t)↔Body1 ∨ Body2∨ …..∨Bodyn.

However, due to syntactic restriction we impose to T, any
SLD-NF derivation starting from a ground version of trans(t)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1230

using one of these clause, trans(t)←Bodyi would result in a
ground instantiation for variables in the atoms of token
predicate in Bodyi or a failure within a finite amount of time.
Due to theory of unique output, the resultant token set must be
unique. Thus we have the ground version of trans(t) ≡ resultant
ground tokens. �

Theorem 2 (Satisfaction of Integrity Constraints): Given
a finite chain of a derivation

 S0 → S’→S’’→…..S*
Comp(T) ∪ S* ∪ ThC |= IC �

Proof:
Due to the exhaustion of application of propagation step and
equivalence between a ground version of trans(t) and the
resultant ground token obtained by an unfolding step. The
result follows immediately. �

VII. MODELING AN INTELLIGENT AGENT
In [8], R.A. Kowalski proposed the following formulation:

Thinking = Logic + Control

for modeling an intelligent agent. “Control” refers to the
manner in which the inference rules of logic are applied. It
includes the use of forward and backward reasoning and also
the application of inference rules in sequence or in parallel.
Under such a formulation, an ALP is proposed to model the
agent’s different types of thinking using forward and backward
reasoning in an agent’s observe-think-decide-act cycle:
 To cycle,
 Observe the world,
 Think,
 Decide what actions to perform,
 Act,
 Cycle again.

 Following the same line of argument, we further propose that
the component “Control” could be modeled using CPN; i.e. the
order of the inference steps could be visually and
systematically organized with the use of CPN. We use a simple
example from [8], which concerns getting help on the London
underground in an emergency. In this simple example,
perception from the environment could be “there are flames”,
“there is smoke”, “one person attacks another”, “someone
becomes seriously ill”, and “there is an accident”. The only
candidate action is “press the alarm signal button”. Perceptions
and actions are represented as abducible atoms. The
corresponding CPN is shown in Figure 3. The declarations of
the CPN are below:

type P = with flames|smoke|attacks|someone_ill|accident
type E = with emergency
type A = with press_alarm
var x: P
var e: E
var a: A

Based on the CPN in Figure 3, we can write down the

corresponding propagation rule as shown below.
trans(processPercept,[P])←

token(Id,col(P),p), place(p, col(P)).
trans(decideAct, [E])←

 token(Id, col(E), q), place(q, col(E)).

Fig. 3 A CPN for modeling of getting help on the London
underground in an emergency
According to the CPN, the definition for the predicate place is
below.

place(p, col(flames)).
place(p,col(smoke)).
place(p, col(attacks)).
place(p, col(someone_ill)).
place(p, col(accident)).
place(q, col(emergency)).
place(a, col(press_alarm)).

Within the limited scope of perceptions received from the
environment, the definition of processPercept would be
degenerated and simply as follows.

 trans(processPercept, [P]) ←
token(ID, col(emergency), q), gensym(passenger, ID).

Thus whenever there is an perception of allowed type from
the environment, a token with value equal to emergency will be
added to the place Q. The forward reasoning is classified as a
kind of reactive thinking of an agent. The newly added token
will trigger the second propagation rule. The process of
decideAct will be relatively more complicated for deciding

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1231

right action. The definition would be as follows.
trans(decideAct, [E])←

decideAction(E, Act),
gensym(passenger,ID),
place(a, col(Act)), token(ID, col(Act), a).

 where decideAction is defined as:
decideAction(emergency, Act) ←

 getHelp(Act).
getHelp(Act)←

 alert(Person, Act).
alert(driver, press_alarm).

The backward reasoning is classified as a kind of proactive
thinking of an agent; i.e. try to achieve goals by reducing them
to sub-goals. Finally a token with value equal to press_alarm
would be added to the place A, provided that a perception of
appropriate type is received from the environment.
 To simulate the interaction between an agent and the
environment in our implementation, we use the multi-thread
utilities provided in SWI-Prolog. Whenever there is a token in
the place A, the following will be executed.
 thread_send_message(envthd, token(ID, col(Act), a))

A message, token(ID, col(Act), a) will be sent to the message
queue of another thread, called envthd which models the
environment; while the passenger is simulated using another
thread. Within the passenger thread, an infinite loop (which
simulates the agent’s cycle) could be set up to check any
message from the environment using the following clauses.

 thread_peek_message(token(ID,Colour,Place)),
 thread_get_message(token(ID,Colour,Place)).

For further details of these built-in predicate, please refer to
[10].

In this simple example, our implementation of the
environment simply echoes the passenger’s action. After the
environment thread sends a message, say token(env1,
col(attacks),p) to the passenger thread, the following output
would be produced subsequently.

get a message in passenger: token(env1, col(attacks),p)
get a message in environment: Action- col(press_alarm)

 In this example, there is only a perception; instead of an
effect (Q) which is required to be explained in terms of other
causes. Thus the aim of the adductive reasoning is to achieve T
∪ Δ |= IC where Δ would be updated due to information from
the environment. IC becomes the goal we want to achieve or
maintain (refer to [8] for details). We argue that one can
visualize and systematically organize the order of reactive
thinking and proactive thinking with the use of CPN when
designing an intelligent agent. A prototype can be developed
immediately using the representation of a CPN proposed in this
paper. Moreover, when more than one agent involved, their
interactions can be easily modeled by passing tokens
(abducible atoms) from one to another. Multi-thread utilities
provided in SWI-Prolog greatly facilitate the development.

VIII. CONCLUSION
In this paper, we propose a logical representation for a CPN.

As far as we know, this is the first attempt of providing a logical
formulation of CPN within the framework of classical logic
with well-defined semantics. Moreover, the logical formulation
could be executed directly using a meta-interpreter, of which
each inference step can be regarded as equivalence preserved
transformation. This is the gain on the side of CPN. On the
other side, the resultant abductive proof procedure is greatly
simplified (as compared with the abductive proof procedure in
[5] which has seven inference rules and a very complicated
computation state consisting of atoms and rules with
existentially or universally quantified variables) using the
execution of a CPN as a guideline. There are only two inference
steps. The computation state consists of lists of ground atoms
with predicate equal to either token or trans. Such a
simplification greatly saves the programming effort and
improves implementation efficiency. In view of the wide
application of CPN, it is expected that the applicability of the
proof procedure would not be greatly scarified. Moreover, CPN
provides a visualization of the execution order of forward and
backward reasoning. We would like to view that the relation of
CPN with ALP is similar to that of DFD (or UML) with
conventional (or object-oriented) programming. When
designing an intelligent agent, CPN provides a graphical
representation, which nicely organizes forward reasoning and
backward reasoning in a systematic manner. Based on the
graphical representation, a corresponding logic program could
be arrived at. One of the difficulties in using logic program as a
development or prototyping tool is hard to clarify the execution
flow. With the use of CPN, such a difficulty could be largely
reduced. We expect that the integration of CPN with logic
programming would provide a powerful framework (CPN-LP)
for developing multi-agent applications and analyzing their
properties.

Future works include the exploration of the framework in
various application areas, such as protocol specifications in a
multi-agent setting [12,13] and workflow automation, and how
the framework could be extended to incorporate the normative
positions of an agent, such as obligation, prohibition and
permission [14].

ACKNOWLEDGMENT
I would like to express my gratitude to Dr. Choy Sheung On,

Steven, who is interested in the proposed framework, and read
the draft of this paper and provided valuable comments.

REFERENCES
[1] K. Jensen, “Coloured Petri Nets: A High-level Language for System

Design and Analysis,” in G. Rozenberg(ed.) Advances in Petri Nets 1990,
Lecture Notes in Computer Science Vol. 483, 342-416, Springer-Verlag
1991.

[2] K. Jensen, Coloured Petri Nets: Basics Concepts, Analysis Methods and
Practical Use. Vol. 1: Basic Concepts, 1992. Vol. 2 : Analysis Methods,
1994. Vol. 3: Practical Use, 1997. Monographs in Theoretical Computer
Science, Springer-Verlag.

[3] Daniel Moldt and Frank Wienberg, “Multi-agent Systems based on
Coloured Petri Nets,” in Proceedings of the 18th International Conference
on Application and Theory of Petri Nets (ICATPN ’97), number 1248 in

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1232

Lecture Notes in Computer Science, 82-101, Toulouse, France, June
1997.

[4] Jacques Ferber, Multi-agent Systems An Introduction to Distributed
Artificial Intelligence. English Ed., Pearson Education Ltd.,
Addison-Wesley, 1999.

[5] T. H. Fung and R. A. Kowalski, “The IFF proof procedure for abductive
logic programming,” Journal of Logic Programming, 33(2): 151-165,
November, 1997.

[6] Macro Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma,
Paola Mello, and Paolo Torroni, “Verifiable Agent Interaction in
Abductive Logic Programming: The SCIFF proof-procedure”, DEIS
Technical Report no. DEIS-LIS-06-001, Universität delgli Studi di
Bologona, March 2006.

[7] Marco Gavanelli, Evelina Lamma, Paola Mello, and Paolo Torroni, “An
Abductive Framework for Information Sharing in Multi-Agent systems,”
in Jürgen Dix and João Leite, eds., 4th International Workshop on
Computational Logic in Multi-Agent Systems (CLIMA-IV), Fort
Lauderdale, FL, January 6-7, 2004. LNAI 3259, 34-52, Springer-Verlag,
2004.

[8] R. A. Kowalski, “The Logical Way to Be Artificially Intelligent”.
http://www.doc.ic.ac.uk/~rak/ (2002-2006).

[9] K. Doets, From Logic to Logic Programming. The M.I.T. Press,
Cambridge MA, 1994.

[10] Jan Wielemaker, SWI-Prolog 5.6 Reference Manual, updated for version
5.6.10, April 2006. http://www.swi-prolog.org.

[11] K. R. Apt and M. Bezem, “Acyclic Program, ” New Generation
Computing, 29(3): 335-363, 1991.

[12] R. Scott Cost, Yannis Labrou, and Tim Finin, “Coordinating Agents using
Agent Communication Languages Conversations”, in Andrea Omicini,
Franco Zambonelli, Matthias Klusch, Robert Tolksdorf (eds.)
Coordination of Internet Agents Models, Technologies, and Applications,
183-196, Springer-Verlag, 2001.

[13] Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma,
Paola Mello, and Paolo Torroni, “The SOCS Computational Logic
Approach to the Specification and Verification of Agent Societies,” in
Post-Proceedings of the Global Computing 2004 Workshop (GC 2004),
Rovereto, Italy, March 9-12, 2004. LNAI 3267, 314-339,
Springer-Verlag, 2005.

[14] Marco Alberti, Marco Gavanelli, Evelina Lamma, Paola Mello, Giovanni
Sartor, and Paolo Torroni, “Mapping Deontic Operators to Abductive
Expectations,” in Proceedings of 1st International Symposium on
Normative Multiagent Systems (NorMAS 2005), AISB 2005,
Hertfordshire, Hatfield, UK, April 2005.

