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Remaining Useful Life Estimation of Bearings
Based on Nonlinear Dimensional Reduction

Combined with Timing Signals
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Abstract—In data-driven prognostic methods, the prediction
accuracy of the estimation for remaining useful life of bearings
mainly depends on the performance of health indicators, which
are usually fused some statistical features extracted from vibrating
signals. However, the existing health indicators have the following
two drawbacks: (1) The differnet ranges of the statistical features
have the different contributions to construct the health indicators,
the expert knowledge is required to extract the features. (2) When
convolutional neural networks are utilized to tackle time-frequency
features of signals, the time-series of signals are not considered.
To overcome these drawbacks, in this study, the method combining
convolutional neural network with gated recurrent unit is proposed to
extract the time-frequency image features. The extracted features are
utilized to construct health indicator and predict remaining useful life
of bearings. First, original signals are converted into time-frequency
images by using continuous wavelet transform so as to form the
original feature sets. Second, with convolutional and pooling layers
of convolutional neural networks, the most sensitive features of
time-frequency images are selected from the original feature sets.
Finally, these selected features are fed into the gated recurrent unit
to construct the health indicator. The results state that the proposed
method shows the enhance performance than the related studies which
have used the same bearing dataset provided by PRONOSTIA.

Keywords—continuous wavelet transform, convolution neural
network, gated recurrent unit, health indicators, remaining useful life.

I. INTRODUCTION

IN the complex and automated modern industry, rolling

element bearings are the ones of the most critical

components in rotating machinery. Any unexpected failure

of bearings may result in undesired consequences, such as

downtime increasing, productivity reduction or safety risks

[1], [2], [3], [4], [5]. To solve these problems, the Remaining

Useful Life (RUL) prediction is required to schedule the future

action to avoid the catastrophic occurrence [6].

Recently, many RUL prediction methods have been

proposed for Prognostic and Health Management (PHM).

These methods can be classified as model-based [7] and

data-driven [8]. The methods of model-based tend to be

more accurate if the complex system degradation is modeled

precisely [9], however, these methods require extensive
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expert knowledge about physical systems, which are usually

unavailable. The data-driven methods are able to model the

degradation characteristics based on the historical sensor data.

The underlying correlations and causalities in the collected

sensor data can be revealed, and the corresponding system

information such as RUL can be inferred. Many data-driven

methods have been proposed recently with satisfied prognostic

results achievement. Usually, the data-driven methods are

mostly dependent on the signal processing and feature

extraction.

The framework of the data-driven methods generally

comprises three steps: (1) data acquisition, (2) construction of

Health Indicator (HI), and (3) prognostics. The main operation

of the data acquisition is to use sensors to record the original

signal at a certain sampling rate. The performance of the HI

has a crucial effect on the accuracy of RUL [10]. Hong et

al. [11] extract time-frequency features using wavelet packet

and empirical mode decomposition techniques. Based on the

extracted features, self-organizing maps is used to construct

the HI confidence value.

The Weighted Minimum Quantization Error (WMQE) is

used as a HI, which is a fusion of 10 time domain features

and 16 time-frequency domain features, where the two features

are extracted trigonometric functions [12]. In all, most of these

studies are relied on feature extraction, selection, and fusion

techniques to construct the HI, however the processes are

quite complex where are labor-intensive and rely on the expert

knowledge of the failure mechanism. The method of manually

extracting features based on expert knowledge is not suitable

for most applied scenarios.

In order to solve these drawbacks, Guo et al. [13] extract

11 time domain features, 5 frequency domain features, and

8 time-frequency domain features. where the most sensitive

features have been selected using monotonicity and correlation

metrics. The selected features are fed into Recurrent Neural

Network (RNN) architecture to construct HI. Although, the

proposed method can improve the predict on performance

by integrating the deep learning, expert knowledge or feature

engineering is still required.

The original signal features of the time-frequency images

are extracted and RUL is predicted by transforming

high-dimensional features into low-dimension using Principal

Component Analysis (PCA) and Linear Discriminant Analysis

(LDA) [14]. The time-frequency domain features of the

original signals are extracted directly by using S transform,

in order to preserve the main time-frequency features of
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the original signals. This method does not require expert

knowledge to select different vibrating signal features.

However, the PCA is used to extract features of the

time-frequency images, where the extracted time-frequency

features may contain a large number of ones that are not

related to HI.
In order to solve the defects of the above mentioned

methods, the method integrating Convolutional Neural

Networks (CNN) and Gated Recurrent Unit (GRU) networks

based on the time-frequency image features is proposed

in this study, it adopts the Continuous Wavelet Transform

(CWT) for HI construction and RUL prediction. The

time-frequency images can visually show that the varied

frequency components. In addition, it requires no experts for

fault diagnosis or signal processing [15]. In the proposed

method, CWT is used to extracts the time-frequency

features from one-dimensional vibration signals, and then

the time-frequency features are converted to time-frequency

images. CNN requires a large amount of training data and

hyper parameter adjustments, and the state of art studies have

shown that it performs well in image analysis [16]. The bearing

vibration signals are time-series data, so the CNN does not

have a mechanism to process them. GRU is a the more

effective model involving time-series data. The outputs of the

CNN are fed into the GRU network in order to fully consider

the timing-related features for the time-frequency signal. The

two networks are integrated to process images with time-series

and time-frequency, because it can improve the accuracy of HI

prediction. An exponential model is used to predict the RUL

of bearing by nonlinear regression.
The remainder of this paper is organized as follows. Section

II discusses the related work. Section III presents the proposed

method. Section IV conducts the tests of the proposed method

on the PRONOSTIA dataset. The conclusions and future work

are given in Section V.

II. THE RELATED WORKS

This section summarizes the methods of feature extraction

and selection as well as RUL prediction methods. The

time-frequency feature extraction of CWT method and the

feature selection of CNN and GRU networks are introduced

in detail.

A. Continuous Wavelet Transform (CWT)
Wavelet analysis has been developed rapidly due to the basic

works of Y. Meyer et al [17]. A wavelet discussed generally

refers to a substrate of ψ or other space produced by a function

of a mother wavelet and a base wavelet that is stretched and

translated. The defined function ψ (t) satisfies,
∫∞
−∞ ψ (t)dt =

0 where ψ (t) ∈ L2 is a mother wavelet or is called a wavelet

function.
The family of time-scale waveforms is obtained by shifting

and scaling the mother wavelet,

ψa,b (t) = |a|− 1
2ψ

(
t− b

a

)
(1)

where a is the scale parameter for dilating or contracting

the wavelet, b is the shifting parameter for transitioning the

Fig. 1 Gated Recurrent Unit

wavelet along the time axis, ψa,b (t) is a continuous wavelet

basis function.

For a given signal, x (t), wavelet coefficient wt (a, b) can

be expressed,

wt (a, b) = |a|− 1
2

∫ ∞

−∞
x (t)ψ∗

(
t− b

a

)
dt (2)

where ψ∗ represents the complex conjugate of ψ.

B. Basic Theory of CNN

CNN is a deep learning model inspired by the visual

cortex of the brain. It is widely used in many applications,

especially in image feature extraction such as computer

vision because it can analyze the original image directly

without complicated preprocessing. CNN can extract features

of the image while performing dimensionality reduction. The

CNN model alternately stacks the convolutional layer and

the pooling layer for feature selection and dimensionality

reduction. The fully connected layer is used to output the

extracted image features. The detailed procedure of CNN can

be referred [18].

C. The Basic Theory of GRU

As shown in Fig. 1, GRU [19] is a kind of RNN. Traditional

neural networks such as CNN is not good at processing

time-series information, and GRU, as a variant of RNN, can

combine historical and the current time information predict

the further information. The GRU network integrates the

forgetting gate and input gate of the Long Short Term Memory

(LSTM) network into a single update gate, and it can simplify

the connection structure between neuron, reduces the training

parameters and improve the training efficiency [20].

The input of the GRU is IN , z represent the update gate

and r represent the reset gate. z and r are used to control the

direction of the data stream at time t.

D. Double Exponential Model

The double exponential model has proven to be an effective

model for curve fitting and prediction [21], described as,

Y = aebt + cedt (3)

where Y is the degraded state value of the bearing, t is the

current time moment, and a, b, c, and d are the parameters of

the model.
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III. THE PROPOSED CCG-RUL METHOD FOR PREDICTION

RUL

This section describes the procedure for construction of the

proposed CCG-RUL method. It is mainly composed of three

steps. Step 1, the original vibration signals are converted to

time-frequency images. Step 2, the CNN convolution and pool

layers are used to reduce the dimension of the time-frequency

images, and GRU layers are used to select the output features

of the CNN to construct HI. Step 3 is to predict the RUL of

the bearing’s RUL using a double exponential model.

A. Signal-to-Image Conversion Method

In the traditional data-driven prediction of RUL, the data

preprocessing method is crucial. The main function of the data

preprocessing is to extract the features of the original signals

from a large volume of the historical data. However, extracting

the correct features is an energy-intensive task and has a huge

impact on the final prediction [16].Here CWT is used to extract

the time-frequency domain features of the original signals.

The complex morlet wavelet is a cosine signal with a

squared exponential decay, which is similar to the most of the

engineering machineries as transient shock signals. According

to the maximum matching principle of the wavelet analysis,

when the wavelet is more similar to the analyzed signal in

geometry, the signal features extracted by the wavelet are

more accurate [22]. As a result, this paper uses complex

morlet wavelet to extract the time-frequency features of the

original signal. Cmor1-1.5 is chosen as the mother wavelet

function. As shown in Fig. 2, the original vibration signals of

the Bearing1 1 at 28000 s is converted into a time-frequency

image, where Fig. 2(a) presents the original vibration signals

and Fig. 2(b) shows the transformed time-frequency image.

(a) original vibration signal (b) time-frequency image

Fig. 2 Signal-to-image of Bearing1 1 at 28000 s

B. The Proposed Model with CNN and GRU for HI

After constructing the time-frequency images of the original

vibration signals, the network combined CNN with GRU is

used to construct the HI of bearing. The proposed CCG-HI

model is shown in Fig. 3. In this model, the input data

is prepared by converting the CWT coefficients into the

time-frequency images. The five convolution and pooling

layers are alternately used to extract the features and reduce

the dimension of the time-frequency images. Next, reshape

the feature vectors outputting from the last pooling layer into

two-dimensional data and feed it into the GRU layer. Three

GRU and one-dimensional pool layers are used to extract

the features. After the GRU layers, the time-frequency image

features are flattened and connected to the fully connected

layer. Finally, an output neuron is used to connect the last

fully connected layer to build CCG-HI. In this paper, in order

to limit the output to [0, 1], a sigmoid function is chosen

as the activation function of the output layers. The Rectified

Linear unit (ReLu) function is used as the activation function

in the convolution layer and the fully connected layer, in order

to prevent network overfitting and gradient disappearance

or explosion. The mean square error is chosen as the loss

function.

C. RUL Prediction

The HI predicted by the CCG-HI model are fed into the

double exponential model for training the related parameters.

The time interval is sent to the trained double exponential

model to obtain the HIs value. When HI is equal to 1, time t
is the end of the bearing life, and calculated as,

RUL = tfinal − tcurrent (4)

where tfinal is the time for bearing to reach the failure

threshold, tcurrent is the time of the last vibration signal

collected in the bearing dataset.

IV. EXPERIMENTS AND DISCUSSIONS

In this section, the experiments are conducted to show the

working and efficacies of proposed CCG-RUL. The famous

bearing degradation dataset PRONOSTIA is utilized.

A. Description of The Experimental Platform PRONOSTIA

The experimental dataset was collected on the PRONOSTIA

platform, provided by the FEMTO-ST Institute [23].

PRONOSTIA is an experimental platform dedicated to

test, verify, and validate methods related to bearing health

assessment, diagnostics, and prognostics. A general overview

of the platform is shown in Fig. 4. The main purpose

of PRONOSTIA is to provide real data related to bearing

degradations [24]. This dataset was used in the IEEE PHM

2012 Data Challenge for predicting the RUL of bearings.

The experimental dataset from PRONOSTIA was collected

by conducting accelerated degradation tests of bearings. Two

accelerometers are horizontally and vertically mounted on the

bearing to monitor its vibration. Vibration signals collected

by the two accelerometers are sampled each 10 s, and the

duration of the sampling lasts 0.1 s with a sampling frequency

25.6 kHz. To avoid unnecessary damage to the test rig (for

security as well), experiments finished once the amplitude of

the monitoring data passes 20 g.

In the experiments, the dataset involves three different

operating conditions. In condition I, there are seven bearings

tested at a rotating speed of 1800 rmp under a radial load of

4000 N radial load. In condition II, seven bearings are operated

at a rotating speed of 1650 rmp under a load of 4200 N. In

condition III, three bearings are operated at a rotating speed

of 1500 rmp under the load of 5000 N. These conditions are
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Fig. 3 The proposed CCG-HI model

Fig. 4 The experimental platform

shown in Table I. The first two bearings in each group are

regarded as a training set and the others are used as the testing

set.

TABLE I
BRIEF INTRODUCTION ABOUT THE EXPERIMENTAL DATA

Condition Load(N) Speed(rmp) Experimental Data
Bearing1 1 Bearing1 2

1 4000 1800 Bearing1 3 Bearing1 4
Bearing1 5 Bearing1 6
Bearing1 7
Bearing2 1 Bearing2 2

2 4200 1650 Bearing2 3 Bearing2 4
Bearing2 5 Bearing2 6
Bearing2 7
Bearing3 1 Bearing3 2

3 5000 1500 Bearing3 3

B. The Conversion of The Vibration Signal to The Images

Fig. 5 shows the horizontal and vertical vibration signals of

the Bearing1 1 during its whole life cycle.

The complex wavelet (cmor1.0-1.5) based on CWT, is used

to extract the time-frequency features of the original vibration

signals to construct the time-frequency image. The data is

collected in each 0.1 seconds to draw time-frequency images.

For example, there are 2803 samples in the bearing1 1 training

dataset, and it can draw 2803 time-frequency images.

Fig. 6 demonstrates, the time-frequency images of

bearing1 1 during the run-to-failure experiment of the

training bearing, which are the time-frequency distributions

of the vibration signals. In the time-frequency images, the

horizontal axis and vertical axis represent time and frequency,

Fig. 5 The temporal vibration signal of bearing1 1

respectively. The color of each point indicates the magnitude

of the wavelet coefficients on the time-frequency grid. The red

color represents that the energy level is high. When the bearing

is operating in normal condition, the most of the energy is

concentrated around 4 kHz. On the other hand, energy bursts

in the frequency range from 0.25 kHz to 8 kHz. The impacts

occur in the frequency between 0.25 kHz and 1 kHz at regular

interval. When high energy is observed in the low frequency

band, it indicates that the bearing is heading to the defection

[25]. From Fig. 6, it is easily obtained that the time-frequency

images of different time periods are significantly different, so

the time-frequency images can be used to predict the RUL of

the bearing. It can be seen from Fig. 5 and Fig. 6 that the

horizontal vibration signal is better than the vertical vibration

signal to illustrate the wear state of the bearing. Thus, the

time-frequency image of the horizontal vibration signal is

selected to represent the bearing degradation process.

Fig. 7 depicts image features of bearing1 1 drawn by Zhao

et al [15]. It can be seen from Fig. 6 and Fig. 7 that the time

frequency image generated by CWT method is superior to the

time frequency image generated by S transform in expressing

the original signal features.
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Fig. 6 CWT of of bearing1 1, where (a)-(e) refer to the 2000th, 1500th,
1000th, 500th and 1th

Fig. 7 TFRs of bearing1 1, where (a)-(e) refer to the 2000th, 1500th,
1000th, 500th and 1th

C. CCG-HI Construction

The construction of CCG-HI consists of two steps: training

and testing.

• During the training step, six bearings are used as

a training set to construct the model for CCG-HI

estimation. The lifetime samples of the bearings are used

to form a training set, Datatrain = {xt, yt}Tt=1, where

xt ∈ RN×N is N×N image features extracted at time t,
and yt ∈ [0, 1] is its associated label which indicates the

degradation percentage of bearings at time t. In this study,

the size of the input image feature is 128× 128. The

degradation percentage is calculated as yt = t
T , where

t is the operation time, and T is the failure time. For

example, suppose that the failure time of a bearing is

2800 s, and the current inspection point is 1400 s, and

the label yt is 0.5.

• In the testing step, The testing dataseta are denoted as

Datatest = {xt, yt}Tt=1 where xt ∈ RN×N is N × N
image features extracted from the testing datasets. The

selected features of the testing data are directly input to

the trained CNN-GRU to obtain the CCG-HI.

In the training step, 7534 feature of images are extracted

from the six training bearings to construct the CCG-HI model.

The training results are shown in Fig. 8. The estimated HI is

marked as the colored points and the black line represents the

actual HI of the training bearing.

From Fig. 8, it can be easily obtained that the estimated HI

Fig. 8 CCG-HI of the six training datasets

Fig. 9 HIs of the six training bearings: (a) RNN-HI (b) SOM-HI

values of the six bearings are quite close to the actual HI. Some

training errors are acceptable because most estimations and

actual values tend to match each other. It implies that the CWT

based image features can extract high-quality information

about the state of the bearing. Thus, CNN-GRU is an effective

model to estimate the degradation of bearings by images

analyzation.

The RNN-HI curves of the six training bearings are shown

in Fig. 9(a). A self-organizing map based HI (SOM-HI) [26]

is shown in Fig. 9(b).

The HI curves predicted by both methods have the same

disadvantages. In the RNN-HI method, the HI curves of

Bearing1 1, Bearing2 1 and Bearing3 2 have a gradual trend

in some stages, and even the HI curve of Bearing2 1 and

Bearing3 2 appear to decrease at a certain time. The SOM-HI

method also has similar problems. The SOM-HI ranges from

0.54 to 1.75 for the six training bearings at the failure

condition, which could causes that the FT is difficult to

determine. In the proposed CCG-HI model, the HI curves are

approximately proportional to t. The bearing FT is controlled

in [0, 1]. As a result, the proposed method is superior to the

RNN-HI method and SOM-HI method.

D. RUL Estimation

In this paper, the double exponential model is used to predict

the RUL. The estimated and predicted CCG-HI of bearing1 3,

one of the testing datasets, are shown in Fig. 10. The obtained

CCG-HI up to the current time is indicated by dot. Purple
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Fig. 10 RUL prediction result of bearing1 3

solid line represents the RUL of bearing. The black solid line

represents the HI curve predicted using the double exponential

model. It identifies that the RUL of the bearing gradually

degrades over time with the increase of HI value.

E. Performance of The Proposed Method

A percent error of prediction results that for the IEEE

PHM 2012 Prognostic Challenge is applied to evaluate the

performance of the prediction methods. It is defined as follows:

Eri =
ActRULi − R̂ULi

ActRULi
× 100% (5)

where ActRULi and R̂ULi are the actual RUL and predicted

one of the ith testing data, respectively.

To verify the effectiveness of the proposed method, the

prediction results are compared with the other five similar

studies using the same dataset. The prediction results for the

rest life of the bearings are shown in Table II.

For the method proposed in [28], the disadvantage is that

the definition for the anomaly detection time is based on

the subjective criteria which is used to calculate the bearing

survival time ratios. Furthermore, the calculated percentage

error of this method is quite different from the actual

result. The method constructed in [11] shows the errors

reduction compared with the previous studies, but it requires

the extraction of the approximately one hundred features to

estimate the bearing performance. The study published in

[12] develops a new HI (i.e, WMQE) to predict the RUL of

the bearings, which is constructed by fusing a few selected

weighted features based on correlation clustering among the

28 features which is extracted from the bearings. The study

in [12] shows the best performance among existing studies.

The method of RNN-HI presented in [13] is also constructed

by selecting and fusing multiple features which are extracted

from the time, frequency, and time-frequency domains. The

method presented in [13] demonstrates its superiority over

SOM-based HIs. The methods of RNN-HI and SOM-HI

require the expert’s experiences to manually select a large

number of features. The study published in [27] proposes

an end-to-end deep framework for RUL estimation based on

the convolutional and long-short-term memory recurrent units,

which uses the convolutional layer of the neural network to

extract the local features directly from the sensor data, next the

LSTM layer is introduced to capture the degradation process,

finally the RUL is estimated using the LSTM outputs and the

prediction time value. The methods developed in [12] and [13]

require the expert’s knowledge to extract the large number of

features of the raw data. The features of the raw signal are

extracted from the convolution layer in the method constructed

in [27], its accuracy is lower than our method.

The errors of the proposed method is 18.51, which is the

lowest among the experiments which indicates that the model

can work accurately and reliably on each tested bearing.

V. CONCLUSION AND FUTURE WORK

RUL prediction accuracy highly depends on the

performance of the HI. In this paper, the CCG-HI is proposed

to enhance RUL prediction accuracy of the bearings. During

the construction procedure of the HI, the vibration signals

are converted into the time-frequency images instead of the

original vibration signals or extracting multiple statistical

features. CNN-GRU network can extracted features from the

images and construct the HI without expert prior knowledge

and signal processing, considering the timing correlation

between vibration signals. The CNN-GRU model is used as

a regression model to estimate the HI between 0 and 1. The

results demonstrate that the proposed method outperforms

the other methods, which is accurate and effective in the

RUL prediction. However, there are still some drawbacks in

this method. Here, we only consider a vibration signal and

it is possible to ignore some important information when

predicting RUL, which would reduce the accuracy of RUL

predictions. In the future, the HI based on multisensory

signals will be studied by considering temperature and two

vibration sensors data.
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TABLE II
RUL PREDICTION RESULTS

Testing Dataset Current Time Actually RUL Predict RUL Hinchi et al.[27] Guo et al.[13] Lei et al.[12] Hong et al.[11] Sutrisno et al. [28] CCG-HI
Bearing1 3 18010 s 5730 s 4293 s 54.73% 43.28% −0.35% −31.76% 37% 25.09%
Bearing1 4 11380 s 339 s 394 s 38.69% 67.55% 5.60% 62.76% 80% −16.22%
Bearing1 5 23010 s 1610 s 1363 s −99.4% −22.98% 100.00% −136.03 9% 15.34%
Bearing1 6 23010 s 1460 s 1076 s −120.07% 21.23% 28.08% −32.88% −5% 26.30%
Bearing1 7 15010 s 7570 s 8076 s 70.65% 17.83% −19.55% −11.09% −2% −6.68%
Bearing2 3 12010 s 7530 s 5178 s 75.53% 37.84% −20.19% 44.22% 64% 31.23%
Bearing2 4 6110 s 1390 s 1590 19.81% −19.42% 8.63% −55.40% 10% −14.39%
Bearing2 5 20010s 3090s 1803 s 8.2% 54.37% 23.30% 68.61% −440% 41.65%
Bearing2 6 5710s 1290s 1435 s 17.87% −13.95% 58.91% −51.94% 49% −11.24%
Bearing2 7 1710s 580s 508 s 1.69% −55.17% 5.17% −68.97% −317% 12.41%
Bearing3 1 3510s 820s 795 s 2.93% 3.66% 40.24% −21.96% 90% 3.05%
Mean of Er 45.87% 32.48% 28.18% 53.24% 100.27% 18.51%
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