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Abstract—This paper investigates the suitability of Latin 

Hypercube sampling (LHS) for composite electric power system 
reliability analysis. Each sample generated in LHS is mapped into an 
equivalent system state and used for evaluating the annualized system 
and load point indices. DC loadflow based state evaluation model is 
solved for each sampled contingency state. The indices evaluated are 
loss of load probability, loss of load expectation, expected demand 
not served and expected energy not supplied. The application of the 
LHS is illustrated through case studies carried out using RBTS and 
IEEE-RTS test systems. Results obtained are compared with non-
sequential Monte Carlo simulation and state enumeration analytical 
approaches. An error analysis is also carried out to check the LHS 
method’s ability to capture the distributions of the reliability indices. 
It is found that LHS approach estimates indices nearer to actual value 
and gives tighter bounds of indices than non-sequential Monte Carlo 
simulation. 
 

Keywords—Composite power system, Latin Hypercube 
sampling, Monte Carlo simulation, Reliability evaluation, Variance 
analysis.  

I. INTRODUCTION 
OMPOSITE system reliability evaluation is concerned 
with the problem of determining the adequacy of the 

combined generation and transmission system in regard to 
providing a dependable and suitable supply at the load points. 
The indices evaluated such as loss of load probability (LOLP), 
loss of load expectation (LOLE), expected demand not 
supplied (EDNS) and expected energy not supplied (EENS) 
are very useful parameters to help the planning engineers to 
make decisions. The methods employed for evaluating the 
indices can be categorized into analytical and simulation 
methods. Accurate evaluation of indices requires complete 
investigation and analysis of each possible outage condition of 
the system. Analytical methods are based on enumeration of 
states which are seen to be more efficient when a relatively 
small number of states accounts for most of the probability of 
the state space. This situation is typical in pure transmission 
reliability studies, in which the line outage probabilities are 
usually low and as a result independent combination of several 
line outage occurrences are unlikely and can be eliminated. 
But in composite system with large number of components the 
states enumerated are more and leads to large computational 
requirement [1]. 
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Simulation methods which are based on Monte Carlo 
techniques are performing better with more number of outage 
combinations. This situation more often occur in composite 
reliability evaluation, in which higher level outages are more 
likely due to the relatively higher forced outage rate of 
generating units. Monte Carlo simulation (MCS) methods 
estimate the indices by simulating the actual random failure 
behavior of the system [2]. Monte Carlo sampling for 
reliability evaluation can be classified into sequential and non-
sequential sampling. The sequential sampling simulates the 
chronological behavior of the system operation which requires 
more computational effort than non-sequential sampling and 
analytical methods. Non-sequential sampling has high 
computational efficiency but cannot simulate the 
chronological aspects of system operation. The major 
limitation of this method is that number of states sampled 
increases with the required indices accuracy. The required 
number of sample depends on the variance of the random 
variable and the desired accuracy. A smaller variance of the 
estimate can reduce the number of samples which can be 
achieved by employing a suitable variance reduction 
mechanism [3]. 

Variance reduction techniques such as stratified sampling 
[4], important sampling [5], control variates [6] and antithetic 
variates [7] have been proposed to reduce the computational 
burden of MCS. The main problem with these techniques is 
their suitability for different system configurations. This 
means that one technique is effective for a particular system 
network and has no effect on the other system. Latin 
Hypercube sampling (LHS), which has many desirable 
features of stratified sampling and random sampling has been 
successfully applied to generation system reliability 
evaluation. Discrete version of LHS is also presented for 
reliability evaluation. This analysis is performed with fixed 
sample size and results of LHS approach and simple MCS 
approach are compared with the results of state enumeration 
approach. The comparison shows LHS gives better estimate 
than MCS with same sample size [8]. Panida Jirutitijaroen and 
Zhen Shu applied LHS to the reliability analysis of power 
system which includes renewable energy sources with an 
emphasis on the fluctuation of bus loads and intermittent 
behavior of renewable generations such as wind and solar 
power [9]. 

The main objective of this paper is to investigate the 
suitability of LHS for composite electric power system 
reliability analysis. An error analysis is also carried out to 
check the LHS based method’s ability to capture the 
distributions of the reliability indices. Case studies on the 
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RBTS (Roy Billinton test system) and the IEEE-RTS 
(Reliability test system) systems are presented and the results 
are compared with non-sequential MCS and state enumeration 
analytical approaches. 

The rest of the paper is organized as follows. Section II 
gives a brief explanation about the variance reduction 
techniques employed in composite system reliability 
evaluation. Section III introduces a dc loadflow based system 
state evaluation model which is solved for each contingency 
state to determine loss of load curtailment necessary for 
maintaining real power balance. Section IV presents the basis 
of LHS and its implementation for composite system 
reliability analysis. Section V presents the numerical results of 
proposed LHS approach to the standard test systems. Finally 
the conclusions are presented in Section VI. 

II. VARIANCE REDUCTION TECHNIQUES  
The problem of calculating the reliability indices in MCS is 

equivalent to calculating the expected value of a test function 
 
ሻܨሺܧ  ൌ ∑ ௑אሻ௫ݔሻܲሺݔሺܨ                  (1) 
 
where F(x) is the test function and P(x) is the probability of 
that state. 

The estimate of the expected value of the test function with 
‘ns’ samples is given by 
 
ሻܨ෨ሺܧ  ൌ ଵ

௡௦
 ∑ ሺ௡௦ܨ

௝ୀଵ                 ௝ ሻ                         (2)ݔ
     

The uncertainty around the estimate  ܧ෨ሺܨሻ is given by the 
variance of the estimate 
 

    ܸ ቀܧ෨ሺܨሻቁ ൌ ܸሺܨሻ/݊(3)                                      ݏ 
 
where  ܸሺܨሻ is the variance of the test function. 

The co-efficient of variation β represents the uncertainty of 
the estimate (otherwise accuracy of the estimate) 
 

 β ൌ ටܸ ቀܧ෨ሺܨሻቁ / ܧ෨ሺܨሻ                   (4)

  
For better estimate of ܧ෨ሺܨሻ the value of β should be small 

and the relation between number of samples for desired β is 
given by 
 
ݏ݊  ൌ ܸሺܨሻ/ሺ β ܧ෨ሺܨሻሻଶ                     (5) 
 

The above equation indicates that to achieve the desired 
accuracy β with less number of samples, the variance of the 
test function should be reduced. Some of the variance 
reduction techniques employed for composite system 
reliability analysis was stratified sampling, important 
sampling, control variates and antithetic variates. Stratified 
sampling consists of stratifying the sample space and then 
constructing the estimates from each stratum. The sample 
space is stratified by simply choosing a partition of the input 

parameter space. In Important sampling, the sampling 
distribution is distorted in such a manner to produce a estimate 
with a lower variance by sampling more in the important 
regions. Control variates attempts to take the advantage of 
correlation between certain random variables for obtaining a 
variance reduction. Antithetic variates try to induce negative 
correlation by using complementary random numbers to drive 
the two simulation runs in a pair. 

LHS incorporates many of the desirable features of 
stratified sampling and random sampling and also produces 
more stable analysis outcome than random sampling. LHS is a 
probabilistic procedure that each sample element can be 
associated with a weight. 

III. SYSTEM STATE EVALUATION MODEL  
State evaluation is an essential step in composite system 

reliability assessment. For each contingency state sampled in 
any of the simulation approach, the dc load flow based load 
curtailment model is used to examine` the adequacy of the 
system by rescheduling generation outputs in order to 
maintain real power balance and alleviate line overloads and at 
the same time, to avoid load curtailment if possible or to 
minimize total load curtailment if unavoidable. If real power 
balance is achieved without load curtailment then the state 
belongs success state otherwise it belongs to failure state and 
load curtailment necessary to attain real power balance is 
calculated by solving the following model. 
 
݊݅ܯ  ݈ܥ   ൌ  ∑  ሺݓ௜௜אே஼  ∑   ௝ߙ

௟೔
௝ୀଵ ௜௝ሻ             (6)݈ܥ

  
Subject to 

 

 ݈ܲ݅݊݁௢  ൌ ∑ ௢௞ܣ
ே
௞ୀଵ ቀܲ݃௞ ൅ ∑ – ௞௝݈ܥ ܲ݀௞

௟೔
௝ୀଵ  ቁ    

 
 ሺ ݋ ൌ 1, . . ,  ሻ                                (7) ܮ

 
   ∑  ܲ݃݅ ൅ ∑  ሺ௜ఢே஼ ∑ ௜௝ ௟೔݈ܥ

௝ୀଵ  ሻ௜ఢேீ ൌ  ∑ ܲ݀௜௜ఢே஼               (8)    
   

     Pgi min ൑ Pgi ൑ Pgi max      ሺ i ൌ 1, . . . ,NG ሻ                         (9) 
 

  0 ൑  ݈ܥ௜௝  ൑  γj Pdi                  ሺi ߳ ܰܥ ; j ൌ 1,. . . ,m ሻ                  (10)  
 

     | Plineo | ൑ Plineomax          ሺ o ൌ 1, . . . ,L ሻ                          (11) 
 
where Cli j is the jth load curtailment sub variable at bus i, Pgi 
is the generation at bus i, Pdi is the load demand at bus i , 
Plineo is the line flow of line o, Pgi min is the minimum 
generation at bus i., Pgi max is the maximum generation at bus i, 
Plineo

max is the maximum value of line flow of line o, Aok is 
the element of the relation matrix between line flows and 
power injection, NC is the sets of all load buses, NG is the sets 
of all generator buses, L is the number of lines, N is the 
number of buses, li is the number of load curtailment 
subvariables at bus i, αj the weighting factor corresponding to 
subvariable j, γj is the load percentage associated with each 
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subvariable j, Wi  is the weighting factor corresponding to 
each load bus. 

IV. LATIN HYPERCUBE SAMPLING APPROACH  
LHS can be applied to multiple variables and viewed as an 

‘n’ dimensional extension of Latin square sampling. It can be 
incorporated into an existing Monte Carlo model very easily 
and work with variables following any analytical probability 
distribution. It emphasizes uniform sampling of the univariate 
distributions. LHS accomplishes this by stratifying the 
cumulative distribution function and randomly sampling 
within the strata. Uniform sampling increases the realization 
efficiency while randomizing within the strata prevents the 
introduction of a bias and avoids the extreme value effect 
associated with simple stratified sampling [10]-[12]. 

A. Generation and Variance of Samples  
Let ‘ns’ be the sample size and ‘n’ be the number of 

variables in x=(x1,x2,….xn) of function y=F(x), where the 
variables of x are independent. The range of each variable is 
partitioned into ‘ns’ non-overlapping intervals on the basis of 
equal probability size 1/ns, one value from each interval is 
selected at random with respect to the probability density in 
that interval. The ‘ns’ values thus obtained for x1 are paired in 
a random manner with ‘ns’ values of x2. These ‘ns’ pairs are 
combined with values of x3 and so on, until ‘ns’ samples of ‘n’ 
variables are formed. The total sample space contains nsn cells 
out which ‘ns’ samples are picked in the above manner. 

For a test function ܨሺݔሻ with expected value ܧሺܨሻ and 
estimate of expected value ܧ෨ሺܨሻ, the variance of the estimate 
in LHS is given by  

 
ܸ ቀܧ෨ሺܨሻቁ ൌ  ଵ

௡௦
ܸሺܨሻ ൅ ௡௦ିଵ

௡௦
,ଵ ሻݔሺܨ ሺ ݒ݋ܥ  ,ଶ ሻݔሺܨ … ,  ௡ ሻ ሻ   (12)ݔሺܨ

 
From the above relation it is found that the variance of the 

estimate in LHS decreases when the covariance term 
,ଵ ሻݔሺܨ ሺ ݒ݋ܥ ,ଶ ሻݔሺܨ … ,  .௡ ሻ ሻ is negativeݔሺܨ

The sample size fixed in LHS for composite system 
reliability evaluation is in the order of several thousands, by 
virtue of the fact (ns-1)/ns is almost equal to one. This 
establishing the sufficiency of the sample size chosen and 
approaches ‘ns’ to infinity. As per the proof given by Michael 
Stein [13] when ns → ∞, the covariance term is asymptotically 
non positive for ‘n’ independent variables. Comparison of (3) 
and (12) shows that the variance achieved in LHS is smaller 
than MCS of same sample size. This shows that LHS gives 
better estimate with smaller co-efficient of variation β than 
MCS of the same sample size. 

B. Implementation of LHS for Composite System Reliability 
Analysis  

The generating units and transmission lines of the system 
are represented by a two state markov model with failure rate 
λ and repair rate µ. The probability of the system component 
‘i’ in down state and up state is given by 

 

   ௜ܲ
ௗ ൌ ஛೔

஛೔ାஜ೔
                                           (13) 

 

 ௜ܲ
௨ ൌ ஜ೔

஛೔ାஜ೔
                                          (14) 

 
The LHS algorithm for composite system reliability 

analysis is summarized as follows 
1. Set the number of samples equal to ‘ns’ and number of 

components or variables equal to ‘n’. 
2. Compute the down state and upstate probabilities for each 

component ‘i’ using (13) and (14). 
3. Partition the cumulative probability distribution of each 

component ‘i’ into ‘ns’ numbers of non-overlapping 
intervals each with probability ‘1/ns’ and randomly select 
a single value from each sub interval i.e. for each 
component ‘ns’ values are picked. 

4. The ‘ns’ values obtained for component 1 are randomly 
paired with the ‘ns’ values of component 2. The ‘ns’ pairs 
are combined in a random manner with the ‘ns’ values of 
components 3 to form ‘ns’ triplets and so on, until a set of 
‘ns’ number of n-tuples are formed. This set of n-tuples 
form LHS samples. 

5. Convert the LHS samples into equivalent system states. 
For component ‘i’ of sample ‘j’ if the value of component 
‘i’ lies in the interval of 0 to ௜ܲ

ௗ  then the component is in 
down state, otherwise it is in upstate. 

6. Calculate the test functions for each system state. For 
each contingency state, a system state evaluation model 
given in Section III is solved to classify the state as failure 
or success and based on that the value of test functions are 
calculated for that sample. The value of test function F(x) 
for LOLP index is equal to one if x is a failure state 
otherwise it is zero. For the index EENS the test function 
F(x) represents the amount of load curtailment required to 
alleviate the operating constraint violations and maintain 
power balance. In that case F(x)>0 if there is load 
curtailment associated to a failure state x; Otherwise F(x) 
= 0 indicates that x is a success state. The values of test 
functions for all samples are calculated and the estimate 
of the reliability indices is evaluated based on (2). 

V. NUMERICAL RESULTS  
The proposed approach for composite system reliability 

evaluation has been implemented on RBTS [14] and IEEE–
RTS [15] systems. Comparison with the MCS approach has 
carried out by setting the sample size of LHS equal to the 
samples required for achieving co-efficient of variation β in 
non-sequential MCS. It is found from Section IV A, LHS 
gives tighter bounds on estimated indices than simple random 
MCS for same number of sample size [8], [13]. A comparative 
study on analytical method and MCS method were done to 
verify the performance of the proposed approach. Only peak 
load levels were used for the purpose of this study. The 
proposed approach has been implemented in matlab software. 
An error analysis is carried out by calculating the percentage 
error of the estimates which is found from averaging the 
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percentage absolute deviation from the actual value over all 
runs of sample.  

 

ݎ݋ݎݎܧ ݁݃ܽݐ݊݁ܿݎ݁ܲ ൌ ଵ
௡௥

∑ ሾா௦௧௜௠௔௧௘ௗ೥ି஺௖௧௨௔௟ሿ
஺௖௧௨௔௟

௡௥
௭ୀଵ כ 100 (15) 

 
where Estimatedz is the reliability index estimated in run ‘z’ in 
either LHS or MCS approach, Actual is the reliability index 
evaluated in state enumeration analytical method and nr is the 
number of runs or trials.  

A. Case 1: RBTS Test System  
The RBTS system consists of 6 buses, 9 transmission lines 

and 11 generators. The minimum and maximum ratings of the 
generation units are 5 MW and 40 MW respectively. The total 
peak load for the system is 185 MW while the total generating 
capacity is 240 MW. The pre- selected sample size is set to 
50000 for LHS, which is used by Jonnavithula [18] for 
estimating indices in non-sequential MCS. The total number 
of components in the system is 20. For each component, the 
cumulative probability is divided into 50,000 non-overlapping 
intervals with equal probability of 0.00002.The total LHS 
sample space for 50,000 samples is (50,000)20 and out of 
which 50,000 samples are generated using the procedure given 
in Section IV.  

 
TABLE I 

 ANNUALIZED LOAD POINT INDICES 

Bus No. LOLP LOLE 
hr/yr EDNS MW EENS 

MWhr/yr 
2 0.00095 8.29920 0.00416 36.34176 
3 0.00502 43.85472 0.06031 526.86820 
4 0.00593 51.80448 0.03562 311.17630 
5 0.00049 4.28064 0.00159 13.89024 
6 0.00197 17.20992 0.02102 183.63070 

 
The annualized load point indices evaluated by this 

approach are shown in Table I. Individual load point indices 
are necessary for identifying the weak points in the system and 
help the reliability engineers in planning the optimum 
response of equipment investment. 

 
TABLE II 

 COMPARISON OF ANNUALIZED SYSTEM INDICES 

Approach LOLP LOLE 
 hr/yr 

EDNS 
MW 

EENS 
 MWhr/yr 

LHS 0.01002 87.5347 0.1227 1071.907 
MCS-state 

sampling [18] 0.01014 88.5830 0.1239 1082.630 

Analytical [17] 0.00976 85.2634 0.1201 1052.300 
 
The annualized system indices evaluated by LHS approach 

are presented in Table II. It also gives the comparison of the 
evaluated indices with the results of analytical [17] and non-
sequential state sampling MCS [18] based approaches. It is 
found that indices estimated in LHS approach are in close 
agreement with the existing approaches and are nearer to 
analytical method than MCS approach. The accumulation 
behavior of EENS index is shown in Fig. 1. 

 

 
Fig. 1 Accumulation characteristics of EENS for RBTS system 

  
The performance of the proposed LHS approach has been 

tested by carrying an error analysis with non-sequential state 
sampling MCS with fixed sample sizes of 10000, 20000 and 
50000 with 10 runs of simulation. The percentage error is 
calculated for LOLP and EENS indices using (15) for the 
above selected sample sizes.  

 
TABLE III 

 PERCENTAGE ERROR OF ESTIMATED LOLP & EENS 

Sample size 
LHS MCS 

LOLP EENS LOLP EENS 
10000 13.21 5.23 18.64 6.86 
20000 7.37 2.69 11.88 3.24 
50000 2.66 1.86 3.89 2.88 

 
The percentage error in LOLP and EENS estimates are 

presented in Table III. The estimates are closer to the actual 
values when the sample size increases in both MCS and LHS 
approaches. The error of LOLP index for 10000 samples is 
13.21% and its estimate is nearer to actual value for 50000 
samples, where error is only 2.66%. The error in EENS index 
for 10000 samples is 5.23% and its estimate is nearer to actual 
value for 50000 samples where error is only 1.86%. This 
reflects the LHS ability of predicting the probability 
distributions of indices accurately. LHS estimates LOLP and 
EENS better than MCS approach with same sample size. 

B. Case 2: IEEE-RTS Test System  
IEEE–RTS system consists of 24 buses, 38 transmission 

lines and 32 generators with 10 of the buses connected to 
generators. The total peak load for the system is 2250 MW 
while the total generating capacity is 3405 MW. Only peak 
load levels were used for the purpose of this study. The pre-
selected sample size is 10000 for LHS, which is used by 
Jonnavithula [18] for estimating indices in non-sequential 
MCS. The total number of components in the system is 70. 
For each component, the cumulative probability is divided into 
10000 non-overlapping intervals with equal probability of 
0.0001.The total sample space for 10000 samples consists of 
(10000)70 and out of which 10000 samples are generated using 
the procedure given in Section IV.  
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TABLE IV 
 ANNUALIZED LOAD POINT INDICES 

Bus No. LOLP LOLE 
hr/yr 

EDNS 
MW 

EENS 
MWhr/yr 

1 0.0020 17.4720 0.088428 772.507 
2 0.0079 69.0144 0.326195 2849.640 
3 0.0480 419.3280 0.276074 2411.782 
4 0.0065 56.7840 0.241385 2108.739 
5 0.0054 47.1744 0.181870 1588.816 
6 0.0082 71.6352 0.529621 4626.769 
7 0.0069 60.2784 0.305241 2666.585 
8 0.0093 81.2448 0.640724 5597.365 
9 0.0001 0.8736 0.013755 120.164 
10 0.0001 0.8736 0.020000 174.720 
13 0.0251 219.2736 2.370289 20706.840 
14 0.0003 2.6208 0.001679 14.668 
15 0.0119 103.9584 0.965146 8431.515 
16 0.0159 138.9024 0.643240 5619.345 
18 0.0513 448.1568 7.076818 61823.080 
19 0.0162 141.5232 0.809356 7070.534 
20 0.0078 68.1408 0.413123 3609.043 

 
TABLE V 

 COMPARISON OF ANNUALIZED SYSTEM INDICES 

Approach LOLP LOLE 
hr/yr 

EDNS 
MW 

EENS 
MWhr/yr 

LHS 0.08520 744.3072 14.9029 130192.12 
Analytical [16] 0.08142 711.2851 13.7600 120208.11 
MCS -state 
sampling[18]  

0.08580 749.5488 14.9724 130799.00 

 
The annualized load point indices evaluated for all 17 load 

points by this approach are given in Table IV. It is found that 
load point 18 has highest probability of failure with 61823.08 
MWhr of expected energy not supplied per year. The 
annualized system indices evaluated in this approach with 
preselected sample size of 10,000 are shown in Table V. The 
results are compared with the results of analytical [16] and 
non-sequential MCS [18] approaches. It is found from the 
table that indices estimated in the proposed LHS approach are 
in close agreement with MCS and to analytical method. The 
accumulation behavior of EENS index is given in Fig. 2. 

The performance of the proposed LHS approach for IEEE-
RTS system with fixed sample sizes of 2000, 5000 and 10000 
has been verified by carrying an error analysis with non-
sequential MCS. The indices considered in the error analysis 
are LOLP and EENS.  

The percentage error of LOLP and EENS estimates are 
presented in Table VI. It is found from table the estimates are 
closer to the actual values when the sample size increases in 
both MCS and LHS approaches. The error of LOLP index for 
2000 samples is 15.57% and its estimate is nearer to actual 
value for 10000 samples, where error is only 4.64%. The error 
in EENS index for 2000 samples is 14.39% and for 10000 
samples error is only 8.3%. This reflects tighter bounds of 
indices are achieved in LHS method than MCS method. 

 

 
Fig. 2 Accumulation characteristics of EENS for IEEE-RTS system 

 
TABLE VI 

 PERCENTAGE ERROR OF ESTIMATED LOLP & EENS 
Sample size LHS MCS 

LOLP EENS LOLP EENS 
2000 15.57 14.39 19.13 18.61 
5000 12.25 11.08 14.89 14.72 
10000 4.64 8.30 5.37 8.81 

 
The indices estimated in simulation approaches are usually 

represent the mean values of the distributions of the indices. 
The mean values are generally dominated by the high 
probability region of the distribution. It is found from Tables 
II & V, both LHS and MCS approaches estimate the indices 
nearer to actual values. The mean value is close to the actual 
value when the sample size increases in both MCS and LHS 
approaches. The error analysis indicate that the indices 
estimated are in the high probability region and from Tables 
III & VI, LHS gives tighter bounds of indices in comparison 
to MCS for the same sample size. It is inferred from the results 
LHS achieve superior estimate of reliability indices than 
random non-sequential MCS approach. 

VI. CONCLUSION 
This paper presents the application of LHS for evaluating 

the composite system reliability indices. The main objective in 
simulation approach is to reduce the variance of the estimate 
to achieve better evaluation of reliability indices. The variance 
relation given in Section IV A proves that the LHS achieve 
smaller variance than simple MCS of same sample size. The 
reduction in variance of the estimate results the improvement 
in co-efficient variation which leads to accurate estimate of 
indices. A dc load flow based system state evaluation model 
was used for evaluating the test functions of the sampled 
contingency states. The applicability of the LHS approach has 
been verified by applying the proposed method to standard 
RBTS and IEEE-RTS systems. The obtained results reflect 
that the indices estimated are similar to existing methods. It is 
also found that the indices estimated in LHS approach are 
nearer to the benchmark analytical method which requires 
more computational effort. An error analysis is also carried 
out to check the bounds of the estimated indices. The results 
show LHS achieve less error in predicting the mean values of 
indices distribution than MCS method. This proves LHS 
ability to give tighter bounds of indices than MCS and leads to 
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superior results than existing random non-sequential MCS. 
The proposed approach is simple and easy to adopt for 
sampling the entire region of probability distribution of 
individual components. 
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