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Relaxing Convergence Constraints in Local Priority
Hysteresis Switching Logic
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Abstract—This paper addresses certain inherent limitations of
local priority hysteresis switching logic. Our main result establishes
that under persistent excitation assumption, it is possible to
relax constraints requiring strict positivity of local priority and
hysteresis switching constants. Relaxing these constraints allows the
adaptive system to reach optimality which implies the performance
improvement. The unconstrained local priority hysteresis switching
logic is examined and conditions for global convergence are derived.
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I. INTRODUCTION

ADAPTIVE control is usually used to control imprecisely

known plants. The main goal of adaptive control is to

achieve improved performance by choosing a controller k from

given finite/infinite set of candidate controllers using real-time

data and prior information. Two distinct methodologies have

been used to achive this goal: multiple model adaptive control

([21], [24], [11]) and unfalsified adaptive control ([20], [6],

[22]). In both cases, process is orchestrated by a smart unit

called a supervisor, which is responsible for making a decision,

at each instant of time, about when to switch and which

controller should be used next, based on the available plant

input/output data and a well-defined performance criterion.

The general architecture of an adaptive control system is

shown in Fig. 1.

One challenge facing switching adaptive systems is the type

of instability called chattering in which the supervisor cycles

endlessly among two or more of the candidate controllers

without converging, even when there is no change in the plant.

Convergence analysis becomes more complicated when the

controller or the unknown process parameters vary over a

continuum.

Fundamental contributions to the solution to the parameter

convergence problem for this type of set were made by

Hespanha et al. ([13], [12]) and Stefanovic et al. [23]. Results

in these studies overcame the above difficulties of proving

convergence for a continuum of parameters. In these studies,

adaptive control convergence for the case of a continuum set of

parameters is ensured by adding constraints to the switching

logic requiring strictly positive local priority and hysteresis

constants. The origin of these ideas is the hysteresis switching

algorithm which introduced by Morse et al. [17]. Alhajri

et al. [1] was able to proved that the requirement that the
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Fig. 1 Adaptive control system

hysteresis constant h be strictly positive can be relaxed if the

transfer function is equi-quasi-positive definite (EQPD).

Unfortunately, requiring a strictly positive hysteresis

constant or imposing strict local priority constraints on

switching scheme may prevent the adaptive control system

from achieving optimality. In present paper we reexamine the

adaptive control convergence in the context of the local priority

hysteresis switching logic [13] and determine circumstances

where the strict positivity constraints become unnecessary.

Relaxing the strict positivity constraints become critical issue

if highly performance is sought.

The paper is organized as follows. Section II collects

the required and necessary definitions and notations and

briefly reviews the local priority hysteresis switching logic.

In Section III preliminary facts are given. Section IV

contains the main result. Relation between adaptive controller

convergence and the system performance is shown in

Section V. Conclusions follow in Section VI.

II. LOCAL PRIORITY HYSTERESIS SWITCHING LOGIC

In this section we outline local priority hysteresis switching

logic for ease of reference. The contribution of the local

priority hysteresis switching logic in the context of supervisory

control is to introduce a new switching logic that has the ability

to deal with the case when the unknown parameters of system

belong to a continuum set. Using continuum set of candidate

controllers instead of finite set will ensure more flexibility for

the adaptive control system to deal with highly uncertainties

plant ([13], [12], [23], [2]).

The main reason for introducing the supervisory control

approach ([15], [16]) is to ensure a satisfactory performance

(e.g., regulation and tracking problem) of a closed-loop system
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by switching among a given set of candidate controllers.

The basic idea behind the controller selection strategy is to

determine which nominal process model is associated with

the smallest monitoring signals “μp(t)”, and then select the

corresponding candidate controller. The supervisor consists

of three subsections Multi-estimator “ΣE”, Monitoring signal

generator “ΣM” and Switching logic “ΣS”, as shown in Fig. 2.

Now, suppose the uncertain process P shown in Fig. 2

admits the model of a SISO finite dimensional stabilizable and

observable linear system whose control input and measured

output signals are u and y respectively, u and y are the

inputs of multi-estimator ΣE and its output are the signals

yp, p ∈ P, P is a compact subset of a finite-dimensional

normed linear vector space. Each yp would converge to y if

the transfer function of P was equal to the nominal process

model transfer function ϑp in the absence of disturbances,

unmodeled dynamics and noises where disturbance input and

noise signal are represented by d and n respectively. Inputs

of the monitoring signal generator “ΣM” are the estimation

errors

ep = yp − y, p ∈ P (1)

and its output are the monitoring signals μp, p ∈ P, where

μp are defined to be the integral norms of the estimation

errors. Switching logic “ΣS” is a system whose inputs are

the monitoring signals μp and whose output are parameters

that optimize the performance criterion p̂, which defined as

follow

p̂(t) = argmin
p∈P

{μp(t)} (2)

p̂(t) is taking its values in P and used to select the

associated controller parameter.

Assumed that the transfer function of P from u, output of

multi-controller “K”, to y belongs to a family of admissible

process model transfer functions

F =
⋃
p∈P

f(p) (3)

for each p, f(p) denotes a family of transfer functions

‘centered’ around some known nominal process model transfer

function ϑp where p is a parameter taking values in some

index set P, P is typically a continuum. In the absence of

noises, unmodeled dynamics and disturbances equation 3 will

be equivalent to

V =
⋃
p∈P

ϑp (4)

State-space equations for the three subsystems are described

in detail in [13], recall that, the multi-estimator ΣE has the

following realization:

ẋE = AExE + bEy + dEu

yu

d

+
-

Supervisor

n

Fig. 2 Supervisory control block diagram

yp = cpxE, p ∈ P

where xE is estimated state and its assumed to be available

for the controller in all time and AE is a stable matrix.

The matrices cp is design in such way for each p ∈ P, cp
exists and unique (See [15] Section IV). Moreover, for the

case of P to be continuum cp assumed to depend linearly on

p to ensure tractability property (See [15] Section XI). So the

matrix cp can be represented in the form:

cp = pTA+ b (5)

For SISO system, A is n × n nonzero matrix, p is n × 1
unknown process parameters and b is 1× n vector.

In [13], the candidate controllers set = {kp : p ∈ P} is

chosen in such a way that for each p ∈ P; kp a controller

that stabilizes all the process models in f(p), where P is any

element of F. It has been assumed that there is a controller in

the candidate controller set that able to stabilize each unknown

process P .

The inputs of the local priority hysteresis switching logic

are continuous signals, μp, and it is assumed to be strictly

positive nondecreasing function. A set Dγ is define as follow

Dγ(q) := {p ∈ P : |q − p| ≤ γ} (6)

where γ is a proper positive constant and | · | is a norm

function in P. The output of the switching logic, at each

instant of time, is parameter that optimize the performance

criterion “p̂(t)”. Pick a hysteresis constant h > 0 and set

p̂(0) = argmin
p∈P

{μp(0)}. Suppose that at time ti, p̂(ti) has just

switched to some q ∈ P and kept fixed until a time ti+1 > ti
such that the following inequality is satisfied:

(1 + h) min
p∈P

{μp(ti+1)} ≤ min
p∈Dγ(q)

{μp(ti+1)}

At this time, we set p̂(ti+1) = argmin
p∈P

{μp(ti + 1)}. By

repeating these steps we can generate a sequence of switching

signal which will converge as time increase.

If k̂(t) is the controller parameter associated with the

process parameter p̂(t). At each switching time ti, the active
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controller in the feedback loop kL(t) is changed to

kL(ti) = k̂(ti). (7)

A key result is the local priority hysteresis switching

convergence lemma, which may be stated as follows.

[Convergence Lemma [13]] Suppose that both of the following

hold:

1) Monotonicity: For all p it holds that

μp(t) ≥ μp(τ) for all t > τ

2) Feasibility: There exists a p� ∈ P for which the

monitoring signal is uniformly bounded

sup
t

μp∗(t) < ∞.

Then, if hysteresis constant h and constant γ are strictly

positive, the local priority hysteresis switching logic converges

after at most finitely many controller switches.

A concern with the strictly positive constant γ required by

Lemma II is that, the adaptive system does not switch to a new

parameter p̂(t) that minimizes the monitoring signal μp(t) if

this parameter happen to be in the set Dγ (i.e. p̂(t) ∈ Dγ) .

The other noticeable with this lemma is the strictly positive

hysteresis constant h inherently tends to slow supervisor’s

adaptive response and it limits the accuracy with which the

supervisor is able to minimize the monitoring signal μp(t)
to ±h. Using a smaller γ and h can partially address these

concerns, but as these constants decreased toward zero the

number of parameter switches usually tends to increase and

chattering instability may sometimes occur in the limit as

{γ, h} → 0 — though not always.

The main contribution of this work is to reexamine the

adaptive control convergence in the context of the local priority

hysteresis switching logic when relaxing the constraints (i.e.

h > 0 and γ > 0) on the switching scheme. Relaxing these

constraints allowing supervisor to respond instantaneously and

continuously using the zero-hysteresis optimal adaptive law

kL(t) = k̂(t) (8)

III. PRELIMINARIES

Suppose that f : Rn → R is twice differentiable on X ⊂
Rn and that, for some α > 0,

∇2f(x) ≥ αI ∀x ∈ X. (9)

Then, we say f is strongly convex (or uniformly convex) on X .

One implication of uniform convexity is that if f(x) is

uniformly convex on a connected set X ⊂ Rn, then for every

α > 0 satisfying (9) we have [8, Prop. A.23]

f(y)− f(x) = (∇f(x))T (y − x) +

∫ 1

0

∫ 1

0

(y − x)

∇2f(x+ τy)(y − x)dτdt ≥ (∇f(x))T (y − x) +
α

2
‖y − x‖2 (10)

for any α > 0 satisfying (9).

(second-order Taylor-theorem expansion) Let C ⊆ R
n and

let f : Rn �→ R be twice continuously differentiable over C
then,

f(x) = f(a) +∇f(a)(x− a) +∇2f(ξ)
a ≤ ξ ≤ x or ξ = αa+ (1− α)x for α ∈ [0, 1]

where the gradient ∇f(x) of the function f(x) is a row

vector of size n, i.e.,

∇f(x) =
(

∂f
∂x1

(x), ∂f
∂x2

(x), · · · , ∂f
∂xn

(x)
)

the Hessian ∇2f(x) is an n× n matrix;

∇2f(x) =

⎛
⎜⎜⎜⎜⎜⎝

∂2f
∂x2

1
(x) ∂2f

∂x1∂x2
(x) · · · ∂2f

∂x1∂xn
(x)

∂2f
∂x2∂x1

(x) ∂2f
∂x2

2
(x) · · · ∂2f

∂x2∂xn
(x)

...
...

. . .
...

∂2f
∂xn∂x1

(x) ∂2f
∂xn∂x2

(x) · · · ∂2f
∂x2

n
(x)

⎞
⎟⎟⎟⎟⎟⎠

and

x− a =

⎛
⎜⎜⎜⎝
x1 − a1
x2 − a2

...

xn − an

⎞
⎟⎟⎟⎠

Reference [7] (Weierstrass theorem) Let P be a non empty

subset of R
n and let μ : P �→ R be lower semicontinuous at

all points of P. If P is compact, then p̂(t) = argmin
p ∈ P

μp(t)

exists.

Recall that, the authors in [13] used the integral norms of

estimation errors as monitoring signal:

μp(τ) =

∫ τ

0

‖ep(t)‖2dt (11)

where ep = yp − y and yp = cpxE so, μp(t) can be written

as

μp(τ) =

∫ τ

0

‖(pTA+ b)xE(t)− y(t)‖2dt (12)

Then,

∇2
p(μp(τ)) = 2

∫ τ

0

AxE(t)x
T
E (t)A

T dt (13)

We say that the system is persistently excited if, for all

sufficiently large τ > 0 and all p it holds that ∇2
p(μp(τ)) ≥ αI

for some α > 0.

Under the persistent excitation assumption, the function

μp(τ) is uniformly convex function in p for sufficiently large

time t.

Therefore, whenever the system is persistently excited,

this monitoring signal has a property of being uniformly

convex after some time. The persistent excitation (PE) property



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:11, No:3, 2017

575

defined here is crucial in many adaptive schemes where

parameter convergence is one of the objectives and is closely

related to convergence conditions of ([3]-[5], [9], [10], [19]).

The following lemmas will be used in proving our main

result.

Let μp(t) be monotonically increasing in t for all p and

suppose a minimizing value p̂(t) = argmin
p

{μp(t)} exists for

all t. Then,

μp̂(tm)(tm) ≥ μp̂(tn)(tn) for all tm ≥ tn.

Proof
By monotonicity

μp(tm) ≥ μp(tn) ∀tm ≥ tn (14)

Also, since p̂(t) minimizes μp(t)

μp̂(t)(t) ≤ μp(t) ∀p ∈ P. (15)

From (14) μp̂(tm)(tm) ≥ μp̂(tm)(tn) and from (15)

μp̂(tm)(tn) ≥ μp̂(tn)(tn). Hence,

μp̂(tm)(tm) ≥ μp̂(tn)(tn) ∀ tm ≥ tn.

Let μp(t) be monotonically increasing in t for all p and

suppose a minimizing value p̂(t) = argmin
p

{μp(t)} exist for

all t. If the system is persistently excited (Def. III) then,

μp̂(tm)(tm) − μp̂(tn)(tn) ≥ φ(||p̂(tm)−p̂(tn)||) ∀ tm ≥ tn.

Proof
Using second-order Taylor-theorem expansion the monitoring

signal μp(t) can be written as:

μp(t) = μp̂(t)(t) + (p − p̂(t))T ∇p(μp̂(t)(t)) + 1
2 (p −

p̂(t))T∇2
p(μξ(t)(t)) (p− p̂(t)) (16)

where ξ(t) can be written as αp+(1−α)p̂(t) ; α ∈ [0, 1]

Since p̂(t) minimizes μp(t), we have

∇p(μp̂(t)(t)) = 0 (17)

Also, since the system is persistently excited, then

∇2
p(μp(t)) ≥ α > 0 (18)

From (17), and (18) equation (16) can be written as

μp(t)− μp̂(t)(t) ≥ α

2
‖p− p̂(t)‖2 (19)

or, equivalently,

μp̂(tm)(tn)− μp̂(tn)(tn) ≥ α

2
‖p̂(tm)− p̂(tn)‖2 (20)

By monotonicity

μp̂(tm)(tm) ≥ μp̂(tm)(tn) ∀tm ≥ tn (21)

Therefore,

μp̂(tm)(tm)− μp̂(tn)(tn) ≥ μp̂(tm)(tn)− μp̂(tn)(tn)

≥ α
2 ‖p̂(tm)− p̂(tn)‖2 ∀ tm ≥ tn

and hence for all tm ≥ tn

μp̂(tm)(tm)− μp̂(tn)(tn) ≥
α

2
‖p̂(tm)− p̂(tn)‖2.

IV. MAIN RESULT

The following theorem establishes that under persistent

excitation assumption if one relax the requirement that the

local priority and hysteresis constants be strictly positive (i.e.,

that γ > 0 and h > 0) in the local priority hysteresis switching

logic convergence lemma, one still obtains convergence of

the optimal process parameter p̂(t), defined in (2), as

t → ∞ under the same conditions in [13] and by using

the same monitoring signal. Relaxing these strict positivity

requirements overcomes the accuracy limitation mentioned

above and allows convergence to optimality.

Consider the Supervisory control system in Fig. 2.

Suppose that both of the following hold:

1) Monotonicity: For all p it holds that

μp(t) ≥ μp(τ) for all t > τ

2) Feasibility: There exists a p� ∈ P for which the

monitoring signal is uniformly bounded

sup
t

μp∗(t) < ∞.

If the systems is persistently excited (Def. III), then the

optimal process parameter p̂(t) converges as t increases to

infinity to a point in the closure of the set P.

Proof:
By feasibility μm∗ = sup

t
μp̂(t)(t) exists and, by Lemma III,

μp̂(t)(t) is monotonic in t and, by feasibility, it is bounded

above. Hence,

μm∗ = lim
t→∞μp̂(t)(t) (22)

≥ μp̂(t)(t) ∀t (23)

Since the systems is persistently excited, it follows from

Lemma III that for all tm ≥ tn

μp̂(tm)(tm) − μp̂(tn)(tn) ≥ α

2
‖p̂(tm)− p̂(tn)‖2 (24)

So, for all tm ≥ tn it holds that

μm∗ − μp̂(tn)(tn) ≥ μp̂(tm)(tm)− μp̂(tn)(tn)

≥ α

2
‖p̂(tm)− p̂(tn)‖2

Thus, for every ε > 0 there exists tε such that for all tn, tm ≥
tε

ε ≥ μp̂(tm)(tm)− μp̂(tn)(tn) ≥
α

2
‖p̂(tm)− p̂(tn)‖2︸ ︷︷ ︸

φ

.

and hence α
2 ‖p̂(tm) − p̂(tn)‖2 → 0 as t → ∞. Since, α > 0

then, φ is nondecreasing continuous function satisfies φ(0) =
0 and φ(x) > 0 for x > 0, it follow that for every δ > 0, there
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exists a tδ such that ‖p̂(tm) − p̂(tn)‖2 < δ for all tn, tm ≥
tδ . Therefore, the sequence {p̂(t)}∞t=0 is Cauchy. Since every

Cauchy sequence converges [18], it follows that p̂(t) converges

as t → ∞ to a point in the closure of the set P.

V. PERFORMANCE IMPROVEMENT

According to the certainty equivalence concept [14]:

“The nominal process model with the smallest
performance criterion signal “best” approximates
the actual process, and therefore the candidate
controller associated with that model can be
expected to do the best job of controlling the
process.”

The basic idea behind the controller selection strategy is to

determine which nominal process model is associated with the

smallest monitoring signals, and then select the corresponding

candidate controller.

As shown in theorem IV, the idea introduced in this

manuscript (which relies on relaxing the local priority

hysteresis switching logic constraints) improves adaptive

controller convergence. By certainty equivalence concept [14],

this idea improves the adaptive control performance.

VI. CONCLUSION

In this paper we discussed recent progress in the design and

analysis of the hysteresis switching algorithm for the case of

infinite parametric uncertainty (ranging over a continuum). We

have examined the adaptive control convergence in the context

of the local priority hysteresis switching logic; our main result

establishes that when the convergence lemma conditions (i.e.

monotonicity and feasibility) hold, then assuming persistent

excitation assumption in the local priority hysteresis switching

logic study is sufficient to ensure convergence without adding

constraints on switching scheme requiring strict positivity of

the hysteresis or local priority constants (i.e. h > 0 and

γ > 0 ). Relaxing the strict positivity constraints overcomes

the accuracy limitations associated with the local priority

hysteresis switching algorithm by allowing the switching

scheme to pick the parameter p̂(t) that minimizes the

monitoring signal μp(t) at each time t.
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[5] K. J. Åström and B. Wittenmark. Adaptive control. Courier Corporation,
2013.

[6] G. Battistelli, J. A. Hespanha, E. Mosca, and P. Tesi. Unfalsified adaptive
switching supervisory control of time varying systems. In Decision
and Control, 2009 held jointly with the 2009 28th Chinese Control
Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference
on, pages 805–810. IEEE, 2009.

[7] D. Bertsekas. Nonlinear programming. 1999. Athena Scientific, Belmont,
MA, 1999.

[8] D. P. Bertsekas. Nonlinear Programming. Athena Scientific Belmont,
MA, 1999.

[9] R. Bitmead. Persistence of excitation conditions and the convergence
of adaptive schemes. IEEE Transactions on Information Theory,
30(2):183–191, 1984.

[10] S. Boyd and S. S. Sastry. Necessary and Sufficient Conditions
for Parameter Convergence in Adaptive Control. Automatica,
22(6):629–639, 1986.

[11] Z. Han and K. S. Narendra. New concepts in adaptive control
using multiple models. Automatic Control, IEEE Transactions on,
57(1):78–89, 2012.

[12] J. Hespanha, D. Liberzon, and A. Morse. Hysteresis-based switching
algorithms for supervisory control of uncertain systems* 1. Automatica,
39(2):263–272, 2003.

[13] J. Hespanha, D. Liberzon, A. S. Morse, B. D. O. Anderson, T. S.
Brinsmead, and F. D. Bruyne. Multiple model adaptive control. Part
2: Switching. International Journal of Robust and Nonlinear Control,
11(5):479–496, 2001.

[14] A. Morse. Towards a unified theory of parameter adaptive control.
II. Certainty equivalence and implicit tuning. IEEE Transactions on
Automatic Control, 37(1):15–29, 1992.

[15] A. S. Morse. Supervisory control of families of linear set-point
controllers — Part I: Exact matching. Automatic Control, IEEE
Transactions on, 41(10):1413–1431, Oct 1996.

[16] A. S. Morse. Supervisory control of families of linear set-point
controllers — Part II: Robustness. IEEE Transactions on Automatic
Control, 42(11):1500–1515, Nov 1997.

[17] A. S. Morse, D. Q. Mayne, and G. C. Goodwin. Applications of
hysteresis switching in parameter adaptive control. IEEE Transactions
on Automatic Control, 37(9):1343–1354, Sep 1992.

[18] J. R. Munkres. Topology: A First Course. Prentice-Hall, Englewood
Cliffs, NJ, 1975.

[19] K. Narendra and A. Annaswamy. Persistent excitation in adaptive
systems. International Journal of Control, 45(1):127–160, 1987.

[20] S. V. Patil, Y.-C. Sung, and M. G. Safonov. Unfalsified adaptive control
with reset and bumpless transfer. In Decision and Control (CDC), 2014
IEEE 53rd Annual Conference on, pages 1264–1270. IEEE, 2014.

[21] P. Rosa and C. Silvestre. Multiple-model adaptive control using
set-valued observers. International Journal of Robust and Nonlinear
Control, 24(16):2490–2511, 2014.

[22] K. S. Sajjanshetty and M. G. Safonov. Unfalsified adaptive control:
Multi-objective cost-detectable cost functions. In Decision and Control
(CDC), 2014 IEEE 53rd Annual Conference on, pages 1283–1288.
IEEE, 2014.

[23] M. Stefanovic and M. Safonov. Safe adaptive switching control:
Stability and convergence. Automatic Control, IEEE Transactions on,
53(9):2012–2021, Oct. 2008.

[24] M. Vaezi, A. Izadian, and M. Deldar. Adaptive control of a hydraulic
wind power system using multiple models. In Industrial Electronics
Society, IECON 2014-40th Annual Conference of the IEEE, 2014.

Mubarak K. Alhajri was born in Kuwait, on November 8, 1975. He received
the B.S., M.S. Engineering degrees in electrical engineering from in College of
Engineering and petroleum, Kuwait University, in 1999 and 2002 respectively.
He received the Ph.D. degree in electrical engineering from Viterbi School of
Engineering, University of Southern California in 2010. From 1999 to 2002
he worked as laboratory engineer in College of Engineering and petroleum,
Kuwait University. Since 2002 he has been with the Public Authority for
Applied Education and Training where he is Assistant Professor of Electronics
Engineering.


