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Relative Injective Modules and Relative Flat
Modules

Abstract—Let R be a ring, n a fixed nonnegative integer. The
concepts of (n, 0)-FI-injective and (n, 0)-FI-flat modules, and then
give some characterizations of these modules over left n-coherent
rings are introduced . In addition, we investigate the left and right
n-FI-resolutions of R-modules by left (right) derived functors
Extn(−,−) (Torn(−,−) ) over a left n-coherent ring, where n-FI
stands for the categories of all (n, 0)- injective left R-modules. These
modules together with the left or right derived functors are used to
study the (n, 0)-injective dimensions of modules and rings.

Keywords—(n, 0)-injective module, (n, 0)-injective dimension,

I. INTRODUCTION

THROUGHOUT this paper, n is a positive integer unless
a special note. R denotes an associative ring with

identity and all modules considered are unitary. MR(RM)
denotes a right(left) R-module. For an R-module M , E(M)
stands for the injective envelope of M , the character module
HomZ(M,Q/Z) is denoted by M+, and id(M)( fd(M)) is
the injective(flat) dimension of M .

B. Stenström [11] defined and studied FP-injective
modules. FP-injective modules are also called absolutely pure
modules[9], these modules have been studied by many authors.
In the paper [11], right Noetherian rings, right coherent rings,
right semihereditary rings and regular rings are characterized
by FP-injective right R-modules. It has been recently proven
that every left R-module has an FP-injective cover over a left
coherent ring R in the paper [9].On the other hand, every left
R-module M has an FP-injective preenvelope over any ring
in the paper [6]. In the paper [7], L.X.Mao and N.Q.Ding
introduced the definitions of FI-injective and FI-flat modules
and give some characterizations of these modules over left
coherent rings. FI-injective and FI-flat modules together with
the left derived functors of Hom are used to study the
FP-injective dimensions of modules and rings.

As generalizations of the paper [7], we introduce the
definitions of (n, 0)-FI-injective and (n, 0)-FI-flat modules
and give some characterizations of these modules over left
n-coherent rings. In addition, we investigate the left and
right n-FI-resolutions of R-modules by left (right) derived
functors Extn(−,−) (Torn(−,−) ) over a left n-coherent
ring, where n-FI stands for the categories of all (n.0)-
injective left R-modules. These modules together with the left
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or right derived functors are used to study the (n, 0)-injective
dimensions of modules and rings.

We recall some known notions and facts needed in the
sequel.

Let R be a ring and n be a non-negative integer. A left
R-module M is called n-presented in case there is an exact
sequence of left R-modules Fn −→ Fn−1 −→ · · · −→
F1 −→ F0 −→ M −→ 0 in which every Fi is a finitely
generated free [3], equivalently projective left R-module. Let
n, d be non-negative integers. According to [13] , a left
R-module M is called (n, d)-injective(respectively (n, d)-flat)
if Extd+1(N,M) = 0(respectively Tord+1(N,M) = 0)
for all n-presented left ( respectively right ) R-modules
N . The (n, 0)-injective((n, 0)-flat) dimension of M [14],
denoted by (n, 0)-id(M)((n, 0)-fd(M)), is defined to be the
smallest nonnegative integer m such that Extm+1(F,M) =
0(Torm+1(F,M) = 0) for every n-presented left R-module
F (if no such m exists, set (n, 0)- id(M)((n, 0)-fd(M)) =
∞), and l.(n, 0)-dim(R) (l.(n, 0)-wdim(R)) is defined as
sup{(n, 0)-id(M)((n,0)−fd(M)) : M is a left R-module}.

Let C be a class of R-modules and M an R-module.
Following [5], we say that a homomorphism ϕ : M −→ C is a
C-preenvelope if C ∈ C and the abelian group homomorphism
Hom(ϕ,C ′) : Hom (C,C ′) −→ Hom(M,C ′) is surjective for
each C ′ ∈ C. A C-preenvelope ϕ : M −→ C is said to be
a C-envelope if every endomorphism g : C −→ C such that
gϕ = ϕ is an isomorphism. Dually we have the definitions
of a C-precover and a C-cover. C-envelopes (C-covers)may
not exist in general, but if they exist, they are unique up to
isomorphism. A homomorphism ϕ : M −→ C with C ∈ C
is said to a C-envelope with the unique mapping property [5]
if for any homomorphism f : M −→ C ′ with C ′ ∈ C, there
is a unique homomorphism g : C −→ C ′ such that gϕ = f
. Dually we have the definition of a C-cover with the unique
mapping property.

In what follows, we write RM and n-FI for the
categories of all left R-modules and all (n, 0)- injective
left R-modules, respectively. According to Costa[7],a ring R
is called a left n-coherent ring in case every n-presented
left R-module is (n + 1)-presented. It is easy to see
that R is left 0-coherent(resp.1-coherent)if and only if
it is left noetherian(resp. coherent), and every n-coherent
ring is m-coherent for m ≥ n. n-coherent rings
have been investigated by many authors(see Chen and
Ding[1,4],Costa[3]). For n ≥ 1, it has been proven that every
left R-module M has an (n, 0)-injective preenvelope over any
ring in [8]. So M has a right n-FI-resolution, that is, there is a
Hom(−, n-FI) exact complex 0 −→M −→ F 0 −→ F 1 −→
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· · · with each F i(n, 0)-injective. Obviously, the complex is
exact. Let

L0 = M,L1 = coker(M −→ F0),

Li = coker(F i−2 −→ F i−1) for i ≥ 2

The nth cokernel Ln(n ≥ 0) is called the nth n-FI-cosyzygy
of M .

On the other hand, for n ≥ 1, it has been proven that
every left R-module has an (n, 0)-injective cover over a left
n-coherent ring R [8]. So every left R-module M has a left
n-FI-resolution, that is, there is a Hom ( n-FI,−) exact
complex · · · −→ F1 −→ F0 −→ M −→ 0(not necessarily
exact) with each Fi(n, 0)-injective. Write

K0 = M,K1 = ker(F0 −→M),

Ki = ker(Fi−1 −→ Fi−2) for i ≥ 2.

The nth kernel Kn(n ≥ 0) is called the nth n-FI-syzygy of
M .

Note that Hom(−,−) is left balanced on RM ×R M
by n-FI × n-FI for a left n-coherent ring R (see[6,
Definition 8.2.13]). Thus the nth left derived functor of
Hom(−,−), which is denoted by Extn(−,−), can be
computed using a right n-FI-resolution of the first variable
or a left n-FI-resolution of the second variable. Following
[6,Definition 8.4.1], the left n-FI-dimension of a left
R-module M , denoted by left n-FI-dimM , is defined as
inf{m : there is a left n-FI-resolution of the form 0 −→
Fm −→ · · · −→ F0 −→ M −→ 0 of M}. If there is no
such m, set left n-FI-dim(M) = ∞. The global left n-FI
dimension of RM, denoted by gl left n-FI-dimM, is defined
to be sup{ left n-FI-dim(M) : M ∈R M} and is infinite
otherwise. The right versions can be defined similarly.

Recall that a left R-module M is called reduced [6] if M
has no nonzero injective submodules.

In Section II of this paper, we introduce the concepts
of (n, 0)-FI-injective and (n, 0)-FI-flat modules. It is shown
that a left R-module M is (n, 0)-FI-injective if and only
if M is a kernel of an (n, 0)-injective precover A −→ B
with A injective. For a left n-coherent ring R, we prove
that a left R-module M is (n, 0)-FI-injective if and only
if M is a direct sum of an injective left R-module and a
reduced (n, 0)-FI-injective left R-module; an n-presented right
R-module M is (n, 0)-FI-flat if and only if M is a cokernel
of an (n, 0)-flat preenvelope of a right R-module.

In Section III, we investigate the (n, 0)-injective dimensions
of modules and rings in terms of (n, 0)-FI-injective
and (n, 0)-FI-flat modules and the left derived functors
Extn(−,−). Let R be a left n-coherent ring. We first give
some characterizations of left n-hereditary rings. It is proven
that R is left n-hereditary(i.e., l.(n.0)-dim(R) ≤ 1) if and
only if the canonical map σ :Ext0(M,N) −→ Hom(M,N)
is a monomorphism for all left R-modules M and N if and
only if every (n, 0)-FI-injective left R-module is injective if
and only if every(n, 0)-FI-flat right R-module is flat. Then
it is shown that l.(n, 0)-dim(R) ≤ m(m ≥ 2) if and only
if Extm+k(M,N) = 0 for all left R-modules M,N and all
k ≥ −1.

In Section IV, we first investigate that the −⊗− onMR×R

M is right balanced by n-F ×n-FI in the n-coherent ring,
where n-F stands for the class of all (n, 0)-flat modules. Then
we introduce the right derived functors Torn(−,−) and give
some characteristic of right n-F-dim M and n-FI-dim M
for any R-module M in the n-coherent ring R .

Let M and N be R-modules. Hom(M,N) (respectively
Extn(M,N)) means HomR(M,N) (respectively
ExtnR(M,N)), and similarly M⊗N (respectively Torn(M,N))
denotes M ⊗R N (respectively TorRn (M,N)) for an integer
n ≥ 1 throughout this paper. For unexplained concepts and
notations, we refer the reader to [6,10,12].

II. (n, 0)-FI-INJECTIVE MODULES AND (n, 0)-FI-FLAT
MODULES

Definition 1 A left R-module M is called (n, 0)-FI-injective
if Ext1(G,M) = 0 for any (n, 0)-injective left R-module G.

A right R-module N is said to be (n, 0)-FI-flat if
Tor1(N,G) = 0 for any (n, 0)-injective left R-module G.

Remark 1 (1) A right R-module M is (n, 0)-FI-flat if and
only if M+ is (n, 0)-FI-injective by the standard isomorphism:
Ext1(N,M+) � Tor1(M,N)+ for any left R-module N .

(2) We note that by the above definitions that
(1, 0)-FI-injective (flat) modules are FI-injective (flat)module
in [7] and any FI-injective (flat) module is (n, 0)-FI-injective
(flat) for any n ≥ 1.

Proposition 1 Let {Mi}I be family of right R-module
(1) ⊕IMi is (n, 0)-FI-flat if and only if each Mi is

(n, 0)-FI-flat;
(2)

∏
I Mi is (n, 0)-FI-injective if and only if each Mi is

(n, 0)-FI-injective.
Proof (1) By Tor1(G,⊕IMi) � ⊕ITor1(G,Mi);
(2)By Ext1(G,

∏
I Mi) �

∏
IExt1(G,Mi).

Definition 2 A ring R is said to be (n, 0)-IP-ring if every
(n, 0)-injective R-module is projective ; R is said to be
(n, 0)-IF-ring if every (n, 0)-injective R-module is flat. It
is trivial to show that if n ≥ n′, then every (n, 0)-IP(IF)
ring is an (n′, 0)-IP(IF) ring and every (0, 0)-IP-ring is an
quasi-Frobenius ring and every (0, 0)-IF-ring is an IF ring.

Next,we shall see that the class of right (n, 0)-IP(IF) -rings
contains several important known rings.

Proposition 2 Let R be a ring.
(1) R is a right (n, 0)-IP-ring if and only if every right

module is (n, 0)-FI-injective.
(2) R is a right (n, 0)-IF-ring if and only if every left module

is (n, 0)-FI-flat.
(3) If R is a right (n, 0)-IP-ring,then R is a right

(n, 0)-IF-ring.
Proof Directly by the definitions.
Corollary 1 Let R be a ring.
(1) R is a right quasi-Frobenius if and only if every right

module is FI-injective.
(2) R is a right IF-ring if and only if every left module is

FI-flat.
(3) If R is a right quasi-Frobenius, then R is a right IF

-ring.
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Proposition 3 The following hold for a left n-coherent ring
R:

(1) A left R-module M is injective if and only if M is
(n, 0)-FI-injective and (n, 0)-id(M) ≤ 1.

(2) A right R-module N is flat if and only if N is
(n, 0)-FI-flat and (n, 0)-fd(N) ≤ 1.

Proof (1) ”Only if” part is trivial.
”If” part. Let M be an (n, 0)-FI-injective left R-module

and (n, 0)-id(M) ≤ 1. Then there is an exact sequence
0 −→ M −→ E −→ L −→ 0 with E injective. Note that
L is (n, 0)-injective by[14, Theorem 2.12 ] since R is a left
n-coherent ring. So the exact sequence is split, and hence M
is injective.

(2)”Only if” part is trivial.
”If” part. For any (n, 0)-FI-flat right R-module N with

(n, 0)-fd(N) ≤ 1, we have N+ is (n, 0)-FI-injective by
Remark 2.2 Thus N+ is injective by (1) since (n, 0)-id(N+) ≤
1 by [14, Theorem 2.15]. So N is flat.

Proposition 4 The following are equivalent for a left
R-module M :

(1) M is (n, 0)-FI-injective.
(2) For every exact sequence 0 −→M −→ E −→ L −→ 0,

where E is (n, 0)-injective, E −→ L is an (n, 0)-injective
precover of L.

(3) M is a kernel of an (n, 0)-injective precover f : A −→
B with A injective.

(4) M is injective with respect to every exact sequence
0 −→ A −→ B −→ C −→ 0, where C is (n, 0)-injective.

Proof (1)⇒ (2) and (1)⇒ (4) are clear by definitions.
(2) ⇒ (3) is obvious since there exists a short exact

sequence 0 −→M −→ E(M) −→ E(M)/M −→ 0.

(3) ⇒ (1) Let M be a kernel of an (n, 0)-injective
precover f : A −→ B with A injective. Then we have
an exact sequence 0 −→ M −→ A −→ A/M −→ 0.
So, for any (n, 0)-injective left R-module N , the sequence
Hom(N,A) −→ Hom(N,A/M) −→ Ext1(N,M) −→
0 is exact. It is easy to verify that Hom(N,A) −→
Hom(N,A/M) −→ 0 is exact by (3). Thus Ext1(N,M) = 0,
and so (1) follows.
(4) ⇒ (1). For each (n, 0)-injective left R-module N ,

there exists a short exact sequence 0 −→ K −→ P −→
N −→ 0 with P projective, which induces an exact sequence
Hom(P,M) −→Hom(K,M) −→ Ext 1(N,M) −→ 0. Note
that Hom(P,M) −→ Hom(K,M) −→ 0 is exact by (4).
Hence Ext1(N,M) = 0, as desired.

Proposition 5 Let R be a left n-coherent ring. Then the
following are equivalent for a left R- module M :

(1)M is a reduced (n, 0)-FI-injective left R-module.
(2)M is a kernel of an (n, 0)-injective cover f : A −→ B

with A injective.
Proof (1) =⇒ (2) By Proposition 4, the natural map

π : E(M) −→ E(M)/M is an (n, 0)-injective precover.
Note that E(M)/M has an (n, 0)-injective cover, and E(M)
has no nonzero direct summand K contained in M since M
is reduced. It follows that π : E(M) −→ E(M)/M is an
(n, 0)-injective cover by [12,Corollary 1.2.8], and hence (2)
follows.

(2) =⇒ (1) Let M be a kernel of an (n, 0)-injective cover
α : A −→ B withA injective. By Proposition 4, M is
(n, 0)-FI-injective. Now let K be an injective submodule of
M . Suppose A = K ⊕ L, p : A −→ L is the projection and
i : L −→ A is the inclusion . It is easy to see that α(ip) = α
since α(K) = 0. Therefore ip is an isomorphism since α is
a cover. Thus i is epic, and hence A = L,K = 0. So M is
reduced.

Theorem 1 Let R be a left n-coherent ring. Then a
left R-module M is (n, 0)-FI-injective if and only if M is
a direct sum of an injective left R-module and a reduced
(n, 0)-FI-injective left R-module.

Proof”If” part is clear.
”Only if” part. Let M be an (n, 0)-FI-injective left

R-module. Consider the exact sequence 0 −→ M −→
E(M) −→ E(M)/M −→ 0. Note that E(M) −→ E(M)/M
is an (n, 0)-injective precover of E(M)/M by Proposition 2.8.
But E(M)/M has an (n, 0)-injective cover L −→ E(M)/M ,
so we have the commutative diagram with exact rows:

0 → K
f→ L → E(M)/M → 0

↓ϕ ↓γ ‖
0 → M

α→ E(M) → E(M)/M → 0
↓σ ↓β ‖

0 → K
f→ L → E(M)/M → 0

Note that βγ is an isomorphism, and so E(M) = ker(β)⊕
im(γ). Thus L and ker(β) are injective (for im(γ) � L).
Therefore K is a reduced (n, 0)-FI-injective module by
Proposition 9. Since σϕ is an isomorphism by the Five
Lemma, we have M =ker(σ)⊕ im(ϕ),where im(ϕ) � K.In
addition, we get the commutative diagram:

0 0 0
↓ ↓ ↓

0 → ker(σ) → ker(β) → 0 → 0
↓ ↓ ↓

0 → M
α→ E(M) → E(M)/M → 0

↓σ ↓β ‖
0 → K

f→ L → E(M)/M → 0
↓ ↓ ↓
0 0 0

Hence ker(σ) � ker(β) by the 3 × 3 Lemma
[10,Exercise6.16,p.175]. This completes the proof.

It is well known that if R is a left n-coherent ring , then
every right R-module has a (n, 0)-flat preenvelope (see[13]).
Here we have

Proposition 6 Let R be a left n-coherent ring.
(1) If L is a cokernel of a (n, 0)-flat preenvelope f :

K −→ F of a right R-module K,where F is flat, then L
is (n, 0)-FI-flat.

(2) If M is an n-presented (n, 0)-FI-flat right R-module,
then M is a cokernel of an (n, 0)-flat preenvelope.

Proof (1) There is an exact sequence 0 −→ im(f)
i−→

F −→ L −→ 0. It is clear that i :im(f) −→ F is an (n, 0)-flat
preenvelope. For any (n, 0)-injective left R-module N,N+

is (n, 0)-flat by [14,Theorem 2.15]. Thus we obtain an exact
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sequence

Hom(F,N+) −→ Hom(im(f), N+) −→ 0,

which yields the exactness of (F ⊗ N)+ −→ (im(f) ⊗
N)+ −→ 0. So the sequence 0 −→ im(f) ⊗ N −→ F ⊗ N
is exact. But the flatness of F implies the exactness of
0 =Tor1(F,N) −→ Tor1(L,N) −→ im(f)⊗N −→ F ⊗N,
and hence Tor1(L,N) = 0.

(2) Let M be an n-presented (n, 0)-FI-flat right
R-module.There is an exact sequence 0 −→ K −→ P −→
M −→ 0 with P finitely generated projective and K is
(n − 1)-presented. We claim that K −→ P is an (n, 0)-flat
preenvelope. In fact, for any (n, 0)-flat right R-module F ,
we have Tor1(M,F+) = 0, and so we get the following
commutative diagram with the first row exact:

0 −→ K ⊗ F+ α−→ P ⊗ F+

↓τK,F ↓τP,F

Hom(K,F )+
θ−→ Hom(P, F )+.

Note that τK,F is an epimorphism and τP,F is an isomorphism
by [2, Lemma 2]. Thus θ is a monomorphism, and hence
Hom(P, F ) −→Hom(K,F ) is epic, as required.

We shall say that a right R-module M is strongly (n, 0)
-FI-flat if Tori(M,G) = 0 for all (n, 0)-injective left
R-modules G and all i ≥ 1. Similarly, a left R-module N
will be called strongly (n, 0) - FI-injective if Exti(G,N) = 0
for all (n, 0)-injective left R-modules G and all i ≥ 1.

Theorem 2 Let R be a left and right n-coherent ring.
Consider the following conditions:

(1) (n, 0)-id(RR) ≤ 1.
(2) Every submodule of an (n, 0)-FI-flat right R-module,

which factor module is n-presented, is (n, 0)-FI-flat.
(3) Every n-presented (n, 0)-FI-flat right R-module is

strongly (n, 0)-FI-flat.
(4) Every (n, 0)-FI-injective left R-module is strongly

(n, 0)-FI-injective.
(5) Every quotient of an (n, 0)-FI-injective left R-module

is (n, 0)-FI-injective.
Then (1)⇒ (2)⇒ (3)⇐ (4)⇐ (5).
Proof (1) ⇒ (2) Let A be a submodule of an

(n, 0)-FI-flat right R-module B such that B/A is n-presented
and M an (n, 0)- injective left R-module. Then one gets
an exact sequence Tor2(B/A,M) −→ Tor1(A,M) −→
Tor1(B,M) = 0. On the other hand, there is a pure
exact sequence 0 −→ M −→ ∏

(RR)
+ since (RR)

+

is a cogenerator in R−Mod. Thus we get a split exact
sequence (

∏
(RR)

+)+ −→ M+ −→ 0. Note that
(n, 0)-fd((RR)

+) = (n, 0)-id(RR) ≤ 1 by [14,Theorem
2.15], and so (n, 0)-fd(

∏
(RR)

+) ≤ 1 since R is
right n-coherent. It follows that (n, 0)-id((

∏
(RR)

+)+) =
(n, 0)-fd(

∏
(RR)

+) ≤ 1 by [14,Theorem 2.15]. Hence
(n, 0)-fd(M) = (n, 0)-id(M+) ≤ 1. Thus Tor2(B/A,M) = 0
by the condition, and so Tor1(A,M) = 0. Therefore, A is
(n, 0)-FI-flat.
(2) ⇒ (3) Let M be an n-presented (n, 0)-FI-flat right

R-module. Then there is an exact sequence 0 −→ K −→
P −→ M −→ 0 with P projective. So K is (n, 0)-FI-flat by
(2). Thus M is strongly (n, 0)-FI-flat by induction.

(5) ⇒ (4) Let M be an (n, 0)-FI-injective left
R-module.Then there is an exact sequence 0 −→ M −→
E −→ L −→ 0 with E injective. So L is (n, 0)-FI-injective
by(5). It is easy to check that M is strongly (n, 0)-FI-injective
by induction.

(4) ⇒ (3) holds by Remark 2 and the standard
isomorphism: Extn(N,M+) � Torn(M,N)+ for any right
R-module M , any left R-module N and any n ≥ 1 (see[10,
p.360]).

Recall that a short exact sequence of right R-modules 0 −→
A −→ B −→ C −→ 0 is called n-pure if every n-presented
right R-module is projective with respect to this sequence[14].
In this case , A is said to be an n-pure submodule of B .It is
easy to see that the pure exact sequence is 1-pure exact in this
definition, and the pure exact sequence must be n-pure . Let
A be a pure submodule of the right R-module B , A must be
an n-pure submodule of B.

Proposition 7 A left (n, 0)-FI-injective R-module N is
(n, 0)-injective if and only if, for every n-presented left
R-module M , every homomorphism f : M −→ L factors
through an injective left R-module,where L is a cokernel of
injective envelope of N .

Proof ”Only if” part. There is an exact sequence 0 −→
N −→ E(N)

π−→ L −→ 0 with E injective. Since the exact
sequence is n-pure, there exists g : M −→ E such that πg = f
, as required.

”If” part. It is enough to show that the exacts equence 0 −→
N

i−→ E(N)
π−→ L −→ 0 is n-pure by [14,Theorem 2.2]. Let

M be any n-presented right R-module. For any f : M −→ L,
there exist an injective left R-module Q and g : M −→ Q
and h : Q −→ L such that f = hg by hypothesis. Note that
E(N)

π−→ L is a precover of L, since N is FI-injective
by Proposition 4. Thus there exists α : Q −→ E(N) such
that h = πα,and so f = παg. Therefore we get an exact
sequence Hom(M,E(N)) −→ Hom(M,L) −→ 0. So N is
(n, 0)-injective.

III. (n, 0)-INJECTIVE DIMENSIONS AND THE LEFT
DERIVED FUNCTORS OF HOM

As is mentioned in the introduction, if R is a left n-coherent
ring, then Hom(−,−) is left balanced on RM ×R M by
n-FI × n-FI. Let Extn(−,−) denote the nth left derived
functor of Hom(−,−) with respect to the pair n-FI ×n-FI.
Then, for two left R-modules M and N , Extn(M,N) can
be computed using a right n-FI-resolution of M or a left
n-FI-resolution of N .

Let 0 −→ M
g−→ F 0 f−→ F 1 −→ · · · be a right

n-FI-resolution of M . Applying Hom(−, N),we obtain the
deleted complex · · · −→Hom(F 1, N)

f∗
−→ Hom(F 0, N) −→

0. Then Extn(M,N) exactly the nth homology of the complex
above. There is a canonical map σ :

Ext0(M,N) = Hom(F 0, N)/im(f∗)→ Hom(M,N)

defined by σ(α+ im(f∗)) = αg for α ∈ Hom(F 0, N).
Proposition 8 Let R be a left n-coherent ring. The

following are equivalent for a left R-module M :
(1) M is (n, 0)-injective.
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(2) The canonical map σ : Ext0(M,N) −→ Hom(M,N)
is an epimorphism for any left R- module N .

(3) The canonical map σ : Ext0(M,M) −→ Hom(M,M)
is an epimorphism.

Proof (1)⇒ (2) is obvious by letting F 0 = M .
(2)⇒ (3) is trivial.
(3)⇒ (1). By (3), there exists α ∈ Hom(F 0,M) such that

σ(α+ im(f∗)) = αg = 1M . Thus M is isomorphic to a direct
summand of F 0, and hence it is (n, 0)-injective.

Corollary 2 The following are equivalent for a left
n-coherent ring R .

(1) RR is (n, 0)-injective.
(2) The canonical map σ : Ext0(RR,N) −→ Hom(RR,N)

is an epimorphism for any left R- module N .
(3) The canonical map σ :Ext0(RR,R R) −→

Hom(RR,R R) is an epimorphism.
(4) Every (n-presented) left R-module has an epic

(n, 0)-injective cover.
(5) Every (n-presented) right R-module has a monic

(n, 0)-flat preenvelope.
(6) Every (n-presented) right R-module is a submodule of

a (n, 0)-flat right R-module.
Proof (1)⇔ (2)⇔ (3) follow from Proposition 8.
(1)⇒ (4). Let M be a left R-module, then M has an (n, 0)-

injective cover g. On the other hand, there is an exact sequence
F −→ M −→ 0 with F free. Since F is (n, 0)–injective by
(1), g is an epimorphism.
(4) ⇒ (1).Let f : N −→R R be an epic (n, 0)-injective

cover. Then RR is isomorphic to a direct summand of N , and
so RR is (n, 0)-injective.
(1)⇔ (5). by [13, Theorem 4.5]
(5)⇒ (6) is obvious.
(6)⇒ (5) follows since R is a left n-coherent ring and by

[13, Proposition 4.1].
Proposition 9 Let R be a left n-coherent ring. Then the

following are equivalent for a left R- module M :
(1) right n-FI-dim M ≤ 1.
(2) The canonical map σ : Ext0(M,N) −→ Hom(M,N)

is a monomorphism for any left R- module N .
Proof (1) ⇒ (2).By (1), M has a right n-FI-resolution

0 −→ M −→ F 0 −→ F 1 −→ 0. Thus we get an
exact sequence 0 −→ Hom(F 1, N) −→ Hom(F 0, N) −→
Hom(M,N) for any left R-module N . Hence σ is a
monomorphism.
(2) ⇒ (1). Consider the exact sequence 0 −→ M −→

F 0 −→ L1 −→ 0, where M −→ F 0 is an (n, 0)-injective
preenvelope. We only need to show that L1 is (n, 0)-injective.
By [6,Theorem 8.2.3], we have the commutative diagram with
exact rows:

Ext0(L1, L1) −→ Ext0(F 0, L1)
↓σ1 ↓σ2

0 −→ Hom(L1, L1) −→ Hom(F 0, L1)

−→ Ext0(M,L1) −→ 0
↓σ3

−→ Hom(M,L1)

Note that σ2 is an epimorphism by Proposition 8 and σ3 is
a monomorphism by (2).Hence σ1 is an epimorphism by the

Snake Lemma[10, Theorem 6.5].Thus L1 is (n, 0)-injective by
Proposition 8, and so (1)follows.

Lemma 1 Let R be a left n-coherent ring. Then
(1) right n-FI- dim (M) = (n, 0)-id(M) for any left

R-module M ;
(2) (n, 0)-wdim(R) = l.(n, 0)-dim(R) = gl right n-FI-dim

M.
Proof (1) It is clear that (n, 0)-id(M) ≤ right n-FI-dim

M . Conversely, we may assume that (n, 0)-id(M) = m <∞.
Let 0 −→M −→ F 0 −→ F 1 −→ · · · −→ Fm−1 be a partial
right n-FI-resolution of M . Then we get an exact sequence
0 −→ M −→ F 0 −→ F 1 −→ · · · −→ Fm−1 −→ L −→ 0
Therefore, L is (n, 0)-injective by [14, Theorem 2.12], and so
right right n-FI-dim M ≤ m,as desired.

(2) follows from [14, Theorem 2.15 ] and (1).
Lemma 2 ([7]) Let C be a class of R-modules and M an

R-module.
(1) If F −→M and G −→M are C-precovers with kernels

K and L,respectively, then K ⊕G � L⊕ F .
(2) If M −→ F and M −→ G are C-preenvelopes with

cokernels K and L,respectively, then K ⊕G � L⊕ F .
Recall that a left R is called left n-hereditary[14] if every

(n − 1)- presented submodule of projective left R-module is
projective.

Clearly, a ring R is left semihereditary if and only if it
is right 1- hereditary. Left n-hereditary ring is left (n +
1)-hereditary.

Lemma 3([14]) The following statements are equivalent for
a ring R:

(1)R is left n-hereditary.
(2)R is left n-coherent and l.(n, 0)-dim(R) ≤ 1.
(3)Factor module of (n, 0)-injective left R-module is

(n, 0)-injective.
(4)Factor module of injective left R-module is

(n, 0)-injective.
(5)R is a right (n, 1)-ring.
Theorem 3 The following are equivalent for a left

n-coherent ring R:
(1) R is a left n-hereditary ring (i.e. l.(n, 0)-dim(R) ≤ 1).
(2) The canonical map σ : Ext0(M,N) −→ Hom(M,N)

is is monic for all left R-modules M and N .
(3) Every left R-module has a monic (n, 0)-injective cover.
(4) Every (n, 0)-FI-injective left R-module is injective.
(5) Every (n, 0)-FI-injective left R-module is

(n, 0)-injective.
(6) Every (n-presented) (n, 0)-FI-flat right R-module is flat.
(7) The kernel of any (n, 0)-injective ( pre)cover of a left

R-module is (n, 0)-injective.
(8) The cokernel of any (n, 0)-injective preenvelope of a

left R-module is (n, 0)-injective.
(9) The kernel of any (n, 0)-flat ( pre)cover of a right

R-module is flat.
Proof (1)⇔ (2) holds by Proposition 9 and Lemma 1.
(1)⇒ (4) follows from Proposition 3 and Lemma 1.
(4)⇒ (5) is trivial.
(5)⇒ (6).Let M be an (n, 0)-FI-flat right R-module. Then

M+ is (n, 0)-FI-injective by Remark 1, and hence M+ is
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(n, 0)-injective by (5). So M is (n, 0)-flat by [14, Theorem
2.15].
(1)⇒ (3) follows from Lemma 3 and [13, Proposition 4.9].
(3)⇒ (7). Let f : F −→M be an (n, 0)-injective precover

of a left R-module M and K =ker(f). Since there exists a
monic (n, 0)-injective cover g : G −→ M by (3), we have
K ⊕G � F by Lemma 2(1). So K is (n, 0)-injective.
(7) ⇒ (1).It is enough to show that any quotient of an

(n, 0)-injective left R-module is (n, 0)- injective. But it is clear
by Lemma 2.
(1)⇔ (8) follows from Lemma 1.
(1)⇔ (9) is obvious.
Theorem 4 Let R be a left n-coherent ring and an integer

m ≥ 2.The following are equivalent for a left R-module M :
(1) right n-FI-dim M ≤ m.
(2) Extm+k(M,N) = 0 for all left R-modules N and all

k ≥ −1.
(3)Extm−1(M,N) = 0 for all left R-modules N .
Proof (1) ⇒ (2). Let 0 −→ M −→ F 0 −→ F 1 −→
· · · −→ Fm −→ 0 be a right n-FI- resolution of M ,
which induces an exact sequence 0 → Hom(Fm, N) →
Hom(Fm−1, N) → Hom(Fm−2, N) for any left R-module
N . Hence Extm(M,N) =Extm−1(M,N) = 0. Note that it is
clear that Extm+k(M,N) = 0 for all k ≥ 1.Then (2)holds.
(2)⇒ (3) is trivial.
(3) ⇒ (1). Let 0 −→ M −→ F 0 −→ · · · −→ Fm−2 f−→

Fm−1 g−→ Fm −→ · · · be a right n-FI- resolution of M ,
with Lm = coker(Fm−2 −→ Fm−1). We only need to show
that Lm is (n, 0)-injective. In fact, we have the exact sequence
Fm−1 π−→ Lm −→ 0 and 0 −→ Lm λ−→ Fm−1 such that g =
λπ by (3), Ext m−1(M,Lm) = 0. Thus the sequence 0 −→
Hom(Fm, Lm)

g∗
−→ Hom(Fm−1, L

m)
f∗
−→ Hom(Fm−2, Lm)

is exact. Since f∗(π) = πf = 0, π ∈ ker(f∗) = im(g∗). Thus
there exists h ∈ Hom(Fm, Lm) such that π = g∗(h) = hg =
hλπ, and hence hλ = 1 since π is epic. Therefore Lm is
(n, 0)-injective.

Corollary 3 The following are equivalent for a left
n-coherent ring R and an integer m ≥ 2:

(1) l.(n, 0)-dim(R) ≤ m.
(2) Extm+k(M,N) = 0 for all left R-modules M and N ,

and all k ≥ −1.
(3) Extm−1(M,N) = 0 for all left R-modules M and N .
Proof It follows from Lemma 1 and Theorem 4.
It has been proven that R is a left coherent ring and

l.FP-dim(R) ≤ 2 if and only if every right R-module has an
FP-injective cover with the unique mapping property . Now
we have

Theorem 5 The following are equivalent for a ring R:
(1) R is left n-coherent and l.(n, 0)-dim(R) ≤ 2.
(2) Every left R-module has an (n, 0)-injective cover with

the unique mapping property.
(3) R is left n-coherent and Ext1(M,N) = 0 for all left

R-modules M and N .
(4)R is left n-coherent and Extk(M,N) = 0 for all left

R-modules M,N and all k ≥ 1.
Proof(1)⇔ (3)⇔ (4) follow from Corollary 3.
(1) ⇒ (2).Let M be any left R-module. Then M has

an (n, 0)-injective cover f : F −→ M .It is enough to

show that, for any (n, 0)-injective left R-module G and any
homomorphism g : G −→ F such that fg = 0, we have
g = 0. In fact, there exists β : F/im(g) −→ M such that
βπ = f since im(g) ⊆ ker(f), where π : F −→ F/im(g)
is the natural map. Since l.(n, 0)-dim(R) ≤ 2, F/im(g) is
(n, 0)-injective. Thus there exists α : F/im(g) −→ F such
that β = fα, and so we get the commutative diagram with an
exact row:

G
g−→ F

π⇐⇒α F/im(g) −→ 0
↘0 ↓f ↙β

M

Thus fαπ = f ,and hence απ is an isomorphism. Therefore,
π is monic, and so g = 0.

(2) ⇒ (1). We first prove that R is a left n-coherent ring.
Let {Ci, ϕ

i
j} be a direct system with each Ci (n, 0)-injective.

By hypothesis, lim→ Ci has an (n, 0)-injective cover α : E −→
lim→ Ci with the unique mapping property. Let αi : Ci −→
lim→ Ci satisfy αi = αjϕ

i
j whenever i ≤ j . Then there

existsfi : Ci −→ E such that αi = αfi for any i. It
follows that αfi = αfjϕ

i
j , and so fi = fjϕ

i
j whenever

i ≤ j . Therefore, by the definition of direct limits, there
exists β : lim→ Ci −→ E such that fi = βαi and fj = βαj .
Thus (αβ)αi = α(βαi) = αfi = αi for any i. Therefore
αβ = 1lim

→
Ci , by the definition of direct limits, and hence

lim→ Ci is a direct summand of E. So lim→ Ci is (n, 0)-injective.
Thus R is a left n-coherent ring by [1].

Next we prove that l.(n, 0)-dim(R) ≤ 2. Let M be any left
R-module. Then M has an (n, 0)- injective cover f : F −→
M with the unique mapping property. So 0 −→ F −→M −→
0 is a left n-FI-resolution. Thus gl left n-FI-dim RM = 0,
and hence l.(n, 0)-dim(R) ≤ 2 by Corollary 3.

Proposition 10 Let R be a left n-coherent ring. If M
is an n-pure-injective left R-module , then (n, 0)-id(M) ≤
m(m ≥ 0) if and only if for the minimal left n-FI-resolution
· · · −→ Fm −→ Fm−1 −→ · · · −→ F1 −→ F0 −→ N −→ 0
of all n-pure-injective left R-module N , Hom(M,Fm) −→
Hom(M,Km) is an epimorphism.

Proof The proof is modeled on that of [6, Lemma 8.4.34].
We will proceed by induction on m. Let m = 0. If

M is (n, 0)- injective , it is clear that Hom(M,F0) −→
Hom(M,K0) is an epimorphism, since F0 −→ N is an
(n, 0)-injective cover of N . Conversely, put N = M. Then
Hom(M,F0) −→ Hom(M,M) is an epimorphism, and so M
is (n, 0)-injective.

Let m ≥ 1. There is an exact sequence 0 −→ M −→
E −→ L −→ 0 with E injective. Then we have the following
exact commutative diagrams:

Hom(E,Fn) −→ Hom(E,Kn) −→ 0
↓ ↓

Hom(M,Fn) −→ Hom(M,Kn)
↓
0
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0 0
↓ ↓

0 −→ Hom(L,Km) −→ Hom(L,Fm−1)
↓ ↓

0 −→ Hom(E,Km) −→ Hom(E,Fm−1)
↓ ↓

0 −→ Hom(M,Km) −→ Hom(M,Fm−1)
↓
0

0
↓

−→ Hom(L,Km−1)
↓

−→ Hom(E,Km−1) −→ 0
↓

−→ Hom(M,Km−1)

Thus (n, 0)-id(M) ≤ m if and only if (n, 0)-id(L) ≤ m − 1
by [14, Theorem 2.12.], if and only if Hom(L,Fm−1) −→
Hom(L,Km−1) is an epimorphism by induction if and only
if Hom(E,Km) −→ Hom(M,Km) is an epimorphism
by the second diagram if and only if Hom(M,Fm) −→
Hom(M,Km) is an epimorphism by the first diagram.

IV. (n, 0)-INJECTIVE DIMENSIONS AND THE RIGHT
DERIVED FUNCTORS OF TOR

In this section,we introduce the right derived functors of
Tor. If R is n-coherent, the − ⊗ − on MR ×R M is
right balanced by n-F ×n-FI, where n-F stands for the
class of all (n, 0)-flat modules. In fact, we need to show
that if 0 −→ M −→ F 0 −→ F 1 −→ · · · is a right
n-F-resolution, which exists by [13, Lemma 4.1], and G is
an (n, 0)-injective left R-module, then 0 −→ M ⊗ G −→
F 0 ⊗ G −→ F 1 ⊗ G −→ · · · is exact. Applying the
functor HomZ(−, Q/Z) and using a standard identity we see
the sequence 0 ←− Hom(M,G+) ←− Hom(F 0, G+) ←−
Hom(F 1, G+)←− · · · . But G+ is (n, 0)-flat by [14,Theorem
2.15] and so this sequence is exact. This means the desired
sequence is exact. Since right n-FI-resolutions are exact ,
let 0 −→ N −→ G0 −→ G1 −→ · · · of a left R-module
N , then · · · −→ G1+ −→ G0+ −→ N+ −→ 0 is a
left n-F-resolution . So applying the functor Hom(F,−)
to above sequence, we get the exact sequence · · · −→
Hom(F,G1+) −→ Hom(F,G0+) −→ Hom(F,N+) −→ 0
for F ∈n-F . Using a standard identity we get the exact
sequence 0 −→ F ⊗N −→ F ⊗G0 −→ F ⊗G1 −→ · · ·.

Let Torn(−,−) denote the nth right derived functor of −⊗
− with respect to the pair n-F×n-FI . Then, for two left
R-modules M and N , Torn(M,N) can be computed using a
right n-F-resolution of M or a right n-FI-resolution of N .

Lemma 4 If M1 −→ M2 −→ M3 −→ M4 is an exact
sequence of left R-moudules such that for every n-presented
right R-module P, P ⊗M1 −→ P ⊗M2 −→ P ⊗M3 −→
P ⊗M4 is exact , then K =ker(M3 −→ M4) is an n-pure
submodule of M3.

Proof P ⊗M1 −→ P ⊗M2 −→ P ⊗M3 −→ P ⊗M4 is
exact and P ⊗ K −→ P ⊗M3 −→ P ⊗M4 is a complex.
Thus exactness of the first sequence means 0 −→ P ⊗K −→
P ⊗M3 is exact. This means K is an n-pure submodule of
M3

Theorem 6 Let R be a left n-coherent ring and an integer
m ≥ 2.The following are equivalent for a left R-module N :

(1) right n-FI-dim N ≤ m.
(2) Torm+k(M,N) = 0 for all right R-modules M and all

k ≥ −1.
(3)Torm(M,N) =Torm−1(M,N) = 0 for all right

R-modules M .
(4)Torm(M,N) =Torm−1(M,N) = 0 for all right

n-presented R-modules M .
Proof (1)⇒ (2) Let 0 −→ N −→ A0 −→ · · · −→ An −→

0 be a right n-FI-resolution of N . Then M⊗An−2 −→M⊗
An−1 −→ M ⊗ An −→ 0 is exact and so Torm−1(M,N) =
Torm(M,N) = 0 . But clearly Torm+k(M,N) = 0 for k ≥
−1. Hence (2) holds.

(2)⇒ (3)⇒ (4) is trivial.
(4)⇒ (1). Let 0 −→ N −→ A0 −→ A1 −→ · · · be a right

n-FI-resolution of N . Then for any n-presented R-module
M ,M ⊗An−2 −→M ⊗An−1 −→M ⊗An −→M ⊗An+1

is exact. So by Lemma 4, K =ker(An −→ An+1) is n-pure
in An. But an n-pure submodule of (n, 0)-injective module
is (n, 0)-injective by [14, Proposition 2.2]. But then 0 −→
N −→ A0 −→ A1 −→ · · ·An−1 −→ K −→ 0 is a right
n-FI-resolution of N and (1) holds.

Theorem 7 Let R be a left n-coherent ring and an integer
m ≥ 2.The following are equivalent for a left R-module N :

(1) right n-F-dim M ≤ m.
(2) Torm+k(M,N) = 0 for all right R-modules N and all

k ≥ −1.
(3)Torm(M,N) =Torm−1(M,N) = 0 for all right

R-modules N .
Proof (1)⇒ (2)⇒ (3) is trivial.
(3)⇒ (1). Let 0 −→M −→ F 0 −→ F 1 −→ · · · be a right

n-F-resolution of N . Then for any R-module N , Fn−2 ⊗
N −→ Fn−1 ⊗ N −→ Fn ⊗ N −→ Fn+1 ⊗ N is exact.
So by Lemma 4, K =ker(Fn −→ Fn+1) is n-pure in Fn

and so is (n, 0)-flat. But Fn−2 −→ Fn−1 −→ K −→ 0
is exact. Therefore, L =ker(Fn−2 −→ Fn−1) is n-pure in
Fn−2 and so is (n, 0)-flat by [14, Corollary 2.20]. But then
0 −→ M −→ F 0 −→ F 1 −→ · · · −→ Fn−3 −→ L −→ 0 is
a right n-F-resolution of M and so (1) holds.

Theorem 8 Let R be a left n-coherent ring and an integer
m ≥ 0. The following are equivalent

(1) For every (n, 0)-flat left R-module F , there is an exact
sequence 0 −→ F −→ E0 −→ · · · −→ Em −→ 0 with each
Ei is (n, 0)-injective.

(2) If 0 −→ M −→ F 0 −→ F 1 −→ · · · is a right
n-F-resolution of M , then the sequence is exact at F k for
k ≥ m− 1, where F−1 = M .

(3) There is an exact sequence 0 −→ R −→ E0 −→
· · · −→ Em −→ 0 of left R-module with each Ei is
(n, 0)-injective.

Proof (1)⇒ (3) is immediate.
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(3)⇒ (2) We recall that −⊗− is right balanced onMR×R

M by n-F × n-FI with right derived functors Tork(−,−) .
If m ≥ 2, using the exact sequence 0 −→ R −→ E0 −→
· · · −→ Em −→ 0, we get Tork(M,R) = 0 for k ≥ m − 1.
Computing using 0 −→ M −→ F 0 −→ F 1 −→ · · · as in
(2), we see that Tork(M,R) is just the kth homology group
of this complex, giving the desired result.

For m = 1, 0 −→ R −→ E0 −→ E1 −→ 0 exact sequence
gives Tor1(M,R) = 0 so that , as above, F 0 −→ F 1 −→ F 2

is exact and M ⊗ R −→ Tor0(M,R) is onto. computing the
latter morphism using 0 −→M −→ F 0 −→ F 1 is exact.

If m = 0 then (3) means R is (n, 0)-injective as a left
R-module. But the balance of −⊗− then gives 0 −→ M ⊗
R −→ F 0 ⊗ R −→ F 1 ⊗ R −→ · · · is exact . That is 0 −→
M −→ F 0 −→ F 1 −→ · · · is exact.
(2) ⇒ (1). Assume (2) with m ≥ 2. Let 0 −→ F −→

E0 −→ · · · −→ Em −→ 0 with each Ei is (n, 0)-injective.
Then by (2), we get Tork(M,F ) = 0 for k ≥ m − 1 since
F is (n, 0)-flat. Computing using 0 −→ E0 −→ E1 −→ · · ·
and using the Lemma 4 , we get K =ker(Em −→ Em+1) is
n-pure in Am and so K is also (n, 0)-injective. Hence 0 −→
F −→ E0 −→ · · · −→ Em−1 −→ K −→ 0 gives the desired
exact sequence.

Now let m = 1.Then (2) says M −→ F 0 −→ F 1 −→ · · ·
is exact. So Tork(M,F ) = 0 for k = 0 and M ⊗ F −→
Tor0(M,F ) is onto. Hence if 0 −→ F −→ E0 −→ E1 −→
· · · 0 is exact, M ⊗F −→M ⊗E0 −→M ⊗E1 −→M ⊗E2

is exact for all n-presented M . By Lemma 25, we again get
the desired exact sequence 0 −→ F −→ E0 −→ K −→ 0
with K =ker(E1 −→ E2).

If m = 0 then 0 −→ M −→ F 0 −→ F 1 −→ · · · exact
means Tork(M,F ) = 0 for k > 0 and M⊗F −→ Tor0(M,F )
is isomorphism. This gives that 0 −→M⊗F −→M⊗E0 −→
M ⊗ E1 is exact for all M which implies F is an n-pure
submodule of E0 and so is (n, 0)-injective.
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