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Relational Framework and its Applications
Lidia Obojska

Abstract—This paper has, as its point of departure, the foun-
dational axiomatic theory of E. De Giorgi (1996, Scuola Normale
Superiore di Pisa, Preprints di Matematica 26, 1), based on two
primitive notions of quality and relation. With the introduction of
a unary relation, we develop a system totally based on the sole
primitive notion of relation. Such a modification enables a definition
of the concept of dynamic unary relation. In this way we construct a
simple language capable to express other well known theories such
as Robinson’s arithmetic or a piece of a theory of concatenation. A
key role in this system plays an abstract relation designated by “( )”,
which can be interpreted in different ways, but in this paper we will
focus on the case when we can perform computations and obtain
results.
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I. INTRODUCTION

Mathematics, although known as exact science, is full

of uncertainties. Gödel’s theorems have demonstrated that

these uncertainties are indeed proper to mathematics itself.

Logicians, philosophers, and other scholars have begun to re-

examine the founding principles of logic and to propose new

solutions. It is interesting to note that Edmund Husserl [10],

whose writings Gödel repeatedly recommended for study, was

also a precursor in this line of thought. Husserl, who before

becoming a philosopher had studied mathematics as a student

of Weierstrass and had been an interlocutor of Cantor and

Frege, proposed a radical reform of logic for the new model

of the world emerging from science.

Since mathematics is a language composed of primitive

concepts, rules, definitions, symbols, etc.., we can encode it

by the use of other symbols, as well. We define everything

in frames of mathematics in terms of sets and membership

relation. In this paper we would like to encode some of the

well known concepts in terms of a primitive relation “( )”
[6], [2], [4]. Hence, we propose a kind of a calculus on unary

relations. The most important thing is how we interpret the

main operator of a system – “( )”. Let us begin with several

examples.

Examples:

1) Let “( )” indicate a binary inclusion relation — “⊆”,

and x, y are unary relations. (x y) ≡ x ⊆ y
2) Let “( )” indicate a binary operation of intersection —

“∩” (∩ is a ternary relation).

(x y) ≡ x ∩ y. x ∩ y = y would mean that y ⊆ x.

3) Let “( )” be a projection function — p
(p is a binary relation). (x y) ≡ p[x, y] = y

4) Let “( )” be a binary operation of addition — “+”

(+ is a ternary relation). (x y) ≡ x+ y
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5) Let “( )” be an identity relation — I
(I is a binary relation). (x y) ≡ xIy iff x = y

6) Let “( )” be a concatenation relation — “⌢”

(⌢ is a binary operation, i.e. a ternary relation).

(x y) ≡ x⌢y
7) Let “( )” be an equivalence relation — “∼=”

(∼= is a binary relation). (x y) ≡ x ∼= y.

8) Finally when x is considered a quality and y stands for

any object, (x y) is read “an object x has a quality q”.

The presented notation allows us to introduce a primitive

relation “( )” of any arity and of any nature. Without the lost

of generality, we can assume that we do not know what is the

internal mechanism which puts together objects. We can only

assume that (x y) “creates” a new object, in a sense that (x y)
is a whole which turns out to consist of two related entities x
and y.

In this paper we will focus on the case when “( )” can act as

an operation; we can perform computations and obtain results.

We propose two simple equations which will stand at the basis

of our system in a way to describe interrelationship between

relations. In the first part, we will explore a model composed of

three particular relations and show that an extensional property

of any operation interpreted as “( )” is derivable from axioms

of that model. In the second part, we will adopt a system

in a way to interpret other standard well-known theories,

such as Robinson’s arithmetic Q and a piece of a theory of

concatenation. Finally, we will discuss obtained results.

II. CALCULUS ON RELATIONS

A. Basic Definitions

We define a language of Calculus of Relations CR in which

well formed formulas are those formed from atomic constants,

i. e., the logical operators ∀, ∃, ∧, ∨, ¬, =⇒, ⇐⇒ and =,

parentheses [ ], { } and variables, possibly connected by means

of application ( ).
The nature of the objects remains explicitly open, as long

as these objects are capable of being in relation with other

objects in accordance with the Association Rule to be defined

in Axiom 2.1. The objects themselves can even be relations.

Definition 2.1: The language of calculus of relations [CR]
terms is built from an infinite number of variables: x, y,

z,. . . using the application operator ( ) as follows:

1) If x is a variable, then x is a CR term,

2) if x, y are variables, then (x y) is a CR term,

3) if x is a variable and M is a CR term, then (M x) and

(xM) are CR terms.

The application operator obeys the law of associativity:
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Axiom 2.1: Law of Associativity:

∀ a, b, c : (a b c) ≡ ((a b) c) = (a (b c))

As stated above, the application operator allows us to consider

(a b c) as a single object without constraining the view of its

inner structure. Hence, one can either find (a b) in relation

with c or a in relation with (b c).

Furthermore, we will use the classical Deduction Rules and

substitution property for equality “=”:

Axiom 2.2: ∀ p, q, r : [p = p],
[p = q] =⇒ [q = p],
{[p = q]∧ [q = r]}=⇒ [p = r]
[p = q] =⇒ [(p r) = (q r)]
[p = q] =⇒ [(r p) = (r q)]

B. A Ternary Model (TM)

We start with a set of three axioms for specific variables

x, y, z, which will act as constants of our system:

Axiom 2.3: x 6= y, y 6= z, z 6= x.

Axiom 2.4: (x y) = y

Axiom 2.5: (z y) = x

Axiom 2.3 assures the existence of three distinct relations,

Axioms 2.4 and 2.5 describe the relationship among x, y and

z. Axiom 2.4 can be understood as a Distinction Rule (object

y is separated from object x) or as a kind of relation under

which y remains invariant. Axiom 2.5 describes the process

of returning to x: y returns to x via z.

Definition 2.2: A Ternary Model TM is a model com-

posed of three specific relations TM = [x, y, z] satisfying

Axioms 2.1, 2.2, 2.3, 2.4 and 2.5

Adding a symmetry condition on z: [(y z) = (z y)] leads to

symmetric behavior of the entire TM model, as the following

lemmas show:

Lemma 2.1: [(y z) = (z y)] =⇒ [(x z) = (z x)]

Proof: (x z) =(Ax 2.5) ((z y) z) =(Ax 2.1) (z (y z)) =
(z (z y)) =(Ax 2.5) (z x)

Lemma 2.2: [(y z) = (z y)] =⇒ [(x y) = (y x)]

Proof: (x y) =(Ax 2.5) ((z y) y) = ((y z) y) =(Ax 2.1)

(y (z y)) =(Ax 2.5) (y x)

Lemma 2.3: [(y z) = (z y)] =⇒ [(xx) = x]

Proof: (xx) =(Ax 2.5) (x (z y)) =(Ax 2.1) ((x z) y) =(Lm 2.1)

((z x) y) =(Ax 2.1) (z (x y)) =(Ax 2.4) (z y) =(Ax 2.5) x

Lemma 2.3 provides a useful extension to Axiom 2.4.

Because the symmetry condition [(y z) = (z y)] is not a

theorem of TM, we add it in another axiom:

Axiom 2.6: (y z) = (z y)

Definition 2.3: A Ternary Model with Symmetry TMS is a

TM model with Axiom 2.6.

C. A Model of Dynamic Generative System (DGS)

We are now going to subject TM to certain modifications,

introducing other variables. Let us assume that Axioms 2.4

and 2.5 are true for any variable y.

Definition 2.4: A Dynamic Generative System

DGS=[x, y, z] is a model satisfying Axioms 2.1, 2.2, 2.7 and

2.8.

Axiom 2.7: ∀ y : (x y) = y

Axiom 2.8: ∀ y ∃ z : (z y) = x

Note that Axiom 2.7 and Lemma 2.4 do not exclude the

possibility of r = x. Hence, we get (xx) = x by Axiom 2.7.

As in the case of TM, we can add a similar symmetry

condition to DGS.

Axiom 2.9: ∀ y ∃ z : (z y) = (y z) = x

As a result:

Lemma 2.4: ∀ r : (r x) = r
Proof: ∀ y : (y x) =(Ax 2.8) (y (z y)) =(Ax 2.1)

((y z) y) =(Ax 2.9) (x y) =(Ax 2.7) y.

Definition 2.5: A Dynamic Generative System with Sym-

metry (DGSS) is a DGS model with Axiom 2.9.

Now two lemmas will show that the symmetry condition on

y causes the uniqueness of z in Axiom 2.9.

Lemma 2.5: .

∀x, y : [x = y] =⇒∃ s, t : [(s x) = (t y) = x]∧ [s = t]
Proof: The existence of s and t

is assured by Axiom 2.8:

=⇒(Ax 2.8) ∃ s : x = (s x) and x = (s y)
=⇒(Ax 2.8) ∃ t : x = (t y) and x = (t x)

Furthermore, Axiom 2.8 guarantees

the equivalence of (s x) and (t y):
(s y) = (s x) =(Ax 2.8) x =(Ax 2.8) (t y) = (t x)

Finally, we prove the equivalence of s and t:
s =(Lm 2.4) (s x) = (s (t y)) =(Ax 2.9)

(s (y t)) =(Ax 2.1) ((s y) t) = (x t) =(Ax 2.7) t

Lemma 2.6: .

∀x, y : [x = y] =⇒∃ s, t : [(x s) = (y t) = x]∧ [s = t]
Proof: The existence of s and t

is assured by Axiom 2.8:

=⇒(Ax 2.8) ∃ s : x = (s x) and x = (s y)
=⇒(Ax 2.8) ∃ t : x = (t y) and x = (t x)

Furthermore, Axiom 2.8 guarantees

the equivalence of (s x) and (t y):
(x s) =(Ax 2.9) (s x) =(Ax 2.8) x =(Ax 2.8) (t y) =(Ax 2.9) (y t)

s =(Lm 2.4) (s x) = (s (y t)) =(Ax 2.1)

((s y) t) = (x t) =(Ax 2.7) t

Corollary 2.1: Axiom 2.9 assures the uniqueness of z in

Axiom 2.8: ∀ y ∃̇ z : [(z y) = x].
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Now, we will verify that for arbitrary DGSS terms, extensional

property of equality holds. We start with two lemmas on

extensionality for special DGSS terms:

Lemma 2.7: ∀x, y, z : [(z x) = (z y) = x] =⇒ [x = y]
Proof: x =(Lm 2.4) (xx) = (x (z y)) =(Ax 2.1)

((x z) y) =(Ax 2.9) ((z x) y) = (x y) =(Ax 2.7) y

Analogously:

Lemma 2.8: ∀x, y, z : [(x z) = (y z) = x] =⇒ [x = y]
Proof: [(x z) = (y z) = x]⇐⇒(Ax 2.9) [(z x) = (z y) = x]

=⇒(Lm 2.7) [x = y]

Finally:

Theorem 2.1: Left Extensional Property of Equality:

∀x, y, z : [(z x) = (z y)] =⇒ [x = y]
Proof: ∀x, y, z : [(z x) = (z y)] =⇒ [x = y]:

[(z x) = (z y)] =⇒(Lm 2.5)

∃ s : [(s (z x)) = (s (z y)) = x]
[(z x) = (z y)] =⇒
[(s (z x)) = (s (z y)) = x]⇐⇒(Ax 2.1)

[((s z)x) = ((s z) y) = x] =⇒(Lm 2.7) [x = y]

Theorem 2.2: Right Extensional Property of Equality:

∀x, y, z : [(x z) = (y z)] =⇒ [x = y]
Proof: ∀x, y, z : [(x z) = (y z)] =⇒ [x = y]:

[(x z) = (y z)] =⇒(Lm 2.6)

∃ s : [((x z) s) = ((y z) s) = x]
[(x z) = (y z)] =⇒
[((x z) s) = ((y z) s) = x]⇐⇒(Ax 2.1)

[(x (z s)) = (y (z s)) = x] =⇒(Lm 2.8) [x = y]

Summary:

A Dynamic Generative System with symmetry

DGSS =< R, ( ), x >, where R is a set of relations, is a

model satisfying the following axioms:

(G1) : ∀x, y, z ∈ R [x = x]
(G2) : [x = y] =⇒ [y = x]
(G3) : {[x = y]∧ [y = z]}=⇒ [x = z]
(G4) : [x = y] =⇒ [(x z) = (y z)]
(G5) : [x = y] =⇒ [(z x) = (z y)]
(G6) : (x y z) ≡ ((x y) z) = (x (y z))
(G7) : ∀ y : (x y) = (y x) = y
(G8) : ∀ y ∃ z : (z y) = (y z) = x

The following statements hold for DGSS:

(T1) : ∀ y ∃̇ z : [(z y) = x].
(T2) : ∀x, y, z : [(z x) = (z y)] =⇒ [x = y]
(T3) : ∀x, y, z : [(x z) = (y z)] =⇒ [x = y]

III. CALCULUS ON RELATIONS AND FORMALIZED

ARITHMETIC OF NATURAL NUMBERS

The formalized arithmetic of natural numbers in which

we are interested here will be referred to as Theory N.

The set of all constants of N is assumed to consist of an

individual constant called 0, a unary operation symbol S and

two binary operation symbols “+, ·”. We shall be interested

in an axiomatic subtheory of N referred to as Theory Q to

denote Robinson’s arithmetic.

It is known that Q is very weak, but all its recursively

axiomatizable consistent extensions are both incomplete and

undecidable [11]. In Q the individuals are numbers that can

be added and multiplied.

Now we will show that within the language of DGSS we

can interpret natural numbers as strings of irreducible relations

y. Let us interpret the primitive relation “()” over any two

relations x, y as a Boolean operation of addition “+”:

Definition 3.1: Addition: ∀x, y : x+ y = (x y).

The axiom system of DGSS, which we will call a theory M,

adopted for “+” will consist of the following eight axioms:

(M1) : ∀x, y, z : [x = x]
(M2) : [x = y] =⇒ [y = x]
(M3) : {[x = y]∧ [y = z]}=⇒ [x = z]
(M4) : [x = y] =⇒ [x+ z = y + z]
(M5) : [x = y] =⇒ [z + x = z + y]
(M6) : x+ y + z = [x+ y] + z = x+ [y + z]
(M7) : ∀ y : x+ y = y + x = y
(M8) : ∀ y ∃̇ z : z + y = y + z = x

Axioms (M6) — (M8) are the axioms of a group where

(M7) defines the number x = 0.

Let us define natural numbers as terms of the form:

y, (y y), (y y y). Since such terms are irreducible, they can nat-

urally be interpreted as numbers [8]. Moreover let us interpret

a unary operation S over any number y as an expression of

the form (y y). Observe that Sy ≡ (y y) = y + y. Let us set

x = 0 and y = 1. (y y) = y + y = 1+ 1 = 2. As a result any

natural number n = (y y . . . y)
︸ ︷︷ ︸

n

.

Definition 3.2: We will call a natural number any term of

the form: y, (y y), (y y y), ..., (y y . . . y)
︸ ︷︷ ︸
n−times

≡ n.

The axiom system of Q with the usual meaning of “+, ·”
and 1 adopted at the place of S and x, y interpreted as natural

numbers, consist of the following seven sentences.

(Q1) : [(1x) = (1 y)] =⇒ [x = y]
(Q2) : 0 6= (1 y)
(Q3) : x 6= 0=⇒∃ y : x = (1 y)
(Q4) : x+ 0 = x
(Q5) : x+ (1 y) = (1 [x+ y])
(Q6) : x · 0 = 0
(Q7) : x · (1 y) = [x · y] + x

We state that:

Theorem 3.1: The axioms of Q are derivable from M.

The proof of this statement will be done in several steps.

We shall derive all the sentences of (Q1) — (Q7) from the

axioms of M.

(Q1) is valid in M by Theorem 2.1.

Proposition 3.1: ∀ y : 0 6= (1 y)
Proof: Assume ∃ y : [(1 y) = 0].

[(1 y) = 0] ≡ [(y y) = x].
(M8) =⇒∃ z : (y z) = x. This implies [y = z].
Since [z 6= y], by Definition 3.2

y is not a natural number.

The result follows.
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Proposition 3.2: [x 6= 0]=⇒∃ y : [x = (1 y)]
Proof: Assume ∃x 6= 0 : ∀ y [x 6= (1 y)].

(Q2) =⇒ [x = 0]. This is a contradiction.

To show (Q4), notice that by Definition 3.1 and by (M7) a

stronger statement holds:

Corollary 3.1: ∀ y : y + 0 = 0 + y.

Additionally, by Definition 3.2, the following corollary

results:

Corollary 3.2: ∀ y : y + 1 = 1 + y.

Proof: Since y = (y y . . . y)
︸ ︷︷ ︸

y

then

y + 1 = (y y . . . y)
︸ ︷︷ ︸

y+1

=(Df 3.1),(Df 3.2)

((y y . . . y)
︸ ︷︷ ︸

y

y) =(Ax 2.1) (y (y y . . . y)
︸ ︷︷ ︸

y

) =(Df 3.1),(Df 3.2)

y + (y y . . . y)
︸ ︷︷ ︸

y

= 1 + y

In [13], Tarski showed that (Q3) is logically equivalent

with the particular instance of the induction scheme {φ(0) ∧
∀u [φ(u)=⇒φ(Su)] =⇒∀u : φ(u)}, by taking for φ the

formula {[u 6= 0]=⇒∃ k : [u = (1 k)]}. In fact, by (Q3)

[(1u) 6= 0]=⇒∃ k : [(1u) = (1 k)]. By Theorem 2.1 this

implies [k = u]. In this way we are allowed to use inductive

arguments in the sense of metamathematical inductions, and

not inductions within Theory Q.

Observe that if we set x = 0 then 0 + 0 = (0 0) =(M7) 0.

(M7)=⇒x = 0+x =(Df 3.1) (0x) = (0 (0 0)) =(Df 3.1) 0+0+0.

The following Corollary results:

Corollary 3.3: ∀ k, which is a natural number:

0 + 0 + 0 + 0 + ...+ 0
︸ ︷︷ ︸

k

= 0.

Proof: We will use inductive argument:

1) 0 + 0 = (0 0) =(M7) 0
2) Assume 0 + 0 + 0 + 0 + ...+ 0

︸ ︷︷ ︸
k

= 0

3) We have to show that 0 + 0 + 0 + 0 + ...+ 0
︸ ︷︷ ︸

k+1

= 0

0 + 0 + 0 + 0 + ...+ 0
︸ ︷︷ ︸

k+1

=(Df 3.1),(Df 3.2)

(0 + 0 + 0 + 0 + ...+ 0
︸ ︷︷ ︸

k

0) =by assumption

(0 0) =(1) 0.

Finally:

Corollary 3.4: ∀x, y : x+ y = y + x.

Proof: Again, we use inductive argument:

1) Corollary 3.2 =⇒ 1 + y = y + 1
2) Assume: ∀ k : k + y = y + k
3) We have to show that

∀ k : [1 + k] + y = y + [1 + k]
[1 + k] + y =(Df 3.1) ((1 k) y) =(Ax 2.1)

(1 (k y)) =by assumption

(1 (y k)) =(Ax 2.1) ((1 y) k) =(1) ((y 1) k) =(Ax 2.1)

(y (1 k)) =(Df 3.1) y + [1 + k]

Now we can show (Q5):

Proposition 3.3: ∀x, y : x+ (1 y) = (1 [x+ y])
Proof: ∀x, y : (1x) + y =(Df 3.1)

((1x) y) =(Ax 2.1) (1 (x y)) =(Df 3.1)

1 + (x y) =(Df 3.1) 1 + [x+ y]
and (1 (x y)) =(Ax 2.1) ((1x) y) =(Cor 3.4)

((x 1) y) =(Ax 2.1) (x (1 y)) =(Df 3.1) x+ (1 y).
Thus x+ (1 y) = 1 + [x+ y] = (1 [x+ y]).

In order to prove (Q6) and (Q7) we need define the mul-

tiplication operation “·”. Let us consider a primitive symbol

denoted by “∗” related to x = 0 and y = 1 due to Axiom

(M8) as follows: [(∗ 1) = (1 ∗) = 0] ≡ [∗+ 1 = 1 + ∗ = 0].
In this context, it seems natural to interpret “∗” as a negative

natural number “-1”. In fact, (M6) — (M8) are the axioms of

a group. Observe first, some interesting properties of “∗”, a

kind of a distributive property:

Lemma 3.1: ∀x, y :

1) (1 ∗ x) = (x ∗ 1) = x
2) (1 ∗ (x y)) = ((1 ∗ x) (1 ∗ y))

Proof: .

1) (1 ∗ x) =(Ax 2.1) ((1 ∗)x) =(M8) (0x) =(M7) x
(x ∗ 1) =(Ax 2.1) (x (∗ 1)) =(M8)

(x 0) =(M7) x
2) (1 ∗ (x y)) =(Ax 2.1) (1 (∗ (x y))) =(Ax 2.1)

((1 ∗) (x y)) =(M8)

(0 (x y)) =(M7) (x y) =(1) ((1 ∗ x) (1 ∗ y))

Additionally:

0 + x =(Df 3.1) (0x) =(M7) x =(Lm 3.1) (1 ∗ x)
x+ x = (xx) =(Lm 3.1) ((1 ∗ x) (1 ∗ x)) =(Lm 3.1) (1 ∗ (xx))
x + x + x = (1 ∗ (xx)) + x = ((1 ∗ (xx)) (1 ∗ x)) =
(1 ∗ ((xx)x)) =(Ax 2.1) (1 ∗ (xxx))

Continuing, it seems natural to introduce a classical recur-

sive definition of “·”, as follows:

Definition 3.3: Multiplication:

∀x, y : x · y ≡ (1 ∗ (y y . . . y)
︸ ︷︷ ︸

x

)

As a result (Q6) follows:

Proposition 3.4: ∀x : x · 0 = 0.

Proof: x·0 =(Df 3.3) (1 ∗ (0 0 . . . 0)
︸ ︷︷ ︸

x

) =(Cor 3.3) (1 ∗ 0) =(Lm 3.1) 0

Additionally:

Proposition 3.5: The operation of multiplication “·” has the

classical properties:

1) ∀ y : 1 · y = y

2) ∀x, y : (1x) · y = x · y + y

Proof: .

1) 1 · y =(Df 3.3) (1 ∗ y) =(Lm 3.1) y
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2) x · y =(Df 3.3) (1 ∗ (y y . . . y)
︸ ︷︷ ︸

x

)

(M4)=⇒x · y + y =(Df 3.3)

(1 ∗ (y y . . . y)
︸ ︷︷ ︸

x

) + y =(Lm 3.1)

(1 ∗ (y . . . y)
︸ ︷︷ ︸

x

) + (1 ∗ y) =(Df 3.1)

((1 ∗ (y y . . . y)
︸ ︷︷ ︸

x

) (1 ∗ y)) =(Lm 3.1)

(1 ∗ (y y . . . y)
︸ ︷︷ ︸

1+x

) =(Df 3.3) (1x) · y

By Proposition 3.5 follows:

Corollary 3.5: ∀ y : 0 · y = 0

Proof: [1 · y =(Pr 3.5) y] =⇒(Q4) [[1 + 0] · y = y] ≡(Df 3.1)

[(1 0) · y = y] ≡(Pr 3.5) [0 · y + y = y]
=⇒(M7) [0 · y + y = 0 + y] ≡(Df 3.1)

[((0 · y) y) = (0 y)] =⇒(Thm 2.2) [0 · y = y]

To show (Q7), we will prove first the following lemma:

Lemma 3.2: ∀ y : y · 1 = y

Proof: Let us verify two cases:

1) y 6= 0
(Q3) =⇒∃ k : y = (1 k).
Thus we have to verify whether

[y · 1 = y] =⇒ [(1 k) · 1 = (1 k)]
(1 k) · 1 =(Pr 3.5) k · 1 + 1 =by assumption

k + 1 =(Cor 3.4) 1 + k =(Df 3.1) (1 k)

2) y = 0
Observe that 1 · 1 =(Pr 3.5) 1. (Q4) =⇒ 1 = (1 0).
[1 = (1 0) · 1 =(Pr 3.5) 0 · 1 + 1]=⇒(M7),(Df 3.1)

[(1 0) = (0 1) = ((0 · 1) 1)]
=⇒(Thm 2.2) [0 = 0 · 1]

Axioms of M implies a stronger statement than (Q7), i.e. a

distributive law:

Proposition 3.6: ∀x, y, z : x · [y + z] = x · y + x · z

Proof: .

[x = 1]=⇒{1 · [y + z]} =(Pr 3.5) [y + z] and

{1 · y + 1 · z} =(Pr 3.5) [y + z]
Applying inductive argument,

if k · [y + z] = k · y + k · z then

(1 k) · [y + z] =(Pr 3.5) k · [y + z] + [y + z] =
k · y + k · z + [y + z] =(Cor 3.4)

k · y + y + k · z + z =(Pr 3.5)

(1 k) · y + (1 k) · z

(Q7) is a particular case of Proposition 3.6 for y = 1,

applying Corollary 3.4 and Lemma 3.2: x·[1+z] = x·z+x.

In this way all the axioms of Q turn out to be derivable

from the axioms of M, and the proof is complete.

IV. CALCULUS ON RELATIONS AND THEORY OF

CONCATENATION

Besides the theory Q we will consider another weak the-

ory, a theory of concatenation — TC [1], [3]. Its language

is composed of a binary function symbol, three constants:

{⌢, ǫ, α, β} and the following six axioms:

(C1) ∀x : x⌢ǫ = ǫ⌢x = x
(C2) ∀x ∀ y ∀ z : x⌢[y⌢z] = [x⌢y]⌢z
(C3) ∀x ∀ y ∀u ∀ v : [x⌢y = u⌢v] =⇒{[x = u and y = v]∨

∃w{[u = x⌢w and w⌢v = y]∨[x = u⌢w and w⌢y =
v]}}

(C4) α 6= ǫ and ∀x ∀ y : ¬[α = x⌢y]
(C5) β 6= ǫ and ∀x ∀ y : ¬[β = x⌢y]
(C6) α 6= β

The objects of the theory TC are called texts or strings.

The axioms (C4) — (C6) say that α, β are irreducible; they

are one-letter strings that are mutually different. The axiom

(C3) is called an editor axiom and describes what happens

if two editors independently suggest splitting a large text into

two volumes. It was proved [5] the undecidability of the theory

TC.

In the previous Section we showed that Q is interpretable

within DGSS when multiplication is defined in classical re-

cursive way and “( )” is interpretable as a unary operation of

addition. Now, we will show that the axioms of TC are also

derivable from the axioms of DGSS. Hence, let us interpret

“( )” as a binary function of concatenation “⌢” and irreducible

symbols α, β as particular relations: α = y, β = z according

to TM such that: (z y) = (y z) = x where x = ǫ can be

considered as a neutral string, which can act not as a null string

but as an identity element for the operation of concatenation.

We state that:

Theorem 4.1: The axioms of TC are provable within the

DGSS model.

Proof: .

(C1) is equivalent to (G7).

(C2) is equivalent to (G6).

(C3) is valid for any x, y, v, w, thus, in particular let v = y.

[(x y) = (u v)] ≡ [(x y) = (u y)] =⇒(T3) [x = u] .
Let u = x. [(x y) = (u v)] ≡
[(u y) = (u v)] =⇒(T2) [y = v] .
Assume x 6= u and y 6= v.

(G8)=⇒∃ z : (z y) = (y z) = ǫ
[(x y) = (u v)] =⇒(G4) [((x y) z) = ((u v) z)]
((x y) z) =(G6) (x (y z)) =(G8) (x ǫ) =(G7) x.

Thus x = ((u v) z) =(G6) (u (v z))
Let [w = (v z)] =⇒ [x = (uw)] and

(w y) = ((v z) y) =(G6) (v (z y)) =(G8) (v ǫ) =(G7) v.

Analogously for v: (G8)=⇒∃ k : (v k) = (k v) = ǫ
(G4)=⇒((x y) k) = ((u v) k) =(G6) (u (v k)) =(G8)

(u ǫ) =(G7) u.

Thus u = ((x y) k) =(G6) (x (y k))
Let [w = (y k)] =⇒ [u = (xw)] and

(w v) = ((y k) v) =(G6) (y (k v)) =(G8) (y ǫ) =(G7) y.

(C4) means that α cannot be defined as a composition of two

different one-letter terms x, y 6= ǫ. Assume there exists
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two different one-letter terms x, y 6= ǫ: α = (x y).
(G7)=⇒ [y = (ǫ y)]. Thus (ǫ y) = (x y).
(TC3)=⇒ [x = ǫ and y = y]. This is a contradiction.

The results follows.

The case of the existence of w is not considered because

w is a composed term.

(C5) The proof is analogously to (C4).

(C6) It holds by Axiom 2.3.

V. DISCUSSION OF RESULTS AND CONCLUSIONS

We have shown that for any interpretation of a primitive

relation “()”, the presented DGSS model implies the unique-

ness of an “inverse” element and satisfies cancellation laws. In

particular, when addition is interpreted as “()” and the number

“0” is associated to a specific unary relation x, the axioms

(M6) — (M8) are the axioms of a group under addition. In

this context it is easy to define an operation of multiplication

in terms of addition following usual approach. We derive all

the axioms of Robinson’s arithmetic from the axioms of M

and even a distributive law.

In the case of theory of concatenation we showed that

axioms of TC can be derived from the axioms of DGSS if

we assume the existence of some kind of “inverse strings”.

This means that a complete model suggests that every letter

or word ought to have some kind of inverse even if it is not

so obvious. (c.f. [11], [12])

In the introduction we made reference to the insights of

Husserl [10] regarding the possibility and need for a radical

revision of logic. In fact his notion of parthood and of recip-

rocal dependence set forth in the 3rd Logical Investigation.

In reviewing Husserl’s proposed remedy to the impasse of

modern science, Rota [9] spoke of the constructing ideal

objects to be subjected to yet-to-be-discovered ideal laws and

relations. Also Gödel, with an explicit reference to Husserl,

expressed the desire to reach a new state of awareness enabling

us to describe the fundamental concepts of thought with

precision, and even to grasp new, yet unknown concepts.

What we are suggesting is that the calculus on unary relations

outlined in [6] and developed in this paper may be a step in

this direction, in offering a “language” with which new models

and phenomena may be expressed.
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