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 
Abstract—In this paper, a basic schematic of fractional 

dimensional optimization problem is presented. As will be shown, a 
method is performed based on a relation between roots and tangent 
lines of function in fractional dimensions for an arbitrary initial point. 
It is shown that for each polynomial function with order N at least N 
tangent lines must be existed in fractional dimensions of 0 < α < N+1 
which pass exactly through the all roots of the proposed function. 
Geometrical analysis of tangent lines in fractional dimensions is also 
presented to clarify more intuitively the proposed method. Results 
show that with an appropriate selection of fractional dimensions, we 
can directly find the roots. Method is presented for giving a different 
direction of optimization problems by the use of fractional 
dimensions.  

 
Keywords—Tangent line, fractional dimension, root, 

optimization problem. 

I. INTRODUCTION 

ECENT developments in all fields have led to a renewed 
interest in optimization methods and to find efficient 

numerical algorithms for solving the optimization problems. 
One of the most significant discussions on the optimization 
problems is Gradient-Based Method (GBM). Newton's, quasi 
Newton's, Broyden–Fletcher–Goldfarb–Shanno (BFGS) and 
limited-memory version of  BFGS (L-BFGS) methods are 
important methods based on Gradient [1]. In recent years, 
there has been an increasing amount of literature on Newton 
iteration method and generalized newton methods [1]-[7]. The 
considerable note is when the above mentioned methods are 
applied to solve the equation f(x) = 0, it is needed to calculate 
the derivative of the function. Uses and example applications 
of GBM can be found in [1].  

Recently, fractional (non-integer) derivatives and integrals 
play an important role in theory and applications. The idea of 
the fractional calculus was planted over 300 years ago in the 
letters between Leibniz and L'Hospital [8]-[10]. In 1823, Abel 
investigated the generalized tautochrone problem, and he was 
the pioneer to apply fractional calculus techniques in a 
physical problem [8]. Later, Liouville has applied fractional 
calculus to solve problems in potential theory [8]. Since then, 
the fractional calculus has triggered the attention of many 
researchers in all areas of sciences such as fluid mechanics, 
biology, physics and engineering [11]-[14]. Several attempts 
have been made to improve the fractional calculus in many 
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different forms of fractional operators [15]-[20] and the 
solutions of fractional diffrentioal and integral equations such 
as homotopy perturbation method [21]. However, a method by 
the use of fractional dimensions can be required for 
optimization problems. In this regard, the present study 
provides a first demonstration that the fractional dimensions 
can be related to roots of function and with an orientation to 
be used in the optimization problems. To this end, it is created 
to give a schematic route for a direct solution of the 
optimization problem.  

II. GEOMETRICAL ANALYSIS 

Idea is started with a question of what are the red-dash and 
blue-dash lines in Fig. 1. It can be observed that there is a line 
between an arbitrary initial point and root of the function. 
Generally, the purpose of this study is a solution to find the 
red-dash (blue-dash) line equation. As we will see, these lines 
are tangent lines of function in fractional dimensions. Then, it 
is possible to achieve a method for direct optimization method 
or finding the root directly instead of an iterative algorithm. 

III. FRACTIONAL DERIVATIVE 

Among several definitions of the fractional derivative [8]-
[9], the following definitions are used:  
Definition 1. Fractional arbitrary order derivative of the f 
function of order 10   is defined by 
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The Leibniz rule in the fractional calculus is:  
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In this research, (4) is used for fractional derivative of 

polynomial functions as a result of definition 1 when a=0. 
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Fractional derivative for constant value is as following and 

for 1  is equal to zero. 
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Fig. 1 Geometric schematic for lines crossing the roots 
 

 

Fig. 2 Tangent lines in some fractional dimensions of function 
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A definition for local fractional derivative is as follows: 
Definition 2. A local fractional derivative of )(xf  of order   

at x=x0 is defined by  
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and  

))()(()1())()(( 00 xfxfxfxf                 (6) 

 
First derivative gives the slope of tangent line of function 

for the proposed point. However, when the fractional 
derivative is applied for a certain point, it gives the slope of 

tangent line of function in fractional dimension at that point. 
Order of fractional derivative corresponds to fractional 
dimension. Fig. 2 shows the tangent lines in some fractional 
dimensions of function for a fixed initial point. It can be 
observed that the tangent lines in fractional dimensions can be 
varied around tangent line from first derivative of function 
(blue line). In other words, slopes of tangent lines in fractional 
dimensions can be decreased or increased in comparison with 
slope of tangent line from first derivative. In this configuration 
as shown in Fig. 2, tangent lines in dimensions of 0.5 and 2.4 
have higher and lower slope values respectively while tangent 
line in dimension of 1, first derivative, is between them. 

IV. FRACTIONAL DIMENSIONAL METHOD 

Local and global solutions for finding the roots are 
presented in Theorems 1 & 2, respectively. It gives a relation 
between roots and tangent lines of the function in the 

y
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fractional dimensions. 
Theorem 1. Let f (RR), a polynomial function of order N, 
be continuous and CN+1 differentiable function in an interval 
[a,b]. ),( 11 yx  is an initial point and )0,( *x  is a root of function. 

Suppose there are fractional dimensions  maxmin ,  which 

follow:  
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thus, there is a tangent line of the function in fractional 
dimension of 10  N , which exactly passes through the 
root of the proposed function.  
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Proof. Line equation of function in   dimension with an 
initial point ))(,( 11 xfx  is equal to 
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 . Suppose that this line for 

fractional dimension of   collides with root: 
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For Generalization of the method have: 

Theorem 2. Let f (RR) be a continuous and CN+1 
differentiable function of order N in an interval of (-∞,+∞) 

with maximum N roots where 𝑥௞
∗  is a set of roots of the 

function. Suppose |
1

)(
xx

xfD


 can be as follows: 
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Thus, there are minimum N tangent lines of the function in 
fractional dimensions of 10  N , which exactly cross 
whole roots of the objective function.  
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Proof. Line equations for a set of fractional dimensions,

k , 

with an initial point ))(,( 11 xfx  is equal to 
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fractional dimensions of 
k cross the roots: 
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A. Calculation of Fractional Dimensions for Roots  

Two initial points ),( 11 yx and ),( 22 yx  are considered for 

calculation of fractional dimensions. In this regard, it is 
considered two different tangent lines in fractional dimensions 
that pass through the roots, as depicted in Fig. 4. Two lines are 
crossing the root of function. Thus, root based on theorem 1 
can be written as:  
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Fig. 3 Geometric configuration for calculation of appropriate fractional dimensions for root 
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Then, if see the problem in vector analysis, the relation 
between all lines can be expressed by (10): 
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presented in Fig. 3. 
With a substitution of all relations in (10), we have: 
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Based on (9), two fractional derivatives of function are 

related to each other and can be presented as: 
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With substituting of (9) and (12) to (11), the general 

relation for fractional dimension can be presented as (13). It 
can be described by an equation like 𝑓ሺαሻ ൌ 0 where the 
solutions of 𝑓ሺαሻ ൌ 0 give the whole dimensions that satisfy 
(8) and consequently give the all roots.  

It can be observed from (13) that fractional dimensions 
around the one point have a nonlinear oscillating behavior. It 
is due to dependency to cosine function. 
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For instance, tangent lines in fractional dimensions for 

polynomial function x2-7x+12=0 with roots of x=3 and x=4 
are shown in Fig. 4. Tangent lines in fractional dimensions 

375.0  and 2  pass through the root x=4. Also tangent 
line for 228.2  crosses the other root at x=3. It can be seen 
that the slope variations of tangent lines of function in 
fractional dimension is nonlinear with oscillating variations. 

 

 

Fig. 4 Tangent lines of fractional dimensions pass through the roots 
 

B. Optimization Problem  

General form of optimization problem without constraint 
can be described as following for performing the best guess of 
optimal point: 

 

)(xgMin
x

  or 0)()(  xgxf                  (14) 

 
Suppose g(x) is locally minimized at x*. Now the 

equivalent problem presented above with initial point 
))(,( 11 xfx  is as follows:   
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If the objective function has several extremum points at 
*
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, then a global solution of problem can be replaced by:   
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Now the main challenging for schematic of optimization 

problem is to find the appropriate fractional dimensions and 

what is |
1

)(
xx

xfD k



 which satisfy (13). However, further 

analysis of (13) is out of this paper and can be considered as a 
future work. 

V. CONCLUSION 

In this paper, the basic theoretical framework required to 
generate a fractional dimensional optimization method is 
introduced. It is shown that there are some tangent lines of 
function in fractional dimensions which pass through the 
roots. A general relation for calculation of fractional 
dimensions is also presented. It shows that the fractional 
dimensions variation around one point has an oscillating 
behavior as a cosine function. Results show that with 
appropriate fractional dimensions can directly find the roots.  
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