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Abstract—Given a fixed fund, purchasing fewer hosts of higher
capability or inversely more of lower capability is a must-be-made
trade-off in practices for building a Hadoop big data platform. An
exploratory study is presented for a Housing Big Data Platform project
(HBDP), where typical big data computing is with SQL queries of
aggregate, join, and space-time condition selections executed upon
massive data from more than 10 million housing units. In HBDP, an
empirical formula was introduced to predict the performance of host
clusters potential for the intended typical big data computing, and it
was shaped via a regression approach. With this empirical formula, it
is easy to suggest an optimal cluster configuration. The investigation
was based on a typical Hadoop computing ecosystem
HDFS+Hive+Spark. A proper metric was raised to measure the
performance of Hadoop clusters in HBDP, which was tested and
compared with its predicted counterpart, on executing three kinds of
typical SQL query tasks. Tests were conducted with respect to factors
of CPU benchmark, memory size, virtual host division, and the number
of element physical host in cluster. The research has been applied to
practical cluster procurement for housing big data computing.

Keywords—Hadoop platform planning, optimal cluster scheme at
fixed-fund, performance empirical formula, typical SQL query tasks.

1. SCENARIO AND INTRODUCTION

HIS work was done for a practical project, where a fixed

fund (RMB900,000 yuan) was granted for purchasing a
cluster of computers (physical hosts) to build a big data
computing platform. The target was to best use the fixed fund
to buy a cluster of hosts such that the cluster has a performance
as high as possible. The cluster was to be used for big data
queries of aggregate, join, and space-time scope selection
(space-time query), where the cluster should provide basic

effective storage and access services on large scale housing data.

In the above-mentioned scenarios, in terms of Hadoop cluster
performance, the Optimal Procuring Hosts Plan (OPHP) was
raised for Hadoop computing platform. It is an endless task to
seek an optimal buy without significant simplification, since
there are too many variables in packing different physical hosts
into a cluster buy, that is, there are uncountable combinations
of physical hosts afforded in a fixed fund, even a single vendor

H. Yang is with the Guangdong Construction Information Center,
Guangzhou 510055, China (e-mail: yanght@gdcic.net).

F. Xue, Y. Huang, L. Xia, and X. Zhu are with the Guangdong Construction
Information Center, Guangzhou510055, China.

J. Lv is with the School of Computer Science and Engineering, South China
University of Technology, Guangzhou, China (e-mail: jmlv@scut.edu.cn).

X. Wang is with the School of Computer Science and Engineering, South
China University of Technology, Guangzhou, China.

This research was funded by the Science and Technology Program of
Guangdong Province, China, in Grant No: 2015B010131012 and No:
2016A010101012.

can offer many choices. To make things simple and easy for
procurement and for maintenance afterword, we preferred a
cluster consisted of identical physical hosts to that of different
ones. Hereafter, we take this as granted: each physical host in a
provision scheme from the same supplier is identical, i.e. they
are from the same manufactory, of the same product with the
same hardware configuration, and in the same price. And then,
plainly the OPHP came down to be a trade-off along an axis
with two opposite directions: to one side it was towards buying
more hosts of lower capability in lower price, but to the other
side, it was inversely towards fewer hosts of higher capability
in higher price.

To study OPHP, we should firstly abstract parameters that
might significantly affect the cluster performance. Obviously,
these parameters should include: the number of physical hosts,
and the memory size, CPU capacity, and virtual-host division,
etc. of a physical host. Next, we should define a rational metric
to quantitatively indicate the cluster performance. To this aim,
we specified in advance in what kinds of big data computing
situation should the measuring metric be applied for, as well as
its empirical predicting formula be modeled and tested.
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So far in this circumstance, the approach towards our optimal
cluster purchase is still sophisticate and blurry. Hence, we had
to outline a route to refine a proper right-sizing approach:

1) Construct concrete big data ecosystem —analyzing and
choosing a Hadoop ecosystem (Hadoop computing context)
[23] adapt to the target applications. This is with about the
storage framework, data management mode, and execution
context.

2) Rationally define a testable overall performance metric for
a cluster of physical hosts in Hadoop computing.

3) Form an empirical predicting formula for a quantitative
overall performance metric, on generally-rational principle
—its coefficients can be regressed out via practical testing
values, and easily used to evaluate configuration schemes
of cluster hosts prior to purchase.

II. SET UP PROPER B1G DATA COMPUTING SITUATION

A. Planning Ecosystem

In the background project, we were required to construct a
distributed computing platform for processing massive data
from housing trade and real estate register, named the Housing
Big Data Platform (HBDP). In HBDP scenarios, their routine
usages are mainly with storing and accessing massive relational
data accumulated from historic and current housing operations,
and executing typical data queries tasks mentioned in section I.
Concretely, HBDP planning should be focused on the batch
translating import of existent massive heterogeneous data, as
well as rapid insertion and interactive queries of newly created
real-time streaming data. To this aim, a Hadoop [1] computing
platform was recommended.

In Hadoop computing architecture, a distributed file system
HDFS is served as the bottom layer to supply basic efficient
storage and storage optimization for large scale datasets. Upon
HDFS, the MapReduce as a native distributed programming
framework is provided as default for parallel computing.

However, the programming interface of MapReduce is rather
complicated, and is hard to master for programmers unfamiliar
with MapReduce programming. Hence, we need a middle layer
acting just above the native MapReduce framework to provide
great facility for most of data process practitioners who are
familiar with SQL. According to latency requirements oriented
to tasks, there are two types of this middle layer:

o That for applications which can tolerate higher latency
such as batch processing of big datasets;

o That for low latency applications, e.g. interactive queries
or on-line transaction processing.

As to the first type, a representative is Hive SQL computing
engine [2]. This Hive SQL engine upwards provides a SQL-like
program interface for programmers to code SQL style data
query scripts in HQL [6], downwards offers an ETL (extract,
translate, and load) data function to access large scale of
datasets stored in Hadoop file system (e.g. HDFS), and is
responsible for accepting HQL scripts and translating them into
MapReduce jobs running on the target Hadoop cluster.

As to the latter, Apache’s Spark [3] can serve well and offer
a good choice. Spark’s memory-based computation has a great

advantage of less disk I/Os over MapReduce disk-based mode.

Disk-base mode performance is poor in iteration computations,

due to frequently using repetitive data and dynamically dealing

intermediate data — they all require frequent external storage
access 1/Os, which brings with high latencies. In this aspect,

Spark can improve the performance of MapReduce in iteration

computing significantly. Besides, Spark might decrease the

overhead of task synchronization since it uses DAG (directed
acyclic graph) to optimize task scheduling.

For the sake of coding productivity and execution efficiency,
we assumed Spark as HBDP interactive query framework (low
latency usage). Concretely, we used Spark SQL to implement
quick queries [5], [7]. The main reasons are as follows:

1) Spark SQL as an interface facility is offered by Spark for
manipulating structural and semi-structural data, and its
syntax is similar to that of standard SQL, which greatly
simplifies higher application programming to make easy
realization of interactive query analysis.

2) Spark provides high-level APIs in Java, Scala, Python and
R languages, and an optimized engine that supports general
execution graphs; it also supplies a rich set of higher-level
tools including Spark SQL for structured data processing.

3) In HBDP, most of routine massive dataset computing is of
aggregate, join, or space-time queries on relational data or
structured data.

Based on the above considerations, we established a Hadoop
big data computing ecosystem HDFS+Hive+Spark for HBDP.

B. Settling Executive Framework

After determining HBDP’s Hadoop ecosystem, next we need
to settle its executive framework for routine computing tasks.
To the frame, we assumed Hadoop HDFS to store data, Hive in
distributed mode to manage data, and Spark SQL to execute the
so-called HBDP typical queries, i.e. quick aggregate, join, and
space-time queries over massive housing data.

This settlement of HDFS+Hive+Spark ecosystem is based on
their advantages and functions combination of HDFS, Hive,
and Spark:

1) As well known, HDFS as a file system for elementary file
storage, access and management is far from easy facilities
for serving higher level data applications. Just as we need
a database or data warehouse system upon fundamental file
systems of operation system to make easy services for high
level versatile data access we also need a similar thing upon
HDFS to do so.

2) There are HBase [4] that can serve as a database system for
NoSQL data access and storage, and Hive that can function
as a data warehouse tool to provide interfaces of relational
data modeling and processing for higher level access to
data stored in HDFS. Regarding that normally routine
HBDP scenarios are dealing with SQL data resources, thus
we did not adopt HBase since it is not apt for relational data
queries [8].

3) Spark is good at quick query computing.

In our HBDP running framework, data resources are stored
in the underlying HDFS, data queries from higher applications
are received, analyzed, and executed by Spark SQL on the top
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layer, while Hive plays as middleware to map upper abstract
data objects of Spark SQL onto lower counterparts of concrete
HDFS data via meta-data interpretation, as in Fig. 1, where we
just utilize Hive to manage data tables stored in external storage,
rather than calling Hive’s query interfaces to process data due
to its high latency. Queries are executed by Spark in memories
onto which involved data are loaded in the form of Hive’s table.

For a practical view of HBDP application scenario, here we
illustrate the most typical big data processing under the above
executive framework:

At first, we shall import original massive data collected from
remote heterogeneous data sources in batch into the HDFS, and
build tables in Hive to store meta-data that illustrate the data to
be stored in HDFS.

And then, Spark SQL component [9] will interpret SQL
sentences and transfer them into RDD-based [10] query tasks
when users submit aggregate, join, or space-time scope queries
in SQL scripts. More concretely in the processing, HBDP reads
the involved data’s meta-data by Hive services, and with these
meta-data it locates the corresponding target data blocks in
physical storage, loads the involved data onto memory, and via
transformation operator transfers the loaded dataset into RDD
dataset in which Spark can efficiently process in parallel.

Finally, Spark will invoke corresponding action operator to
execute query tasks in distributed mode and return computing
results to users.

C. Selecting Physical Storage Mode

Regarding the above HBDP’s executive mechanism as well
as that HBDP’s routine query tasks are carried out on memory
by Spark SQL engine, we suggested that only one mandatory
requirement for the procurement of the external storage devices
— the volume of local hard disks of each host should exceed a
desired and necessary threshold, i.e. the frequent nearby access
hard disks shall have a storage volume much larger than the size
of the data being involved at the calculation execution node of
the Hadoop cluster. Under this condition, the configurations of
host hard disk are not as sensitive and significant as the CPU
benchmark, memory size, and virtual division parameters, etc.
regarding the target performance of HBDP cluster.

As to concrete external storage mode scheme, there are two
fundamental physical storage modes for Hadoop HDFS: local
Directly Attached Storage (DAS) and Storage Area Network
(SAN). We illustrated and compared them as follows.

HDFS
Protocol

O

\

Compute nodes
are part of HDFS,
data spread
across nodes

S

o

Fig. 2 DAS-based HDFS

1. Local Directly Attached Storage (DAS)

DAS is the most commonly used storage mode, as in Fig. 2.
In DAS, data are spread across distributed Hadoop nodes,
stored in directly-attached hard disks of hosting nodes, where
each Hadoop node function as both compute node and data

node, which accords with the original intention of HDFS design.

In DAS, HDFS often is deployed on inexpensive common PC
server hardware, which in nature bears the advantage of high
lateral expansibility.

In DAS-based Hadoop clusters, fault tolerance for data
storage relies on HDFS’ redundant backup implementation. As
soon as HDFS writes a datum in a file block it will also write
the same datum in several redundant file blocks distributed in
different Hadoop nodes; when HDFS reads a data block, it can
access the same data block in multiple nodes in parallel at the
same time, which makes broader I/O bandwidth [22].

2. Storage Area Network (SAN)

SAN is also a main storage mode for Hadoop. In SAN, data
are stored concentrative in disk-array devices, as in Fig. 3.
RAID implementation of storage arrays provides fundamental
fault tolerance of data storage. A virtual private SAN storage
space is configured to each Hadoop node attached to the SAN.

Storage

Compute
nodes

iSCSI or FC SAN(]

Fig. 3 SAN-based Hadoop cluster

In SAN-based Hadoop clusters, writing data in HDFS does
not need to write their redundant data block backups elsewhere
since data fault-tolerance is guaranteed by RAID mechanism of
storage array; reading data from HDFS will not access multiple
nodes, instead it will read directly from the disk-array where the
data was placed [22].

The advantage of SAN comes from: RAID, cache, thin
provisioning, and non-redundant writing with HDFS. SAN,
however, has a relatively poor I/O paralleling capability and
lateral expansibility.

3. Selection of Data Storage Mode

For selection of data storage mode, we considered the factors
such as I/O bandwidth, fault tolerance, expansibility, and prices
comprehensively. To sum up, we list the concerned aspects of
DAS and SAN in Table I for comparison.

For greater I/O paralleling, higher lateral expansibility, and
overall performance/price ratio in HBDP project, we decided to
deploy HDFS in DAS mode. In fact, DAS was more in line with
the original intention: “Hadoop was designed to move compute
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closer to data and to make use of massive scale-out capabilities,”
as stated in [17].

TABLEI
ASPECT FOR COMPARISONS ON DAS AND SAN
Mode Cost I/0 bandwidth ~ Fault Tolerance
DAS inexpensive High By HDFS
SAN expensive Lower By RAID

Although the redundant storage policy of DAS could bring
about decrease in disk utility, however, this would weigh less
and less as hard disk devices become increasingly cheaper. In
practice, often a low threshold of hard disk volume is set for
each host to guarantee their individual performance as well as
decrease network data access frequency. In HBDP project, we
rationally required that local hard disks of each physical host
well accommodate a copy of maximum local computing data,
i.e. greater than 5STB — this is common to most of today PC
server. Thus, hereafter local external storage is not of the focus
simply due to a premise: 1) local storage is often sufficient for
each compute node with respect to its assigned computation; 2)
each time executing computation, Spark SQL should have its
object dataset loaded onto memory first, that is, the involved
external hard disk access, either local or networked, has be
executed once in advance.

III. MODELING AND RELATED JUSTIFICATION

After making choice of the big data computing situation, we
should outline HBDP’s basic model of query computation, as
well as procurement regulations for physical hosts of a Hadoop
cluster. And then, we conducted query tests with Spark SQL,
Hive, and Oracle to validate that Spark SQL has performance
advantage over the other two. Here, Oracle is a representative
of classical computing engine for massive data query, while
Hive is a kind of Hadoop computing engine outside our choice.

A. Tasks of Typical Queries and Its Test Data Sets

Based on the routine computing tasks of HBDP applications,
to develop a predicting formula for cluster performance metric,
we shall focus on HBDP’s typical query tasks, i.e. join query
task T_J, aggregate query task T_A, and space-time scope query
task T_S. To this end, we construct two schemes of housing
datasets in two typical scales, as in Table II.

TABLE I
HOUSING DATA INSTANCES FOR PERFORMANCE EXPERIMENTS

Instance ~ Scheme Scale Volume Contents
Dataset 1 Housebase Ordinary 493.18MB  1-107 Units of house
Dataset 2 Housebase  Large 14.53GB  5-10° Units of house
Dataset 3 Housetrans Ordinary 583.89MB 3107 Records of trade

24.65GB  5-10% Records of trade

Dataset_ 4 Housetrans  Large

The relational schemes in Table II are defined as follows:
1) Housebase (house_id, pur_date, longitude, latitude,
house_type, house_size) scheme for house attribute data;
dataset 1 and dataset 2 are its instances.

2) Housetrans (trans_date, house_id, price, trans_ident)
scheme for house trade records; dataset_3 and dataset 4
are its instances.

Next, we illustrated task T_J, T_A, and T_S in the following
examples with dataset instances from Table I1:

1) Task T_J: joining data tables housebase and housetrans via
their common field house_id; a sample of SQL code is as
following:

select distinct trans_date, trans_price, house_type
from housebase left outer join housetrans

on (housebase.house_id = housetrans.house_id)
where housebase.house_id = '01000000"

2) Task T_A: calculating the total area of houses with respect
to various different housing types on data table housebase;
a sample of SQL code is as following:

select house_type, sum (house_size)
from housebase
group by house_type order by house_type asc

3) Task T_S: from data table housebase searching all house
identities that satisfy a space-time condition; a sample of
SQL code is as following,

select house_id from housebase

where longitude between 23.03 and 23.084054
and latitude between 113.18 and 113.234054
and pur_date between 20000101' and '20000601'

B. Shaping Cluster and its Performance Metric

Under DAS storage mode and Spark compute mode, in the
sense of high probability all computation-needed datasets were
once a time drawn within nearby storage (in local hard disks or
even memories), regarding that all nodes in HBDP were located
in the same high-speed LAN. Thus, we shaped HBDP cluster
configuration in simple:

1) Each member physical host is of the same configuration in
the same type, and has the same virtual hosts division.

2) The volume of each node’s local hard disks, e.g. 2TB is
well beyond its highest possible data size e.g. S0GB for a
single query computation.

TABLE IIT
PARAMETERS USED IN MODELING HBDP CLUSTER
Symbol Meaning Metric Units

M Physical host’s memory GB (Giga Byte)
C Physical host’s CPU benchmark ~ PassMarkt result [11]
N Number of physical hosts Number

v Numbe(r of vlrtua]A hosts within a Number

single physical host
= Overall performance metric of Numeral value
HDBP cluster

ta Elapsed time of executing task T_A Second

tj Elapsed time of executing task T_J Second

ts Elapsed time of executing task T_S Second

Under these simplifications, hard disks’ parameters of each
physical host are not test factors for the cluster performance.
Hence, it is applicable that the metric for cluster performance is
mainly up to the memory size, CPU capability, virtual-hosts
division of individual physical host, and the number of physical
hosts in cluster. We used symbols of parameter as in Table 111
to model HBDP cluster performance.
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In OPHP research, we adopted CPU benchmarks published
by PassMark [11], or those measured with PassMark open tool
—PassMark has published benchmark test results for more than
1200 CPU models, and provided an open measuring tool for
users’ self-test.

Based on the above three routine tasks of HBDP applications,
we defined the performance metric for a HBDP cluster as:

P=1/(tg+t;+t5) (1)

The HBDP cluster performance P is counted inversely on the
elapsed time sum of executing three types of routine tasks.
Next, we had the following modeling principles for HBDP
cluster performance prediction:
1) Intuitively construct an empirical formula of predicting P
on variables M, C, V, and N with pending coefficients.
2) Measure the value of P defined in (1) for clusters samples
of different configurations bought in the fixed fund.
3) Match the measured results of the previous step to regress
all pending coefficients in the empirical formula of P.

C. Validation Tests with Spark SQL, Hive, and Oracle

To justify that the Spark SQL is the right choice of big data
platform for HBDP, we conducted experiments of executing
typical query tasks respectively with Spark SQL, Hive, and
Oracle for performance comparison. To be fair, in the tests, we
configured Spark SQL cluster, Hive cluster, and Oracle server
with the same hardware resource, as in Table IV. Two large
scale datasets as stated in Table I1I were imported for executing
query tasks of T_J, T_A, and T_S types. For each query type, a
data import job and 50 query jobs were concurrently submitted,
and the time spent on data import and the execution time of all
50 concurrent jobs were recorded for comparison.

TABLE IV
HARDWARE FOR SPARK SQL, HIVE, AND ORACLE COMPUTING

Spark SQL cluster ~ Hive cluster  Oracle server
Memory 3%x(8 GB) 3%(8 GB) 24 GB
CPU cores 3x(1 core) 3%(1 core) 3 cores
TABLE V

TIME USED BY SPARK SQL, HIVE, AND ORACLE COMPUTING

Time usedN  Spark SQL cluster Hive cluster ~ Oracle server

Import job 7min 25s 9min 53s 1h 28min 26s
T_J jobs Imin34s Sminl4s 9min28s
T_Ajobs 53s Iminl7s 6min31s
T_S jobs 25s Imin 52s Sminls

The results of experiments were listed as in Table V. It
showed that the Spark cluster had rather greater performance
advantage over the Hive cluster and the Oracle server on high
concurrency jobs of large scale data disposal, and the Spark
cluster and the Hive cluster both had much greater performance
advantage over the Oracle server (Oracle 11g on 64bits Linux)
on large scale data import. Related average usages of main
computing resources in executing the above computing jobs
were recorded in Table VI; it told that the Oracle server almost
reached its CPU processing ceiling during the tests, while the
other two platforms were still halfway to their upmost.

TABLE VI
RESOURCE USAGE COMPARISON

Resource UsageN  Spark SQL cluster ~ Hive cluster ~ Oracle server

Memory 12.1 GB 11.6 GB 2.2GB
CPU 51% 52% 97%
Network Out: 7.4Mb/s, Out: 16.9Mb/s,  60.5Mb/s,
Bandwidth In:12.1Mb/s In:17.4Mb/s In:14.4Mb/s

IV. EMPIRICAL FORMULA FOR CLUSTER PERFORMANCE

The previous sections justified that our HDFS+Hive+Spark
big data computing situation is appropriate for HBDP. The next
steps towards an optimal purchase of hosts cluster is to shape
an empirical formula to predict the value of metric P for cluster
performance, and on regression of the pending parameters of
the empirical formula by experiments with sample clusters.

A. Empirical Formula for Cluster Performance

It is time to give an empirical formula in parameters M, C, N,
and V which are as defined in subsection III.B for predicting
HBDP cluster performance benchmark. The empirical formula
is established in the following steps.

1) Asto aprimitive physical host, we intuitively used a linear
function of M and C for its performance formula:

P(1) = byM + b,C )

2) When this physical host is divided equally into V virtual
hosts, the physical host can be regarded equivalent to a
cluster of V virtual hosts, and its performance metric could
be modeled as

by M+b,C
P(V) = 25222 £ (V) (3)
where 2222€ giands for the performance metric value of a

single virtual host, equaling to 1/V of the physical host’s; f (V)
is called a speedup function [21], it reflects the performance
amplification of a Spark cluster scaled from 1 virtual host to V
virtual hosts. Due to sophisticated overlapping of costs from
resource contentions and distributed incoherency of V virtual
hosts, f (V) is normally not linear.

3) As for a cluster of N physical hosts (each is divided into V

virtual hosts), its performance benchmark should be
by M+b,C

P(V,N) = 22228 £ (1) g () 4)

where g(N) is also a cluster performance speed-up function
similar to £ (V) in formula (3) [21].

According to [21], the speedup function of the performance
amplification of a cluster scaled from 1 host to x identical hosts
can be expressed as

- x
1+8(x—1)+K(x—1)x

Sp(x) = &)
where § reflects a degree of contention for shared resources and
K stands for incoherency of distributed data among x hosts or
nodes of the cluster. Obviously, Sp(x) is not linear with x, the
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hosts or nodes number. Hence, the above f(V) and g(N) as a
speedup function of nodes V or N respectively shall be as

14

fvy= 1403 (V=D + by (V—1)V (©)
N
IMN) = T D ere N M
and then, we have:
(byM+b,C)N

P(V,N) =

®)

(1+b3(V—=1)+bs (V—1)V)(1+bs(N—1)+bg (N—1)N)

B. Approaching Empirical Formula Regression

P(V,N) from the predicting formula (8) should be fitted with
P from the measured formula (1) for a given cluster. The target
of fitting P(V, N) is to adjust coefficients {b,, b,, b3, by, bs, b}
to minimize the average squares of deviations between the
predicted value from formula (8) and the measured value from
formula (1) for the performance metric of all clusters sampled:

min > $iZ8(P, - B)* ©)

where n is the number of clusters sampled, P; and P; are the
measured value and the predicted respectively for i-th sampled
cluster’s performance.

Regarding that these six coefficients in the empirical formula
are so broad and loose to be regressed over limited experiments,
we had better refer to results from other researchers. Since the
Spark-feathered HBDP running contexts could be categorized
into the big-memory type in [21], we adopted corresponding
two coefficients from [21] for the speedup function of N nodes’
Hadoop cluster. That is, we took:

bs = —0.0288, bg = 0.000447

The above values of coefficients {bs, bg} are regressed from
abroad scope of clusters scaled up to over 48 nodes, which well
covers the potential cluster scale of HBDP, and particularly,
they are concerning with nodes of physical hosts, thus they are
fit for adoption in formula (7) and hence (8). Together with this
reference to peer research [21], we can focus on regressing
coefficients {by, by, b3, b, }.

C. Samples of Test for Regressions Analysis

For regressing coefficients {by, b,, b3, b, }, performance tests
of various HBDP clusters are required to get samples of typical
tasks’ elapsed times {tg, t;, ts} for formula (1). Since computer
resources available were limited - 3 PC servers with CPUs of
dual Intel Xeon ™ E5-2690 (10 cores, 3.00 GHz), 200 GB
RAM memory, Hard Disks of 500 GB EMC ™ VNX5400, we
had to resorted to virtualization technique to simulate various
samples of multiple physical and virtual hosts as test scenarios
on these 3 PC servers. At first, in each PC server, we created a
virtual machine as a simulated physical host such that its CPU
cores and memory assigned can be equally divided further into
smaller granularity to create virtual machines of same build as
simulated virtual hosts for HBDP clusters. Each configuration

of such simulated physical hosts and their virtual hosts were
taken as a regression sample. All virtual hosts were created with
VMware vSphere [12], [16], and each virtual host was mounted
with an Ubuntu 14.04 LTS operation system [13]. Hadoop
clusters were established by Ambari [14], and were deployed
with HDP 2.4, the latest stable Hadoop ecosystem [15].

12 samples of HBDP cluster test were included in Table VII
where column labels S(i), M(G), Core (Benchmark), N, and V
stand respectively for sample(i), the size (in Giga-bytes) of
memory of each simulated physical host, the number of CPU
cores (Benchmark on-site) of each simulated physical host, the
number of simulated physical hosts, and the number of
simulated virtual hosts in single simulated physical host. The
elapsed times {tg, t;, ts} were recorded in seconds, which were
actually the average values of 50 rounds of task executions.

TABLE VII
SAMPLES OF TEST
S (BenSl(::sark) N v ta L ts
i=1 8 1 (1527) 3 1 1.54 3899 228
i=2 24 16 (17349) 2 2 0.66 296 1.09
=3 24 12 (14960) 2 2 073 295 124
i=4 24 8 (11400) 2 2 .12 354 14
i=5 24 4 (7226) 2 2 133 445 1.63
i=6 32 8 (11400) 2 2 0.86 34 1.18
i=7 36 18 (18529) 1 3 078 9.73 0.89
=8 36 12 (14960) 1 3 096 1124 1.02
i=9 36 12 (14960) 2 3 0.84 1194 1.78
i=10 40 8 (11400) 2 2 1.01 335 1.04
i=11 48 12 (14960) 1 3 0.93 1.1 0.81
i=12 60 12 (14960) 1 3 1.08 105 122
TABLE VIII
COMPUTING ON SAMPLES
S(i) P, P, (p.-P)
i=1 0.0928241 0.023359 0.0048254
i=2 0.1960494 0.2123142 0.0002645
i=3 0.1789188 0.203252 0.0005921
i=4 0.1533915 0.1650165 0.0001351
i=5 0.1234613 0.1349528 0.0001321
i=6 0.1772736 0.1838235 4.29E-05
i=7 0.0634396 0.0877193 0.0005895
i=8 0.0566842 0.075643 0.0003594
i=9 0.1166229 0.0686813 0.0022984
i=10  0.2011558 0.1851852 0.0002551
i=11  0.0661403 0.0778816 0.0001379
i=12  0.0755963 0.078125 6.394E-06

D. Solving Pending Coefficients with MS Excel

Under the test scenarios sampled in the previous subsection,
we used the Solver Add-in provided by Microsoft Excel 2016 to
approach the optimal target defined in formula (9) via the GRG
algorithm of nonlinear programming solving [18]-[20]. For
pending {by, b,, b3, b,}, starting with initial values {0, 0, 0, 0}
we got their converged values {0.002506215, 6.01992E-06,
0.001306984, 0.36297383} that made formula (9) arrived at a
least value 0.0008032 for cluster samples {cluster (i) | i=1, 12}.
The computing result was listed in Table VIIT where S(i) stands
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for sample(i) as in Table VII, and P; and P; are identical as in
formula (9). Hence, we determined all coefficients in formula

8):

b, = 0.002506215, b, = 6.01992E — 06, b3 = 0.001306984,
b, = 0.36297383, bs = —0.0288, bg = 0.000447.

E. Empirical Formula’s Rationality and Simplicity

The formula (8) accords with the following expectations:

1) The larger a single physical host’s memory M, the higher
the P(V,N), and the better the cluster performance, in the
case of other parameters unchanged.

2) The larger CPU benchmark C for single physical host, the
higher the P(V, N), and the better the cluster performance,
in the case of other parameters unchanged.

3) P(V,N) decreases as V increases (b3, b, > 0), i.e., the more
the virtual hosts a single physical host is divided into, the
worse the cluster performance due to the increasing
overhead from resource division, when other parameters
remain unchanged.

4) When V=1, N=1, formula (8) is reduced to formula (2).

According to (3), we needn’t take into account any virtual
host division in procuring physical hosts, i.e., for such a usage
formula (8) can be simplified by taking V=1 as:

(0.00251M+0.00000602C)N
T (1-0.0288(N—1)+0.000447(N—1)N)

(10)

TABLE IX
CLUSTER SCHEMES SURVEYED ON MARKET
Host model(Memory) CPU model CPU benchmark Hard Disk  Host Amount P

Lenovo-X3650M5(192G) 2xXeonE5-2650V4 22,619 27T 18 1579
Lenovo-X3650M5(256G) 2xXeonE5-2650V4 22,619 2.7T 16 1345
DELL-R730(128G) 2xXeonE5-2630V4 18,801 3.6T 20 1516
DELL-R730(256G) 2xXeonE5-2660V4 22,164 3.6T 16 1318
HUAWEI-RH2288H V3(256G)  2xXeonE5-2660V4 22,164 4.5T 14 1102
HUAWEI-RH2288H V3(512G)  2xXeonE5-2660V4 22,164 4.5T 10 712
HUAWEI-RH5885 V3(256G) 4xXeonE7-4830v3 *30,084 5.4T 8 734
HUAWEI-RH5885 V3(512G) 4xXeonE7-4830v3 *30,084 7.2T 6 521
Inspur-NF5280M4(256G) 2xXeonE5-2660V4 22,164 54T 11 804
Inspur-NF5280M4(512G) 2xXeonE5-2660V4 22,164 5.4T 8 541
Inspur-NF8460M4(128G) 4xXeonE7-4830v3 *30,084 5.4T 7 625
Inspur-NF8460M4(512G) 4xXeonE7-4830v3 *30,084 5.4T 6 521

* The benchmark of 4xXeonE7-4830v3 is a fitted value since its direct value is not available

V. EXAMPLE OF EMPIRICAL FORMULA APPLICATION

In the practice of HBDP cluster purchase, we used formula
(10) to predict the cluster performance of various schemes (well
fitted to the budget) available on the market of name-brand PC
servers. Before calling for bidding, we got to obtain a concrete
specification for the cluster hardware. Through a market survey,
we collected a list of PC server provision scheme, and then
work out their predicted performance values in formula (10).
The evaluation result was recorded in Table IX, where we had
two top cluster schemes: 18 sets of Lenovo-X3650M5 (192G),
and 20 sets of DELL-R730 (128G), prominent on performance
metric: scored 1579 and 1516 respectively. Regarding that the
predicted performance of these two candidates were very close,
we needed to make a further comparison: the Lenovo one has a
clear CPU advantage (XeonE5-2650V4 over XeonES-2630V4),
and its memory is 1.5 times of the Dell’s although the latter
provides more physical hosts but which only had a narrow lead
in host amount in a proportion of (20-18)/18=1/9. Thus, 18 sets
of Lenovo-X3650M5 (192G) was recommended.

VI. CONCLUSION

Optimizing procurement of device cluster at a fixed budget
is a broadly met issue, since in general device requirements are
not specific enough to determine each device’s configuration in
details. Similar processes as the optimal purchase approach

presented above might or should be done in this or other ways
over and over again, since it is often a field specific tangle over
that whether fewer devices of higher capability or more devices
but of lower capability. We hope that this regression approach
could be heuristic for similar tasks in other fields.
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