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Abstract—Order reduction of linear-time invariant systems 
employing two methods; one using the advantages of Routh 
approximation and other by an evolutionary technique is presented in 
this paper. In Routh approximation method the denominator of the 
reduced order model is obtained using Routh approximation while 
the numerator of the reduced order model is determined using the 
indirect approach of retaining the time moments and/or Markov 
parameters of original system. By this method the reduced order 
model guarantees stability if the original high order model is stable. 
In the second method Particle Swarm Optimization (PSO) is 
employed to reduce the higher order model. PSO method is based on 
the minimization of the Integral Squared Error (ISE) between the 
transient responses of original higher order model and the reduced 
order model pertaining to a unit step input. Both the methods are 
illustrated through numerical examples. 

Keywords—Model Order Reduction, Markov Parameters, Routh 
Approximation, Particle Swarm Optimization, Integral Squared 
Error, Steady State Stability.

I. INTRODUCTION

HE exact analysis of high order systems is both tedious 
and costly. The problem of reducing a high order system 

to its lower order system is considered important in analysis, 
synthesis and simulation of practical systems. Bosley and Lees 
[1] and others have proposed a method of reduction based on 
the fitting of the time moments of the system and its reduced 
model, but these methods have a serious disadvantage that the 
reduced order model may be unstable even though the original 
high order system is stable. 

To overcome the stability problem, Hutton and Friedland 
[2], Appiah [3] and Chen et. al. [4] gave different methods, 
called stability based reduction methods which make use of 
some stability criterion. Other approaches in this direction 
include the methods such as Shamash [5] and Gutman et. al.
[6]. These methods do not make use of any stability criterion 
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but always lead to the stable reduced order models for stable 
systems. 

Some combined methods are also given for example 
Shamash [7], Chen et. al. [8] and Wan [9]. In these methods 
the denominator of the reduced order model is derived by 
some stability criterion method while the numerator of the 
reduced model is obtained by some other methods [6, 8, 10]. 

In recent years, one of the most promising research fields 
has been “Evolutionary Techniques”, an area utilizing 
analogies with nature or social systems. Evolutionary 
techniques are finding popularity within research community 
as design tools and problem solvers because of their versatility 
and ability to optimize in complex multimodal search spaces 
applied to non-differentiable objective functions. Recently, the 
particle swarm optimization (PSO) technique appeared as a 
promising algorithm for handling the optimization problems. 
PSO is a population-based stochastic optimization technique, 
inspired by social behavior of bird flocking or fish schooling 
[11]. PSO shares many similarities with the genetic algorithm 
(GA), such as initialization of population of random solutions 
and search for the optimal by updating generations. However, 
unlike GA, PSO has no evolution operators, such as crossover 
and mutation. One of the most promising advantages of PSO 
over the GA is its algorithmic simplicity: it uses a few 
parameters and is easy to implement [12].  

In the present paper, two methods for order reduction of 
linear-time invariant systems are presented. In the first 
method, the denominator of the reduced order model is 
obtained using advantages of Routh approximation method of 
Hutton and Friedland [2, 13]. The numerator of the reduced 
model is then determined using the Indirect approach of 
retaining the time moments and/or Markov parameters of 
original system [14]. In the second method, PSO is employed 
for the order reduction where both the numerator and 
denominator coefficients of LOS are determined by 
minimizing an ISE error criterion. 

 The reminder of the paper is organized in five major 
sections. In Section II statement of the problem is given. Order 
reduction by Routh approximation method is presented in 
Section III. In Section IV, order reduction by PSO has been 
presented. In Section V, two numerical examples are taken 
and both the proposed methods are applied to obtain the 
reduced order models for higher order models and results are 
shown. A comparison of both the proposed method with other 
well known order reduction techniques is presented in Section 
VI. Finally, in Section VII conclusions are given.  
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II. STATEMENT OF THE PROBLEM

The Let the thn order system and its reduced model 
( nr ) be given by the transfer functions: 
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where ia , jb , id , je , are scalar constants.  

The objective is to find a reduced thr order reduced model 
)(sR  such that it retains the important properties of )(sG for 

the same types of inputs. 

III. REDUCTION BY ROUTH APPROXIMATION METHOD

The transfer function of the control system is expressed as: 
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 Where, )(sN and )(sD are numerator and denominator 
polynomials of original higher order model 

)(sG respectively. Let the order of )(sD be even. Following 
Hutton and Friedland, the reduced denominator can be 
obtained by Routh approximation method [13] using the 
following steps:  

Step-1

Construct the Routh array for the denominator polynomial 
of the given transfer function starting with the first entry as the 
constant term. To obtain a reduced model of order ‘ r ’ a new 
Routh array is formed, where the first ( 1r ) terms of the 
above array forms the first column. The remaining entries of 
the array are now easily filled. Once the array is complete, it 
will be noted that the last element in the first column move 
two places up and one to the right at each step. The 
denominator of the reduced system )(sDr can be directly 
written from the first two rows of the array thus formed as: 

r
r ssbsbbsD ...)( 2

210          (4) 

which is the thr order reduced normalized denominator and 
can be expressed as: 
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Step-2

The transfer function in equation (3) can be expanded into a 
power series about s = 0 as: 

....)( 2
210 scsccsG            (7)                   

where,  

0

0
0 e

d
c                    (8) 

i

j
jijii ced

e
c

10

1
, i > 0           (9) 

with  id = 0 for i > n-1

It should be noted that the time moments of )(sG are 

directly proportional to the sci ' . The relation between them 
is given by Shamash. [7]: 
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 The transfer function in equation (3) can also be expanded 

into a power series about  s as:
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with  id = 0 for i > n-1

where sM i '  are called the Markov parameters of the 
system. 

Step-3

The reduced model )(1 sR of order ‘ r ’ obtained by 
matching initial time moments is given by: 
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Collecting terms up to ( r -1) powers of s in numerator, we get 
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Alternatively the reduced model )(2 sR of order ‘ r ’ may 
also be obtained by matching initial Markov parameters and it 
is given by: 
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 Neglecting terms with negative powers of s and collecting 

terms up to ( r -1) powers of s in numerator, we get 
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Step-4

The steady state is always matching if the time moments are 
matched however if the Markov parameters are matched, there 
is a steady state error between the outputs of original and 
reduced systems. To avoid steady state error we match the 
steady state responses by: 

0
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The final reduced order model is obtained by multiplying 

gain correction factor ‘ k ’ with the numerator of )(*
2 sR .

IV. PARTICLE SWARM OPTIMIZATION METHOD 

 In conventional mathematical optimization techniques, 
problem formulation must satisfy mathematical restrictions 
with advanced computer algorithm requirement, and may 
suffer from numerical problems. Further, in a complex system 
consisting of number of controllers, the optimization of 
several controller parameters using the conventional 
optimization is very complicated process and sometimes gets 
struck at local minima resulting in sub-optimal controller 
parameters. In recent years, one of the most promising 
research field has been “Heuristics from Nature”, an area 
utilizing analogies with nature or social systems. Application 
of these heuristic optimization methods a) may find a global 
optimum, b) can produce a number of alternative solutions, c) 
no mathematical restrictions on the problem formulation, d) 
relatively easy to implement and e) numerically robust. 
Several modern heuristic tools have evolved in the last two 

decades that facilitates solving optimization problems that 
were previously difficult or impossible to solve. These tools 
include evolutionary computation, simulated annealing, tabu 
search, genetic algorithm, particle swarm optimization, etc. 
Among these heuristic techniques, Genetic Algorithm (GA) 
and Particle Swarm Optimization (PSO) techniques appeared 
as promising algorithms for handling the optimization 
problems. These techniques are finding popularity within 
research community as design tools and problem solvers 
because of their versatility and ability to optimize in complex 
multimodal search spaces applied to non-differentiable 
objective functions. 

The PSO method is a member of wide category of swarm 
intelligence methods for solving the optimization problems. It 
is a population based search algorithm where each individual 
is referred to as particle and represents a candidate solution. 
Each particle in PSO flies through the search space with an 
adaptable velocity that is dynamically modified according to 
its own flying experience and also to the flying experience of 
the other particles. In PSO each particles strive to improve 
themselves by imitating traits from their successful peers. 
Further, each particle has a memory and hence it is capable of 
remembering the best position in the search space ever visited 
by it. The position corresponding to the best fitness is known 
as pbest and the overall best out of all the particles in the 
population is called gbest [11]. 

The modified velocity and position of each particle can be 
calculated using the current velocity and the distances from 
the pbestj,g to gbestg as shown in the following formulas 
[12,15, 16]: 
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 With nj ,...,2,1   and mg ,...,2,1

Where, 

n = number of particles in the swarm

m  = number of components for the vectors vj and xj

t  = number of iterations (generations) 

)(
,
t
gjv = the g-th component of the velocity of particle j at 

iteration t  , max)(
,

min
g

t
gjg vvv ;

w  = inertia weight factor 

     21, cc = cognitive and social acceleration factors 

respectively

21, rr = random numbers uniformly distributed in the 

range (0, 1) 
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,
t
gjx  = the g-th component of the position of particle j at 

iteration t

jpbest  = pbest of particle j

gbest  = gbest of the group 
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Fig. 1. Description of velocity and position updates in particle swarm 
optimization for a two dimensional parameter space 

Start

Specify the parameters for PSO

Generate initial  population

Find the fitness of each particle
in the current population

Gen. > max Gen ? Stop

Update the particle position and
velocity using Eqns. (19) and (20)

Gen.=1

Gen.=Gen.+1
Yes

No

Fig. 2. Flowchart of PSO for order reduction 

The j-th particle in the swarm is represented by a d-
dimensional vector xj = (xj,1, xj,2, ……,xj,d) and its rate of 
position change (velocity) is denoted by another d-
dimensional vector vj = (vj,1, vj,2, ……, vj,d). The best previous 
position of the j-th particle is represented as pbestj =(pbestj,1,
pbestj,2, ……, pbestj,d). The index of best particle among all of 
the particles in the swarm is represented by the gbestg. In PSO, 
each particle moves in the search space with a velocity 
according to its own previous best solution and its group’s 

previous best solution. The velocity update in a PSO consists 
of three parts; namely momentum, cognitive and social parts. 
The balance among these parts determines the performance of 
a PSO algorithm. The parameters c1 and c2 determine the 
relative pull of pbest and gbest and the parameters r1 and r2
help in stochastically varying these pulls. In the above 
equations, superscripts denote the iteration number. Fig.1. 
shows the velocity and position updates of a particle for a two-
dimensional parameter space. The computational flow chart of 
PSO algorithm employed in the present study for the model 
reduction is shown in Fig. 2. 

V. NUMERICAL EXAMPLES

Let us consider the system described by the transfer 
function due to Shamash [7]: 

12018010218
120090024814)( 234

23

ssss
ssssG     (21) 

For which a second order reduced model )(2 sR is desired. 

A. Routh Approximation Method  

Example 1: 

Step-1

The denominator of this system is given by: 

12018010218)( 234 sssssD     (22) 

Applying first step to construct Routh table for the 
denominator as:  

Using the first three entries as the first column, form a new 
array for the reduced system as:   

Now using the first two rows 
2*

2 90180120)( sssD          (22) 

Normalizing )(*
2 sD yields: 

334.12)( 2*
2 sssD            (23) 

Step-2

The power series expansion of )(sG about 0s  gives 
time moments as: 
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...
2

1510)( ssG              (24) 

The power series expansion of )(sG about s  gives 

Markov parameters:             

...414)( 21 sssG            (25) 

Step-3

The reduced order model obtained by matching initial time 
moments is given by: 

...
2

1510
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334.12)( 2

2

1 s
ss
sssR     (26) 

Collecting terms up to ( 1r ) powers of ‘ s ’ in numerator, 
we get ‘reduced system’ whose transfer function is given by; 
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The reduced order model obtained by matching initial 

Markov parameters is given by: 
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Neglecting terms with negative powers of s and collecting 
terms up to ( 1r ) powers of  ‘ s ’ in numerator, we get: 
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To avoid the steady state error, we multiply the numerator 

of )(*
2 sR by gain correction factor k  = 0.556 and get second 

order reduced system )(2 sR  whose transfer function is given 
by: 

334.12
344.13784.7)( 22 ss

ssR            (30) 

Example 2: 

Let us consider the system described by the transfer 
function due to Shamash [7]: 

)(
)()(
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Where, 
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4032018576011812467284

22449453654636)(
23

45678

sss

ssssssD

For which a second order reduced model )(2 sR is desired.  

Step-1

Applying first step to construct Routh table for the 
denominator as: 

40320 118124 22449 546 1
109584 67284 4536 36
93367.7 20780 532.8 1
42894.9 3910.7 34.8
12267.5 457.1 1
2312.4 31.3

291.1 1
23.6
1

Using the first three entries as the first column, form a new 
array for the reduced system as: 

40320      93367.7
 109584
   93367.7

Now using the first two rows: 

403201095847.93367)( 2*
2 sssD     (32) 

Normalizing )(*
2 sD yields:   

43184.017368.1)( 2*
2 sssD         (33) 

Step-2

The power series expansion of )(sG about 0s is given by: 

...890795.2

786299.255633.2889286.11)(
4

32

s

ssssG
 (34) 

The power series expansion of )(sG about s  gives: 

...55650

731297813418)(
5

4321

s

sssssG
   (35) 

Step-3

The reduced order model obtained by matching initial time 
moments is given by: 
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...889286.11
43184.017368.1
4318.017368.1)( 2
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1 s
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Collecting terms up to ( 1r ) powers of ‘ s ’ in numerator, 
we get ‘reduced system’. Neglecting terms with negative 
powers of ‘ s ’ and collecting terms up to ( 1r ) powers of 
‘ s ’ in numerator, we get: 

43184.017368.1
43184.0989544.1)( 2

*
2 ss

ssR         (37) 

Step-4

After matching initial time moments the steady state is always 
matched so gain correction factor is  k  = 1, therefore the final 
reduced transfer function remains unchanged.  

The reduced order model obtained by matching initial 
Markov parameters is given by  

..13418
43184.017368.1
43184.017368.1)(

21

2

2

2

ss
ss
sssR

      (38) 

or

43184.017368.1
8.11218)( 22 ss

ssR       (39) 

B. Particle Swarm Optimization Method  

For the implementation of PSO, several parameters are 
required to be specified, such as c1 and c2 (cognitive and 
social acceleration factors, respectively), initial inertia 
weights, swarm size, and stopping criteria. These parameters 
should be selected carefully for efficient performance of PSO. 
The constants 1c and 2c  represent the weighting of the 
stochastic acceleration terms that pull each particle toward 
pbest and gbest positions. Low values allow particles to roam 
far from the target regions before being tugged back. On the 
other hand, high values result in abrupt movement toward, or 
past, target regions. Hence, the acceleration constants were 
often set to be 2.0 according to past experiences. Suitable 
selection of inertia weight, w , provides a balance between 
global and local explorations, thus requiring less iteration on 
average to find a sufficiently optimal solution. As originally 
developed, w  often decreases linearly from about 0.9 to 0.4 
during a run [17, 18]. One more important point that more or 
less affects the optimal solution is the range for unknowns. For 
the very first execution of the program, wider solution space 
can be given, and after getting the solution, one can shorten 
the solution space nearer to the values obtained in the previous 
iterations. 

The objective function J is defined as an integral squared 
error of difference between the responses given by the 
expression: 

t

r dttytyJ
0

2)]()([             (40) 

Where  
)(ty and )(tyr  are the unit step responses of  original and 

reduced order systems. 

For Example-1: 

The reduced 2nd order model for example-1 by using PSO 
technique is obtained as follows: 

2022.11155.2016.1
0226.120166.12)( 22 ss

ssR       (41) 
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Fig. 3. Convergence of objective function for example-1 

The convergence of objective function with the number of 
generations is shown in Fig.  3. The unit step responses of 
original and reduced systems by both the methods are shown 
in Fig. 4. For comparison Fig. 4 also shows the step response 
of reduced model by Gutman [6]. It can be seen that the steady 
state responses of all the reduced order models are exactly 
matching with that of the original model. However, compared 
to other methods of reduced models, the transient response of 
proposed reduced model by PSO is very close to that of 
original model. 

For Example-2: 

The reduced 2nd order model for example-2 by using PSO 
technique is obtained as follows: 

6476.25882.280214.4
4768.260369.88)( 22 s

ssR      (42) 

The unit step responses of original and reduced systems by 
both the methods are shown in Fig. 5. It can be seen that the 
steady state responses of all the reduced order models are 
exactly matching with that of the original model. However, 
compared to other methods of reduced models, the transient 
response of proposed reduced model by PSO is very close to 
that of original model. The convergence of ISE with the 
number of generations for example-2 is shown in Fig. 6. 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:9, 2009

1758

0 1 2 3 4 5 6 7
0

2

4

6

8

10

Time (sec)

A
m

pl
itu

de

Original 4th order model 
2nd order model by PSO
2nd order model by Routh
2nd order model by Gutman 

Fig.  4. Step Responses of original system and reduced model of example-1 
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VI. COMPARISON OF METHODS

The performance comparison of both the proposed 
algorithm for order reduction techniques with other well 
known order reduction techniques is given in Table I. The 
comparison is made by computing the error index known as 
integral square error ISE [16] in between the transient parts of 
the original and reduced order model, is calculated to measure 
the goodness/quality of the [i.e. the smaller the ISE, the closer 
is )(sR to )(sG , which is given by: 

t

r dttytyISE
0

2)]()([           (43) 

Where )(ty and )(tyr  are the unit step responses of 
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original and reduced order systems for a second- order 
reduced respectively. This error index is calculated for various 
reduced order models which are obtained by us and compared 
with the other well known order reduction methods available 
in the literature. 

TABLE I COMPARISON OF METHODS FOR EXAMPLE 1
 Method  Reduced model ISE 

Proposed PSO 

2022.11155.2016.1
0226.120166.12

2 ss
s 0.0447

Proposed Routh 
approximation 334.12

344.13784.7
2 ss

s 1.3667

Gutman et. al.  [6] 

05582.72491.5
58824.7064706.17

2 ss
s 3.4661 

Shamash [7] 

176.1765.1
76.1183.8

2 ss
s 0.5763 

Chen et al [4] 

19036.178554.1
9036.118927.8

2 ss
s 0.5418 

VI. CONCLUSION

In this paper, two methods for reducing a high order system 
into a lower order system have been proposed. In the first 
method, a conventional technique has been proposed where 
the denominator of the reduced order model is obtained by the 
method of Routh approximation while the numerator of the 
reduced model is determined using the indirect approach of 
retaining the initial time moments and/or alternative approach 
for fitting the initial time moments and/or Markov parameters. 
In the second method, an evolutionary swarm intelligence 
based method known as Particle Swarm Optimization (PSO) is 
employed to reduce the higher order model. PSO method is 
based on the minimization of the Integral Squared Error (ISE) 
between the transient responses of original higher order model 
and the reduced order model pertaining to a unit step input. 
Both the methods are illustrated through numerical examples. 
Also, a comparison of both the proposed methods with other 
well known exciting methods has been presented. It is 
observed that both the proposed methods are comparable in 
quality with the other existing techniques. Further, the 
proposed methods preserve steady state value and stability in 
the reduced models and the error between the initial or final 
values of the responses of original and reduced order models 
is very less. However, PSO method seems to achieve better 
results in view of its simplicity, easy implementation and 
better response. 
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