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Abstract—All climate models agree that the temperature in 

Greece will increase in the range of 1° to 2°C by the year 2030 and 

mean sea level in Mediterranean is expected to rise at the rate of 5 

cm/decade. The aim of the present paper is the estimation of the 

coastline displacement driven by the climate change and sea level 

rise. In order to achieve that, all known statistical and non-statistical 

computational methods are employed on some Greek coastal areas. 

Furthermore, Kalman filtering techniques are for the first time 

introduced, formulated and tested. Based on all the above, shoreline 

change signals and noises are computed and an inter-comparison 

between the different methods can be deduced to help evaluating 

which method is most promising as far as the retrieve of shoreline 

change rate is concerned. 

 

Keywords—Climate Change, Coastal Displacement, Kalman 

Filter 

I. INTRODUCTION 

T is known that coastal zones are directly affected by the 

occurring climate change and that they are particularly 

vulnerable to extreme weather events, such as storm surges, 

intense erosion and landslides [1]. 

It must be firstly mentioned that the model created herein, is 

not capable of incorporating on its prediction procedure the 

possible action of extreme weather events or unexpected 

catastrophes. The actual capability of the model is to produce a 

reliable estimation of the future position of the shoreline based 

on the observed and combined action of a large number of 

factors. Using the available geo-information, it is possible to 

test the reliability of the mathematical model. If the predicted 

shoreline positions coincide with the actual positions in pre-

defined epochs, then it is proved that the model, that is the 

prediction algorithm, can determine with accuracy the future 

evolution of the shoreline. The amount of computations and 

the complexity of the designed model depend directly upon the 

volume of the available data and the desired accuracy of the 

future projections. The calculation burden is depending on the 

number of historical shorelines available in a coastal area. 

Nevertheless, more data means more complete description of 

the past behavior of the particular coastal area. The 

combination of large amount of geoinformation and data, the 

computation of shoreline change rates using different  
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statistical (and non-statistical) methods and the adjusted 

Kalman filter, were carried out using mathematical tools and 

programs such as the MATLAB [2]. Through that program, 

the shoreline change rates were computed for some coastal 

areas of Greece that were selected in the current study, using 

10 statistical and non-statistical methods and the adjusted 

Kalman filter. These computed shoreline change rates and 

their prediction errors provide the primary information and 

tool for any further study concerning the coastal evolution. 

II. MATERIALS AND METHODS 

A. Coastal Dynamic Models 

Sea level rise can activate two important mechanisms that 

result in the loss of land, namely, erosion and inundation. 

Erosion represents the physical removal of sediment by wave 

and current action, while inundation is the permanent 

submergence of low-lying land. Sea level rise contributes to 

the erosion of erodible cliffs, sandy and muddy coasts by 

promoting the offshore transport of sedimentary material. Land 

loss resulting from inundation is simply a matter of slope [3]. 

Therefore, the coastal areas with lower slope, will suffer the 

greater land losses. The ability to identify areas vulnerable to 

future changes in local sea level, as a result of local vertical 

movements (i.e. subsidence) and sea level rise is necessary if a 

timely response is to be made to the rising sea. 

As far as concerning beach evolution, there are several 

factors that influence this complicated process, such as [4]: 

i. Waves 

ii. Currents and sediment transport along the beaches 

iii. Coastal morphology 

iv. Sea level rise 

v. Vegetation 

vi. Storms  

vii. Tsunamis  

viii. Seasonal nature of beach erosion and 

ix. Man-induced changes in sand supply 

In Greece, where the largest part of the population and the 

vast majority of all the land uses are accumulated in its coastal 

areas, the implementation of a model to predict shoreline 

evolution, is important. Such o model would become a useful 

tool and offer the opportunity to coastal managers to plan with 

great efficiency new rules of future development, according to 

the predicted, future position of the shoreline. Also, the 

knowledge of the shoreline transgression would allow the 

government to imply rules and protection measures for all the 
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coastal areas that are already developed and populated and 

which will face future hazards and land losses because of the 

shoreline recession. Actions of this kind and protection 

strategies of light intervention with minimum effects for the 

environment (in opposition to “hard” protection measures such 

as sea walls, dikes or other structures) can be proved 

successful and viable only if the predictions of the future 

positions of the shoreline produced by the model are relatively 

accurate.   

The assessment of the shoreline movement is a complex, 

parametrical problem and many attempts were made 

worldwide during the last years in order to describe it in the 

best possible way and find realistic solutions. The 

consequences of the rapid climate change have been 

intensively studied and also how human intervention 

(development in coastal areas) effect upon the evolution of 

each coastline [5]. Furthermore, a large number of climate 

models have been developed in order to predict the magnitude 

and periodic frequency of future possible extreme weather 

events and also mathematical models were built that are 

capable of predicting future positions of the shoreline, by 

using parameters and coefficients. Based on these 

experimental predictions, protection strategies were proposed, 

for certain coastal areas, especially in U.S.A and the 

Mediterranean. 

Simple models that are capable of projecting the future 

position of a shoreline have been tasted in certain cases, with 

their predictions followed though by significant uncertainties 

and questionable effectiveness. Besides, any attempt to 

describe a complicated phenomenon such as the time wise 

movement of a shoreline using simplified mathematical models 

and formulas, will be futile and will produce inaccurate results. 

One of the most important factors concerning the future 

movement of a shoreline is the reliability of the model which is 

used to describe the evolution of the study coastal area. All 

natural parameters that effect upon the shoreline movement 

change according to the location each coast and the climate 

conditions of each region. The main challenge in the building 

process of a prediction model is to create models with 

sophisticated mathematical analysis (space - time), which will 

be able to produce reliable predictions concerning the coastal 

system dynamics. With the use of the G.I.S., these models are 

now in position to give results with greater efficiency and 

accuracy, handle bigger data bases and offer more capabilities 

of analysis to the users.  

In conclusion, the accuracy and reliability of the predictions 

of a coastal dynamic model depends on the following three 

factors:  

i. The quality of the original data and the accuracy (in close 

connection to the available scale) of the aerial photographs [6]. 

In the present study, one of the main difficulties during the 

building process and the application of the model was the high 

magnitude of the uncertainties of the available original 

information (the high errors in the digitized positions of the 

historical shorelines). These significant uncertainties were 

attributed either to the rather small scale of the available aerial 

photographs, or generally because of the poor quality (and 

limited size and variety) of the acquired geo-information.    

ii. The shape and complexion of the polynomial. During the 

final building process of the prediction model which is 

presented here, certain assumptions had to be made. These 

assumptions concerned the computational procedure of the 

final filter and the primary values of the main coefficients (A, 

B and H) that were used.   

iii.  The precision of the predictions produced by the current 

model. One of the main advantages of the use of the Kalman 

filter compared to the 10 known statistical (and non-statistical) 

methods of computing shoreline change is that the final model 

incorporates the high uncertainties of the original data and 

produces estimations for the future shoreline position with 

integrated prediction errors, closely approximating reality.      

In the present study, a Greek coastal area was chosen in 

order to model its coastal dynamics by calculating shoreline 

change rates (accretion or recession). Furthermore, the rates of 

change of the shoreline positions has been calculated using the 

following procedure: at first, using aerial photographs taken at 

different time periods and topographic maps, the shoreline of 

the study area was digitized at these different time periods 

resulting to a group of historical shorelines [7]. Then, cross 

sections along the shoreline with the greatest scale of all the 

available shorelines were drawn intersecting the rest of the 

historical shorelines at certain points. Measuring the distances 

between these points along the cross sections, the shoreline 

change rate can be computed using a certain method.  

The 10 well-known statistical (and non-statistical) methods 

that are used worldwide to calculate the rates of shoreline 

change are presented briefly below and have been analysed 

extensively [8], [9], [10] and [11]: 

i. End Point Rate (EPR)  

ii. Average of rates (AOR) [ 

iii. Minimum Description Length (MDL) 

iv. Jackknifing (JK)  

v. Ordinary Least Squares (OLS)  

vi. Reweighted Least Squares (RLS)  

vii. Weighted Least Squares (WLS) 

viii. Reweighted Weighted Least Squares (RWLS)  

ix. Least Absolute Deviation (LAD)  

x. Weighted Least Absolute Deviation (WLAD)  

The above 10 methods were tested in the present study 

using original data taken from the considered Greek coastal 

area and their results were compared to each other (and with 

the results of the Kalman filter applications) offering useful 

conclusions about possible advantages or disadvantages of 

each method.   

B.  The Kalman Filter  

The known Kalman filter is theoretically an estimation of 

the linear problem of the least squares, where the instant state 

of a linear dynamic system is estimated (using the “state 

vector”), which is disrupted by “white” noise [12], [13] and 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:5, No:11, 2011

1738

 

 

[14]. The measurements are related in a linear way to the 

dynamic state of the system but there are “infected” by “white” 

noise. The estimator is statistically the best by any integrand of 

the square error of the estimation (f (ε
2
) = min). 

Practically, the Kalman filter is a unique tool for the control 

of complicated procedures such as the flow of a river or the 

movement of boats, airplanes and satellites [14]. The most 

important aspect though is that the Kalman filter provides 

predictions about the future, dynamic state of a system, 

incorporating the effect of all the previous observations. It 

must be mentioned that the modification and the application of 

a mathematical “feedback” filter such as the Kalman filter, in 

cases of low-dynamic systems like coastal areas, using as 

original data the measured distances along cross-sections, is 

presented for the first time in the present study. 

The “escalating” equations of the measurements incorporate 

every time the new measurement in the a priori estimation, in 

order to produce a new and improved a posteriori estimation 

of the parameters. In this way, the more available data 

(positions of the historical shorelines in our case), the more 

complete and accurate will be the produced estimation vector. 

C. Equations 

The main equations that are used for the proposed modified 

Kalman filter are presented below [14] and [15]:               

The a priori estimation of the state vector: 
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The a posteriori estimation of the state vector: 
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The variability matrix: 
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The estimation for the state vector at the moment k-1: 

 

∑ −− 11
ˆ,ˆ
kk xx            (5) 

 

It is obvious, based on the above five equations, that the 

burden of computations in the case of Kalman filter is 

seriously increased in comparison to the 10 statistical methods 

of estimating shoreline change rate. Still, according to the 

application results of the original Kalman filter in cases of 

dynamic measurement systems, the particular method 

produced reliable results, using primordial data with such high 

levels of “noise” that the volume and complexity of 

computations is not taken in consideration (especially since all 

statistical computations are carried out by computers). 

Therefore, comparing and combining the predicted (by the 

Kalman filter) shoreline positions with actual measurements, it 

is possible to produce new, corrected position estimators. 

Based on these experimental results and the quality of the 

predictions, the method of the adapted Kalman filter can be 

characterized as a statistical tool which undoubtedly improves 

the quality of the results and offers a better estimation of the 

future position of the shoreline. During the Kalman filter 

process, every time that new measurements are made, the 

validity of the prediction model is tested and in the same time 

the kinematic parameters of the coastal area, in reference to the 

time of the last measurements, are computed. Consequently, 

the prediction model of the future positions of the shoreline on 

each coastal area will have to be evaluated and tested, 

considering the reliability of each prediction. In general, that 

particular test is implemented in cases where the solution 

improvement of the vector of the unknown determinative 

parameters is required, using new additional measurements, 

without combining and “re-correcting” old and new 

measurements, all together again [12].       

III. RESULTS AND DISCUSSION 

In Table I, the results of the study that is, shoreline change 

rates (signals) and their uncertainties (noises) of the 10 known 

methods are presented in comparison to the respective Kalman 

filter estimations in a Greek coastal area. Two assumptions 

were made, namely, 2 mm/scale and 5 mm/scale uncertainty of 

the extraction of the shorelines. Kalman filter results in Table I 

were obtained using one at a time of the 10 methods as far the 

shoreline change rate to be used as the start signal of the 

change rate e.g. Kalman filter and OLS.     

According to the magnitude of the “noise” of the 

measurements but also through the comparison of the 

estimated shoreline change rates, the 10 available methods 

were evaluated. Some of them were poorly ranked and 

considered as completely inappropriate for the estimation of 

shoreline change rates. Their results either were followed 

systematically by large uncertainties or even worst, the 

calculated shoreline change rates presented high deviations 

from the mean value of all the other estimations of the 10 

methods. The AER, RLS, LAD and WLAD were judged as the 

most inappropriate methods, taking into consideration the 

specific nature and amount of the original available data of the 

study. As far as the EPR, AOR, WLS and RWLS methods, 

despite the considerable uncertainties or deviations of the 

calculated shoreline change rates in many cases, there were 

certain applications and specific coastlines where relatively 

reliable results were produced, which could be used for further 

studies. In the coastal area that was examined here, the 
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methods that constantly produced reliable results and 

estimated shoreline change rates with minimum uncertainties 

(“noise” over the signal) were the OLS  and JK [16].  

After the statistical analysis of all the results and their 

evaluation, similar tests and applications were carried out with 

the exact same original data (historical shoreline positions), 

using only this time the modified Kalman filter. The new, 

calculated shoreline change rates were compared to each other 

and also with the shoreline change rates derived from the 10 

known methods.  

Derived from the results of Table I it is evident that the 

modified Kalman filter in comparison to the 10 existing 

methods is a mathematical tool which processes certain 

advantages regarding its structure and the reliability of its final 

predictions, namely: 

i. The Kalman filter is characterized by a far more complete 

mathematical configuration concerning low dynamic systems 

(e.g. coastal), in comparison to the 10 known methods. 

ii. In the Kalman filter method it is possible to check the 

intermediate stages of the prediction process – including “a 

priori/a posteriori” predictions for every observation time 

interval [13], [14] and [15]. 

iii. The uncertainties of the original data are being 

incorporated in the shoreline change rates that are computed 

by the modified Kalman filter.  

iv. The produced results present “endurance” and are 

rather “robust” as far as concerning the existence of severe 

outliers in the original measurements.  

Additionally, one of the most important advantages of the 

modified Kalman filter is that it can trace the possible 

discrepancy between the estimated and the actual shoreline 

position on every coastal area.   

The circular, computational process of the Kalman filter 

offers the opportunity to compute every time an a priori 

estimator before each measurement and subsequent to that, a 

corrected a posteriori estimator, which incorporates the new 

observation with its uncertainties [17]. That way, 

measurements with high observation errors (such as measured 

positions of historical shorelines of the year 1945 or even 

1960) when they are incorporated in the model, they 

considerably effect the whole computational process 

concerning the corrected vector estimators, degrading the 

reliability and quality of the final prediction. Still, the Kalman 

filter is capable of incorporating all measurements and produce 

a relatively reliable prediction, regardless to the size and 

eminence of the partial position uncertainties. In fact, 

whenever an original measurement is followed by high 

uncertainties or an outlier appears on the middle of the 

distribution of the values, the Kalman filter may incorporate 

the current problematic value. The a posteriori estimator that is 

computed for that particular time interval may present 

decreased reliability, but in the next intervals and given the 

fact that the following measurements will have lesser 

uncertainties, the new, vector estimators will be piecemeal 

improved, regaining the reliability and the accuracy of the 

filter predictions. All the above conclude that the Kalman filter 

displays a relative flexibility and adaptability concerning the 

existence of possible uncertainties in the original data, contrary 

to the 10 known statistical methods where the quality and 

reliability of the resulted predictions of shoreline positions are 

severally influenced by primal errors.                 

In conclusion, the proposed modification of the Kalman 

filter that is presented here, can improve the quality and 

reliability of the future shoreline position predictions, in 

comparison to the 10 known existing methods that are used 

worldwide. The Kalman filter offers the opportunity for more 

precise computations of shoreline change rates, with lesser 

errors, approximating better the physical reality and coastal 

evolution by modelling the dynamics of coastal systems and 

incorporating the uncertainties of the original available data.  
 

TABLE I 

SHORELINE CHANGE RATES 

The 10 methods of estimating shoreline change rate (m/yr) 

compared to Kalman filter  

 

Non statistical methods 
Linear regression 

methods 

EPR AOR AER OLS JK 

10 methods 

[5mm/scale] 

-0.21 

±0.43 

-0.43 

±1.29 
-0.35 

-0.42 

±0.001 
-0.46 

10 methods 

[2mm/scale] 

-0.21 

±0.19 

-0.43 

±0.52 
-0.35 

-0.42 

±0.001 
-0.46 

Kalman filter 

[5mm/scale] 
-0.22 -0.44 -0.37 -0.43 -0.48 

Kalman filter 

[2mm/scale] 
- 0.22 - 0.45 - 0.37 - 0.44 - 0.49 

 

Weighted Linear regression 

methods 

Methods with the 

deviation criterion 

RLS WLS RWLS LAD WLAD 

10 methods 

[5mm/scale] 

0.74 

±0.12 

0.01 

±0.03 

0.01 

±0.03 
-0.3 0.44 

10 methods 

[2mm/scale] 

0.74 

±0.12 

-0.16 

±0.01 

-0.15 

±0.01 
-0.3 0.44 

Kalman filter 

[5mm/scale] 
0.75 0.01 0.01 -0.31 I 

Kalman filter 

[2mm/scale] 
0.78 - 0.17 - 0.16 - 0.32 0.44 

The 10 known methods compared to the Kalman filter estimations using 

original data from a Greek coastal area. 5 and 2mm/scale accuracy are 

considered with regard to the obtained shoreline extraction.  
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