
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:6, 2016

1170


Abstract—Software Entropy Metrics for bug prediction have

been validated on various software systems by different researchers.
In our previous research, we have validated that Software Entropy
Metrics calculated for Mozilla subsystem’s predict the future bugs
reasonably well. In this study, the Software Entropy metrics are
calculated for a subsystem of Android and it is noticed that these
metrics are not suitable for bug prediction. The results are compared
with a subsystem of Mozilla and a comparison is made between the
two software systems to determine the reasons why Software Entropy
metrics are not applicable for Android.

Keywords—Android, bug prediction, mining software

repositories, Software Entropy.

I. INTRODUCTION

UG prediction involves using the past characteristics of
the software systems to determine the future bugs in the

software system. Software Entropy Metrics proposed by
Hassan [1] are used to quantify the complexity of source code
changes. A change is made to the software for (i) bug
correction, (ii) enhancement, and (iii) maintenance purposes.
The most complex of these are the enhancement related
changes which contribute to the complexity of code change
process. This complexity is quantified in terms of Software
Entropy given by (1):

ܵ. ௡.ܧ ሺܲሻ ൌ െ∑ ሺ ௜ܲ ∗ ଶ݃݋݈ ௜ܲሻ
௡
௜ୀଵ (1)

where, Pi is the probability of changes in the ith file defined as
the number of changes in ith file divided by the total number of
changes in all files of the software system/subsystem.

Hassan [1] validated the applicability of Software Entropy
metrics using Simple Linear Regression (SLR) on six open
source software systems including NetBSD, FreeBSD,
OpenBSD, Postgre, KDE and KOffice.

Singh and Chaturvedi [4] employed the Software Entropy
Metrics given by Hassan [1] for predicting bugs using Support
Vector Regression (SVR). They validated the results for three
subsystems of Mozilla and came to the conclusion that SVR
performs better than SLR. Kaur and Kaur [10] have employed
various statistical methods for prediction of software
maintainability. Singh et al. [11] have compared models for
predicting fault proneness in object oriented software systems.

Arvinder Kaur, Professor, is with the University School of Information and

Communication Technology, Guru Gobind Singh Indraprastha University,
New Delhi, Delhi, India (e-mail: arvinder70@gmail.com).

Deepti Chopra is with the University School of Information and
Communication Technology, Guru Gobind Singh Indraprastha University,
New Delhi, Delhi, India (e-mail: dchopra27@gmail.com).

We have also conducted previous studies [2], [3] to validate
the applicability of Software Entropy Metrics for bug
prediction in subsystems of Mozilla. In ‘Entropy based Bug
Prediction using Neural Network based Regression’ [2], we
verified that the Software Entropy Metrics are reasonably good
predictors of bugs using a neural network based regression
method to verify the results. Also, in ‘Application of Locally
Weighted Regression for predicting Faults using Software
Entropy Metrics’ [3], we show that Locally Weighted
Regression (LWR) gives better bug prediction results
compared to SVR.

In this study, we try to analyze why the Software Entropy
Metrics are not able to predict the bugs in subsystems of
Android. We try to compare subsystems of Mozilla and
Android to understand the differences between the two
software systems that may affect the applicability of Software
Entropy Metrics.

This paper consists of the following sections: Section II
describes how the Software Entropy metrics are calculated and
also discusses regression results for the subsystems of Mozilla
and Android. Section III compares the differences between
Mozilla and Android to understand why Software Entropy
metrics are not able to predict bugs in Android subsystem. In
Section IV, the differences analyzed are concluded to
generalize the findings.

II. SOFTWARE ENTROPY METRICS

The Software Entropy for a particular period is calculated by
using the formula given in (1). The Software Entropy S.E.n is
normalized by using (2), such that 0≤ S.E.≤ 1. The normalized
Software Entropy makes it possible to compare the Software
Entropy for subsystems containing different number of files.

ܵ. ሺܲሻܧ ൌ 	
ଵ

ெ௔௫௜௠௨௠	ா௡௧௥௢௣௬		
∗ ܵ. ௡.ܧ ሺܲሻ ൌ െ

ଵ

୪୭୥మ ௡
∗ 	∑ ሺ ௜ܲ ∗

௡
௞ୀଵ

logଶ ௜ܲሻ (2)

where Pi ≥ 0, ∀i ∈ 1, 2,, n and ∑ ௜ܲ

௡
௜ୀଵ ൌ 1

After calculating the normalized Software Entropy, each file
is assigned a complexity value. In general, greater the
complexity value, more buggy is the file. History Complexity
Metric (HCM) is calculated for each file in the software
system.

For a period k, with entropy S.E.k where a set of files, Fk are
modified with a probability Pj for each file j ∈ Fk, (3) defines
the History Complexity Period Factor (HCPFk) for a file j
during period k.

௞ሺ݆ሻܨܲܥܪ ൌ ௞௝ܥ ∗ ܵ. ௞.ܧ ,					݆ ∈ ௞ (3)ܨ

Reasons for Non-Applicability of Software Entropy
Metrics for Bug Prediction in Android

Arvinder Kaur, Deepti Chopra

B

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:6, 2016

1171

where, Ckj is the contribution of Software Entropy for period k
(S.E.k) that is assigned to file j. By varying the value of Ckj,
three variants of HCPF are obtained to calculate HCM. Fig. 1
defines the different variants of HCM.

Fig. 1 HCM metrics

HCM value for a file j over the evolution period {x,.., y} is
calculated using (4):

ሼ௫,..,௬ሽሺ݆ሻܯܥܪ ൌ ∑ ௞ሺ݆ሻ௞∈ሼ௫,..,௬ሽܨܲܥܪ (4)

The value of HCM and so the complexity increases with
time. HCM value for a software subsystem (S) over the
evolution periods {m,…,n} is the sum of HCMs for each file in
the subsystem as defined in (5).

ሼ௫,…,௬ሽሺܵሻܯܥܪ ൌ ∑ ሼ௫,…,௬ሽሺ݆ሻ௝∈ௌܯܥܪ (5)

HCM metrics, Normalized Software Entropy and number of
changes and faults per year for the subsystems of Android and
Mozilla are listed in Tables I and II, respectively.

TABLE I

ENTROPY FOR SUBSYSTEMS OF ANDROID

Subsystem
Android/platforms_frameworkbase

/location
Android/platforms_frameworkbase/

keystore
Android/platforms_frameworkbase/

obex
Android/platforms_frameworkbase/

native

Year Changes Faults
Normalized

Entropy
Changes Faults

Normalized
Entropy

Changes Faults
Normalized

Entropy
Changes Faults

Normalized
Entropy

2009 13 6 0.412 6 2 0.539 36 28 0.962 - - -

2010 31 13 0.634 4 6 0.239 2 0 0.227 27 19 0.885

2011 5 4 0.304 16 11 0.624 2 3 0.227 7 5 0.575

2012 25 54 0.573 8 8 0.419 0 2 0 7 10 0.681

2013 21 10 0.584 5 25 0.461 3 6 0.361 2 6 0.27

TABLE II

ENTROPY FOR SUBSYSTEMS OF MOZILLA

Subsystem Mozilla/layout/forms Mozilla/layout/generic

Year Changes Faults Normalized Entropy Changes Faults Normalized Entropy

2007 37 127 0.901 138 834 0.849

2008 2 131 0.184 73 993 0.633

2009 2 247 0.184 58 1315 0.558

2010 2 245 0.184 61 1173 0.555

2011 116 296 0.857 504 1465 0.85

2012 222 461 0.819 1005 2058 0.821

2013 3 660 0.169 22 2119 0.546

The subsystems “Mozilla/layout/forms/” and

“Mozilla/layout/generic/” of Mozilla, and
“Android/platform_frameworks_base/location/”,“Android/platf
orm_frameworks_base/keystore/”,“Android/platform_framewo
rks_base/obex/” and “Android/platform_frameworks
_base/native/” of Android are used to validate the Software
Entropy metrics for bug prediction. The data are collected from
Mozilla-central [5] and GitHub [6] for Mozilla and Android
respectively.

Regression analysis is done to determine the performance of
calculated metrics for bug prediction. The tool used to perform
regression is Weka 3.6 [7], which is a popular tool for data
mining and machine learning. The results are compared based
on the values of Correlation Coefficient, Mean Absolute Error

(M.A.E.) and Root Mean Square Error (R.M.S.E.). These
measures as defined in [8] are:

Let p1, p2, …, pn be the predicted values and a1, a2, …, an are
the actual values.
 Correlation Coefficient: measures the statistical

correlation between the a’s and the p’s given by (6):

ݐ݂݂݊݁݅ܿ݅݁݋ܥ	݊݋݅ݐ݈ܽ݁ݎݎ݋ܥ ൌ 	
௦೛ೌ
ௌು∗ௌೌ

 (6)

where ݏ௣௔ ൌ
∑ ሺ௣೔ି௣̅ሻሺ௔೔ି௔ሻതതത೔

௡ିଵ
௣ݏ , ൌ

∑ ሺ௣೔ି௣̅ሻ
మ

೔

௡ିଵ
 and ݏ௣௔ ൌ

∑ ሺ௔೔ି௔ሻതതത
మ

೔

௡ିଵ
.

 Mean Absolute Error (M.A.E.): as in (7) averages the
magnitude of individual errors. The sign of error is not
considered.

Variants of HCM
HCM1: Ckj=1, Equal weightage of complexity is
assigned to each file that is modified in the kth

period.

HCM2:Ckj=Pj, where Pj is the probability of change
for file j compared to all changes in kth period.

HCM3: Ckj=1/Fk, where Fk is the total number of
files changed in the kth period.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:6, 2016

1172

.ܣ.ܯ ൌ.ܧ
|	௣భି௔భ|ା⋯ା|௣೙ି௔೙|

௡
 (7)

 Root Mean Square Error (R.M.S.E.): measures the

differences between the predicted and actual values of the
samples as given in (8).

ටሺ௣భି௔భሻమା⋯ାሺ௣೙ି௔೙ሻమ

௡
 (8)

The regression results for these subsystems are listed in

Tables III-VIII.

TABLE III
REGRESSION RESULTS FOR “MOZILLA/LAYOUT/FORMS/”

Model Metrics
Correlation
Coefficient

M.A.E R.M.S.E

Support Vector Regression
(SVR)

HCM1 0.677 104.144 125.795
HCM2 0.708 92.497 119.777
HCM3 0.708 92.496 119.777

Locally Weighted
Regression (LWR)

HCM1 0.7233 109.149 127.975
HCM2 0.7237 109.367 128.414
HCM3 0.7238 109.367 128.415

Multilayer Perceptron
HCM1 0.701 100.15 128.801
HCM2 0.738 92.114 123.628
HCM3 0.738 92.115 123.627

TABLE IV

REGRESSION RESULTS FOR “MOZILLA/LAYOUT/GENERIC/”

Model Metrics
Correlation
Coefficient

M.A.E R.M.S.E

Support Vector
Regression (SVR)

HCM1 0.943 125.089 173.618

HCM2 0.898 186.815 199.650

HCM3 0.899 186.709 199.507

Locally Weighted
Regression (LWR)

HCM1 0.921 135.910 177.004

HCM2 0.925 136.631 171.991

HCM3 0.925 136.623 171.974

Multilayer Perceptron

HCM1 0.950 118.841 140.277

HCM2 0.925 154.611 174.334

HCM3 0.925 154.636 174.367

TABLE V

REGRESSION RESULTS FOR

“ANDROID/PLATFORM_FRAMEWORKS_BASE/LOCATION/”

Model Metrics
Correlation
Coefficient

M.A.E R.M.S.E

Support Vector
Regression (SVR)

HCM1 0.014 17.711 22.076

HCM2 -0.005 16.749 21.310

HCM3 -0.005 16.750 21.310

Locally Weighted
Regression (LWR)

HCM1 -0.663 26.745 31.2622

HCM2 -0.591 25.181 29.429

HCM3 -0.591 25.181 29.429

Multilayer
Perceptron

HCM1 -0.832 19.841 25.022

HCM2 -0.911 20.602 25.395

HCM3 -0.910 20.601 25.395

It is seen that the correlation coefficients for three out of four

subsystems of Android are negative, whereas those for
subsystem of Mozilla are positive. This indicates that as the
Software Entropy; i.e., the complexity of code changes
increases the number of bugs in the subsystem decreases for
Android system. But, as we know that the number of bugs
increases with the code change complexity [1], we try to
understand the differences between Mozilla and Android. The

goal of this study is to analyze why the Software Entropy
metrics are not useful for predicting bugs in Android.

TABLE VI
REGRESSION RESULTS FOR

“ANDROID/PLATFORM_FRAMEWORKS_BASE/KEYSTORE/”

Model Metrics
Correlation
Coefficient

M.A.E R.M.S.E

Support Vector Regression
(SVR)

HCM1 0.377 6.787 7.293
HCM2 0.654 4.881 5.830
HCM3 0.654 4.881 5.829

Locally Weighted
Regression (LWR)

HCM1 0.052 8.855 10.809
HCM2 0.049 8.884 10.935
HCM3 0.049 8.884 10.935

Multilayer Perceptron
HCM1 0.401 10.389 11.701
HCM2 0.408 9.931 11.067
HCM3 0.408 9.931 11.066

TABLE VII

REGRESSION RESULTS FOR “ANDROID/PLATFORM_FRAMEWORKS_BASE/OBEX/

Model Metrics
Correlation
Coefficient

M.A.E R.M.S.E

Support Vector
Regression(SVR)

HCM1 -0.574 3.136 3.805

HCM2 -0.639 3.042 3.554

HCM3 -0.638 3.042 3.554

Locally Weighted
Regression (LWR)

HCM1 -0.337 2.926 3.105

HCM2 -0.459 3.234 3.268

HCM3 -0.459 3.234 3.268

Multilayer Perceptron

HCM1 -0.715 2.494 3.137

HCM2 -0.828 2.683 3.191

HCM3 -0.828 2.683 3.191

TABLE VIII

REGRESSION RESULTS FOR

“ANDROID/PLATFORM_FRAMEWORKS_BASE/NATIVE/”

Model Metrics
Correlation
Coefficient

M.A.E R.M.S.E

Support Vector
Regression(SVR)

HCM1 -0.605 2.812 3.984

HCM2 -0.619 2.524 3.443

HCM3 -0.619 2.524 3.443
Locally

Weighted
Regression

(LWR)

HCM1 -0.694 2.5 3.535

HCM2 -0.695 2.5 3.536

HCM3 -0.695 2.5 3.536

Multilayer
Perceptron

HCM1 -0.879 3.303 3.74

HCM2 -0.854 3.384 3.839

HCM3 -0.853 3.384 3.838

TABLE IX

COMPARISON PARAMETERS
Parameter Description
Changes per

year
The number of feature introducing

changes that take place in the software
system/subsystem per year.

Bugs per year The number of bugs that are repaired in
the software system/subsystem per year.

Software
Entropy

The value of normalized Software
Entropy as given in (2)

Software type The type of software system
Development

Approach
How is the software developed?

Source code
management

system

The repository/tool used for managing the
source code

Bug tracking How are bugs reported and managed?

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:6, 2016

1173

III. COMPARISON OF MOZILLA AND ANDROID

In this section, we compare the two software: Mozilla and
Android in order to understand the differences that make
Software Entropy metrics non-applicable to Android systems.
The two subsystems are compared on the parameters listed in
Table IX. The subsections of this section compare the two
systems based on these parameters in detail and the descriptive
statistics for some of these parameters are listed in Table X.

A. Changes per Year

The number of changes per year, particularly feature
introducing changes, are compared for the subsystems of

Mozilla and Android. The mean numbers of changes per year
for the subsystems of Mozilla (54.86,265.86) are higher than
those for the subsystems of Android (19,7.8,8.6,10.75). The
mean number of changes is higher in Mozilla, and also the
variance for number of changes per year is very high in
Mozilla in comparison to Android (see Table X). Thus, a low
variance in the number of changes per year may be a factor
contributing to the non-applicability of Software Entropy
metrics for subsystems of Android.

TABLE X

DESCRIPTIVE STATISTICS OF THE COMPARISON PARAMETERS

Mozilla/layout/forms/

Parameter Range Minimum Maximum Mean Std. Deviation Variance

Number of Changes 220 2 222 54.86 84.72 7177.48

Number of bugs 533 127 660 309.57 191.15 36536.62

Software Entropy .732 .169 .901 .471 .364 .132

Mozilla/layout/generic/

Parameter Range Minimum Maximum Mean Std. Deviation Variance

Number of Changes 983 22 1005 265.86 365.43 133537.14

Number of bugs 1285 834 2119 1422.43 499.23 249231.29

Software Entropy .304 .545 .850 .687 .146 .021

Android/platform_frameworks_base/location/

Parameter Range Minimum Maximum Mean Std. Deviation Variance

Number of Changes 26 5 31 19.00 10.19 104

Number of Bugs 50 4 54 17.40 20.76 430.8

Software Entropy .330 .304 .634 .501 .138 .019

Android/platform_frameworks_base/keystore/

Parameter Range Minimum Maximum Mean Std. Deviation Variance

Number of Changes 12 4 16 7.8 4.82 23.20

Number of Bugs 23.000 2 25 10.40 8.79 77.30

Software Entropy .384 .240 .624 .456 .144 .021

Android/platform_frameworks_base/obex/

Parameter Range Minimum Maximum Mean Std. Deviation Variance

Number of Changes 36 0 36 8.6 15.35 235.80

Number of Bugs 28 0 28 7.8 11.49 132.20

Software Entropy .962 0 .962 .355 .363 .132

Android/platform_frameworks_base/native/

Parameter Range Minimum Maximum Mean Std. Deviation Variance

Number of Changes 25 2 27 10.75 11.09 122.92

Number of Bugs 14 5 19 10 6.38 40.67

Software Entropy .615 .270 .885 .603 .256 .066

B. Bugs per Year

The number of bugs per year for the subsystems of Mozilla
and Android are compared. The number of bugs per year in
Mozilla is large (in hundreds or thousands), while those for
Android subsystems are less (see Table X). Thus, a low
number of bugs repaired per year may be another factor
contributing to the non-applicability of Software Entropy
metrics for the subsystem of Android.

C. Software Entropy

The value of Normalized Software Entropy is for the
subsystems of Android and Mozilla are plotted in Fig. 2 and
Fig. 3. The Software Entropy for Mozilla subsystem is nearly

constant for some time before it increases or decreases, while
for Android subsystem the Software Entropy is rapidly
changing. This rapidly changing Software Entropy may be a
factor that renders Software Entropy inapplicable for
predicting bugs in Android.

D. Software Type

Mozilla is a web browser, while Android is an Operating
system (O.S.). A web browser is an application software used
for accessing, fetching and presenting the information
available on the internet. On the other hand, an O.S. is a
system software that is responsible for managing and
coordinating hardware and software resources. Android is a

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:6, 2016

1174

system software that manages other application software,
hence it is a more complex software system than Mozilla. The
types of bugs in an O.S. are also a bit different from those in
other software systems. An O.S. has more concurrency bugs
than memory-based or semantic bugs as compared to other
software systems [9]. This difference between the two software
systems can be another factor that leads to non-applicability of
Software Entropy Metrics for Android and not for Mozilla.

Fig. 2 Software Entropy for subsystems of Android

Fig. 3 Software Entropy for subsystems of Mozilla

E. Development Approach

Mozilla is developed by Open Source Community initiated
by Netscape members in 1998. First major version was
released in 2002, and the Mozilla Foundation supported by
open source developers and various companies was created in
2003. It follows a community based development approach.

On the other hand, Android was initially developed by
Android Inc. and later taken over by Google in 2005. It was
unveiled in 2007 along with the formation of Open Handset
Alliance. The Android source code is released under the open
source license by Google, but the fact remains that Android is
developed privately by Google and after the latest changes and
updates are made, the source code is released publically.

It can be said that since Android is developed privately by
one of the best companies in the world i.e. Google, the
complexity of code changes is not the same as for other open
source software systems. Hence, Software Entropy metrics are
not applicable for Android.

F. Source Code Management System

Mozilla uses a Mercurial repository for managing its source
code, keeping track of changes and sharing changes with

others. Mozilla-central is a Mercurial repository that keeps
track to changes made in the main development tree, whereas
Android uses Git as its open source version control system.
Repo is a repository management tool that is built over Git to
handle multiple Git repositories at once. Thus, Mozilla has its
own Mercurial repository for managing the source code,
whereas Android uses the services of Git which is an open
source software version control system. This is another
difference that might have a slight impact on the non-
applicability of Software Entropy metrics for bug prediction in
Android.

G. Bug Tracking

Mozilla uses Bugzilla for maintaining its bug database and
keeping track of the reported bugs. This is a web-based tool
that was initially developed and used by the Mozilla
Foundation. Bugzilla was later released as an open source
software and many organizations have adopted it for using as a
bug tracking system for open source as well as proprietary
software. On the other hand, Android Open Source Project
uses a public issue tracker for reporting bugs and requesting
updates.

In Bugzilla, the sole purpose is to report and track bugs
while providing complete details for reproducing a bug;
however, with the Android issue tracker, you can also make
request for features and updates. Hence, the fact that Android
does not use different systems for handling bug reports and
feature requests might affect the applicability of Software
Entropy Metrics for bug prediction in Android.

IV. CONCLUSION AND FUTURE WORK

In this study, we calculated Software Entropy Metrics for
two subsystems of Mozilla and four subsystems of Android.
We noticed negative correlation coefficients in all of the
regression techniques for three out of four subsystems of
Android, indicating that the complexity of code changes is not
able to predict bugs in Android subsystem effectively.
Therefore, in order to analyze the reason why Software
Entropy metrics cannot be used for predicting bugs in Android,
we compared the two software systems: Mozilla and Android.

On the basis of the comparison, we concluded that the
factors contributing to non-applicability of Software Entropy
Metrics for Android include: (i) low variance in the number of
changes per year, (ii) low number of bugs repaired per year,
(iii) rapidly changing Software Entropy, (iv) types and
complexity of bugs in an O.S. are different from the ones in
other application software, (v) private development approach
rather than a community based development approach, (vi) use
of an open source code management repository service and
(vii) same system for handling both bug reports and feature
requests.

We plan to enhance the study, by identifying the differences
in types of changes/bugs in the software systems that may
affect the applicability of Software Entropy metrics. Also,
there is a need to replicate this study for other subsystems of
Android.

0

0,2

0,4

0,6

0,8

1

1,2

2009 2010 2011 2012 2013
location keystore obex native

0

0,2

0,4

0,6

0,8

1

2007 2008 2009 2010 2011 2012 2013

generic forms

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:6, 2016

1175

REFERENCES
[1] A.E. Hassan, 2009. Predicting Faults based on complexity of code

change. In the proceedings of 31st Intl. Conf. on Software Engineering.
2009. pp. 78-88.

[2] Arvinder Kaur, Kamaldeep Kaur, and Deepti Chopra."Entropy based
Bug Prediction using Neural Network based regression," in Computing,
Communication & Automation (ICCCA), 2015 International Conference
on, vol., no., pp.168-174, 15-16 May 2015.

[3] Arvinder Kaur, Kamaldeep Kaur, and Deepti Chopra."Application of
Locally Weighted Regression for Predicting Faults Using Software
Entropy Metrics." In the Proceedings of the Second International
Conference on Computer and Communication Technologies, pp. 257-
266. Springer India, 2016.

[4] V.B. Singh and K.K.Chaturvedi. 2012. Entropy based Bug Prediction
using Support Vector Regression. In the proceedings of 2012 12th
International Conference on Intelligent Systems Design and
Applications (ISDA). 2012. pp. 746-751.

[5] http://hg.mozilla.org/mozilla-central/file/9ee9e193fc48/layout/forms.
[6] https://github.com/android/platform_frameworks_base/tree/master/locat

ion.
[7] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten,

I. H.: The WEKA data mining software: an update. ACM SIGKDD
explorations newsletter, 11(1), 10-18. (2009).

[8] Witten, Ian H., Eibe Frank. Data Mining: Practical machine learning
tools and techniques. Morgan Kaufmann, 2005.

[9] Lin Tan ,Chen Liu, Zhenmin Li, Xuanhui Wang, Yuanyuan Zhou,
Chengxiang Zhai. Bug Characteristics in Open Source Software.

[10] Kaur, Arvinder, and Kamaldeep Kaur. "Statistical comparison of
modelling methods for software maintainability prediction."
International Journal of Software Engineering and Knowledge
Engineering 23.06 (2013): 743-774.

[11] Singh, Yogesh, Arvinder Kaur, and Ruchika Malhotra. "A comparative
study of models for predicting fault proneness in object-oriented
systems."International Journal of Computer Applications in Technology
49.1 (2014):22-41.

