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Abstract—One of the main trouble in a steel strip manufacturing 

line is the breakage of whatever weld carried out between steel coils, 

that are used to produce the continuous strip to be processed. A weld 

breakage results in a several hours stop of the manufacturing line. In 

this process the damages caused by the breakage must be repaired. 

After the reparation and in order to go on with the production it will 

be necessary a restarting process of the line. For minimizing this 

problem, a human operator must inspect visually and manually each 

weld in order to avoid its breakage during the manufacturing process. 

The work presented in this paper is based on the Bayesian decision 

theory and it presents an approach to detect, on real−time, steel strip 

defective welds. This approach is based on quantifying the tradeoffs 

between various classification decisions using probability and the 

costs that accompany such decisions. 

 

Keywords—Classification, Pattern Recognition, Probabilistic 

Reasoning, Statistical Data Analysis. 

I. INTRODUCTION 

N the steel industry many manufacturing lines need a 

continuous strip for their permanent operation. Steel coils 

are welded in the input section of these lines in order to obtain 

the strip needed. 

A concrete manufacturing line in which this kind of 

operation is used is a galvanizing line. The aim of these 

installations is to provide protection against corrosion to the 

steel processed in it. Protecting process is done in two steps. 

Firstly, a thin layer of zinc is applied to the steel strip. 

Secondly, a thin layer of chrome can be applied to the steel 

strip if it is required by the customer. 

The building scheme of a galvanizing line, shown in Fig. 1, 

is divided into three operational sections: input section, 

process section and output section. The unions to obtain the 

continuous strip from steel coils are carried out by welding 

processes at the input section of the line. Between the input 

section and the process section there is installed a steel strip 
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accumulator. The purpose of this accumulator is to provide the 

necessary strip to the next section of the line, the process 

section, while the strip is stopped into the input section to 

carry out the weld. 

The weld between two coils obtained in the input section is 

carried out by a critical welding process. It is a critical process 

for two reasons. 

Firstly, the time available to carry out the weld: This time is 

defined by the capacity of the accumulator. The welding 

process should be done before the entire strip in this 

accumulator is consumed. In other case, the continuous steel 

strip processed must be stopped and, from that moment, the 

protection quality against corrosion of the steel strip will not 

fulfil the expected galvanizing requirements. Stopping the strip 

while it is in the process section provokes that the galvanizing 

layer applied to the strip will not be even in the entire strip 

which will generate irregularities in manufactured final 

product. 

Secondly, the reliability of the obtained weld: The welds 

must have a high quality to ensure that they can pass through 

all the components of the galvanizing line (clean electrolytic 

baths, warm−up furnace and galvanizing bath) without 

breaking. Furthermore, the welds must be able to support the 

strains to which they will be exposed in each roller of the line. 

A. Welding Process 

The welding process used at the input section of the 

galvanizing line is sheave electrical welding. This welding 

process is autogenous, that is, contribution of external material 

is not necessary. The weld is basically carried out by an 

electrical current that flows through the parts of the material to 

be welded. The coils to be welded are transversally overlapped 

over the welding machine chassis. In the welding process, the 

Joule effect of an electrical current applied to the steel is used 

to raise the temperature of the overlapped area of the coils 

until welding temperature. The electrical current is applied to 

the coils by means of two sheaves, called welding sheaves. 

After these two sheaves, another pair of sheaves, called 

flattening sheaves, apply pressure to both sides of the 

overlapped area of the coils to ensure the weld.  

All the adjustable parameters of a welding process in the 

galvanizing line are defined by different welding machine 

control programs. Each welding program is determined by the 

class of the two coils to be welded and the thickness of each of 

those. The range of the steel thickness that the line can process 

is divided into small intervals in order to determine the correct 

welding parameters for them. The welding control
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Fig. 1 Galvanizing Line 

 

program defines the voltage applied to the welding sheaves, 

the overlapping area of the coils to be welded and the 

pressures to be applied to the welding area by means of the 

welding sheaves and the flattening sheaves. 

B. Current Nondestructive Tests 

The aim of this work is to provide a technique for predicting 

the quality of each weld carried out in the galvanizing line and, 

therefore, for suppressing the manual and visual inspection of 

the human operator. 

A first technique for replacing the human operator 

inspection consists in acquiring images of the welding area 

with an artificial vision system that automatically emulates his 

inspection process [1] [2]. These techniques only obtain 

acceptable results in welds with external defects. 

Techniques which do not use visible spectrum for detecting 

defects in welds, either internal or external, are based on 

X−Ray [3] [4] and ultrasound [5] [6] technologies. The cost of 

the techniques based on these systems is very high. 

Furthermore, their implementation and installation are difficult 

in industrial lines that have not previewed their utilization in 

the design phase, as it is the case of the galvanizing line in 

which this work is developed. 

As an alternative to the high cost methods referenced above, 

other approaches were developed. The analysis of a weld can 

be made by several physical variables of the welding process 

easy to measure, such as, the voltage and current applied to the 

steel during the electrical welding process. The defective 

welds in these cases are detected by a statistical processing of 

the evolution of the acquired variables [7]. Instead of a 

statistical approach, the processing of the variables can use 

other classical computational intelligence techniques, such as 

classification and regression tress [8] [9], neural−networks 

[10] [11], fuzzy−logic [12] [13], and data−mining 

techniques [14]. 

In some steel manufacturing line in which the installation of 

X−Ray or ultrasound testing systems can not be installed 

because of the limitations of the line design, cheap sensors 

besides the indispensable sensors for the control of the welding 

process can be installed, such as, temperature sensors.  

The work presented in this paper follows this approach: a 

statistical processing of the measurements provided by basic 

and complementary sensors. 

II. ARCHITECTURE OF THE WELDING DEFECTS  

DETECTION SYSTEM 

The detection system needs to know information about each 

weld carried out in the line in order to classify it as defective 

or non−defective. This classification is made on real−time and 

it is shown to the human operator of the input section of the 

galvanizing line. 

The components of the developed detection system are 

shown in Fig. 2. 
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Fig. 2 Architecture of the Welding Defects Detection System 

 

The architecture of the system is organized in three layers: 

Information Source Layer (low level), Measurement and 

Processing Layer (intermediate level) and Monitoring Layer 

(high level). The information about each weld carried out in 

the line flows from the bottom layer to the top layer. 

The low level layer and its interface with the intermediate 

level layer contain the hardware implementation of the system. 

They provide information about the processes to the upper 

layer. This layer is composed by the following components: 

Process Computer, a computer which stores data about each 

coil processed in the line (identification, steel class, length, 

weight, width, thickness...); Welding Machine PLC, a 

programmable logic controller which controls all the actions of 

the welding machine by the welding control 
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 programs; and Welding Machine Sensors, a set of basic and 

complementary sensors that measure the welding process 

physical variables. These variables are: the welding machine 

header speed, the voltage applied to the steel coils by means of 

the welding sheaves, the electrical current that flows through 

the welding area, the welding area temperature, the welding 

sheaves pressure and flattening sheaves pressure. 

The intermediate level layer acquires, stores and processes 

the information. This layer is composed by the Welding PC, a 

computer which is the core of the system. The set of sensors 

connected to the welding machine transmit data to the Welding 

PC by means of current loops to avoid interferences produced 

by the high electromagnetical noise of the line. This computer 

has an analogical acquisition system which acquires Welding 

Machine Sensor measurements in real−time. Welding PC is 

also connected to the other two subsystems of the lower layer. 

Using a dedicated TCP/IP link it receives from Process 

Computer identification, physical characteristics and chemical 

composition of each coil processed in the line. Using another 

dedicated TCP/IP link, Welding PC receives from Welding 

Machine PLC the specific welding control program for each 

welding process and indications about the starting and 

finishing of the process. This computer stores, for each weld 

carried out in the line, a binary file containing the 

identification, physical characteristics and chemical 

composition of the welded coils, the welding control program 

and the evolution of the signals measured during the welding 

process. 

The top level layer provides two ways of monitoring the 

welding process. This layer is composed by Real−Time 

Welding Monitor and Off−Line Welding Monitor. These are 

computers connected with the Welding PC by means of a 

shared TCP/IP link. Real−Time Welding Monitor displays, in 

real−time, the evolution of the welding process signals 

measured by the lower layer. Off−Line Welding Monitor 

provides a remote access point to the entire information of 

each weld carried out in the galvanizing line stored in Welding 

PC. 

III. DEFECTIVE AND NON−DEFECTIVE WELDS 

CLASSIFICATION 

As a defect detection strategy, the system uses a classifier to 

separate the two possible kinds of a weld carried out in the 

line: defective, when a weld is unacceptable for the rest of the 

galvanizing process, and non−defective, when a weld is 

considered valid for the process.  

The developing process of this classifier is based on the 

empirical knowledge obtained after carrying out many welds 

with different steel classes and different thickness intervals, 

and the expert knowledge on welding processes of the 

qualified staff of the manufacturing line. A wide testing set of 

welds, obtained during six month work of the galvanizing line, 

is used (seven thousand welds) to build this classifier. Each 

weld of this set was classified by a group of human operators 

of the line.  

A pattern recognition system [15] is used and it can be 

divided into four different components as is shown in Fig. 3. 

The input of the pattern recognition system is a natural pattern 

and the result provided by it is a category for the pattern. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Components of the Pattern Recognition System 

A. Sensing 

The input of the pattern recognition system is provided by 

the lower layer of the architecture (Fig. 2). Process Computer 

data, Welding Machine Sensors measurements and Welding 

Machine PLC data are combined for each weld carried out in 

the line in order to obtain an input to the system. 

 An input of the pattern recognition system, X, is a random 

variable composed by n components, X = {x 1, x 2, ...,x n}. For a 

specific combination of steel classes to be welded and a 

specific thickness interval, the input pattern is defined as  

X = {Voltage, Current, Temperature, Welding Machine 

Header Speed, Welding Sheaves Pressure, Flattening Sheaves 

Pressure}, where x i is a statistical value of each analogical 

signal. 

B. Feature Selection and Extraction 

 The goal of this stage is to characterize a weld to be 

recognized by measurements whose values are very similar for 

welds in the same category (defective or non−defective) but 

very different for welds in other category. The relevant 

information for the classification, Y = {y1, y2,..., yd), must be 

extracted (Fig. 4) from the original pattern, X = {x 1, x 2, ..., x n},  

where d ≤ n. 

 
 

 

 

 

 

 

 

 

Fig. 4 Feature Selector and Extractor 

 

A study with the testing weld set was done and it determined 

that it is no necessary to work with all measured values of the 
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analogical signals acquired because defects in one weld can be 

identified by significant variations in the average values of the 

signals, with regard to average values obtained from 

non−defective welds for the same combination of steel classes 

to be welded and the same thickness interval.  

This study also determined that there are two variables 

acquired that do not show variations between defective or 

non−defective welds: the welding machine head speed and the 

voltage applied to the welding sheaves. The reason for no 

variations in header speed is that, in all welding processes,  

speed is always set by the welding machine controllers and 

they can support the same speed during the entire process, 

independently of the quality of the weld obtained. The voltage 

applied to the welding sheaves is controlled by a transformer 

which can support the set−point fixed by the welding control 

program during the entire welding process. In this way, the 

variations can be observed in the electrical current that flows 

through the welding area due to the steel resistivity of each 

coil to be welded. 

 The important information for classification is the set 

Y = {Current, Temperature, Welding Sheaves Pressure, 

Flattening Sheaves Pressure}. 

C. Classification 

The task at this stage is to use the feature vector provided by 

the feature selection and extraction stage, Y, to assign the weld 

to a category, or more specifically, to determine the 

probability for each of the possible categories.   

Following the decision theory terminology, a steel coil weld 

is in one of these two possible states: either the weld is 

defective or it is non−defective. These two categories defined 

the Ω set: Ω = {ω1, ω2} = {Defective, Non−Defective}. 

With all the population of the welds acquired in the testing 

set, prior probabilities can be calculated for each category in 

the Ω set, Defective (1) and Non−Defective (2). 

085.0)()( 1 =Ρ=Ρ Defectiveω  (1) 

915.0)(1)()( 2 =Ρ−=Ρ=Ρ DefectiveveNonDefectiω  (2)  

For each particular feature of Y, its probability density 

function is calculated, p(y|ωj). These functions show the 

probability density of measuring a particular feature value: 

Current, Temperature, Welding Sheaves Pressure or 

Flattening Sheaves Pressure, given the pattern is in the 

category Defective or Non−Defective. Fig. 5 shows the two 

curves which describe the difference in Current of the 

population of two kinds of quality weld. Fig. 6 describes the 

difference in Temperature of the same population. Fig. 7 and 

Fig. 8 describe the difference in Welding Sheaves Pressure and 

Flattening Sheaves Pressure in the same population, 

respectively. Density functions are normalized, thus the area 

under each curve is 1.0. 

The two first probability density functions show that there 

are significant differences in Current and Temperature 

between the two weld quality categories. The two last 

functions show that there are no significant variations in 

Welding Sheaves Pressure and that there is no any variation in 

Flattening Sheaves Pressure between both categories. 

Therefore, Current and Temperature are the two variables 

selected for the classification process.  
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Fig. 5 Current Probability Density Function 
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Fig. 6 Temperature Probability Density Function 
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Fig. 7 Welding Sheaves Pressure Probability Density Function 

3940 3960 3980 4000 4020 4040 4060

Pressure [mBar]

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

p(
F
la
tt
e
n
in
g
 P
re
s
s
u
re
|w
 i)

Non−Defective 

Defective 

 
Fig. 8 Flattening Sheaves Pressure Probability Density Function 

 

Weld classifier uses the feature vector zzzz, which is a 
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2−dimensional space called feature space, defined as 

zzzz = {z1, z2} = {Current, Temperature}, and it is based on the 

Bayes formula (3). 
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and P(ωj|z),  the posterior probability, is the probability of the 

state of nature being ωj given that feature vector z has been 

measured. 

Particularizing, Bayes formula is applied as (5) and (6). 
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where, being z1 and z2 conditionally independent random 

variables, 
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and 
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After calculating P(Defective|z) and P(Non−Defective|z) for 

a specific weld, z, the simplest decision to classify it in one of 

the two categories, Defective or Non−Defective weld, is (10), 

but it is not always the best decision in this system. The 

problem is that all errors have not the same cost. An error in 

classifying a defective weld as non−defective 

(“Real D, Predicted ND”) is more expensive than classifying a 

non−defective weld as defective (“Real ND, Predicted D”). 

The first error provokes that a low quality weld pass through 

the rest of the galvanizing line having a high probability of 

breaking. The second error provokes that a good quality weld 

is repeated by the welding machine. The cost of one welding 

process is much lower than a stopping process of the entire 

galvanizing line (Table I). 

2211 )|()|( ωωωω decideelsezzifDecide Ρ>Ρ  (10) 

D. Post−Processing 

The post−processor subsystem uses the output of the 

classifier to decide on the action to recommend to the human 

operator of the input section of the galvanizing line. There are 

two actions depending on the quality of the weld carried out. If 

the weld is classified as defective, the recommended action is 

“repeat welding process”. Otherwise, the recommended action 

is “continue galvanizing process”. 

Classification errors “Real D, Predicted ND” must be 

avoided, so, it is necessary to define a decision rule to 

minimize the probability of this error. 

Let {α1, α2} = {repeat, continue} be the set of possible 

actions to recommend to a human operator. A loss function 

[16], λ(αi|ωj), is defined, in (11) based on the error 

classification cost shown in Table I. λ(αi|ωj) describes the loss 

incurred for recommending action αi to a human operator 

when the state of the weld is ωj. If action αi is recommended to 

an operator and the true state of the weld is ωj then the 

decision is correct if i = j and is in error if i ≠ j. This function 

penalizes the classification error “Real D, Predicted ND”. 
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An expected value of “loss” when taking action αi is 

calculated applying (12). Then, the conditional risk of each 

action recommended in the galvanizing line is (13). 
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The final decision is to select a choice that minimizes the 

conditional risk (14). 

veNonDefectidecideelse

zcontinueRzrepeatRifDefectiveDecide )|()|( <
 (14) 

IV. DEFECTS DETECTION SYSTEM INTERFACES 

The top level layer of the architecture of the welding defects 

detection system is composed by two computers, as is shown 

in Fig. 2.  

One computer receives, on real−time, the data of each weld 

carried out in the line. The interface developed allows human 

operators to monitor each weld and to receive, from the core 

of the system, the recommended action about the welding 

process just finished. This interface is shown in Fig. 9. It 

provides visualization of physical variables of the welding 

process in real−time.  

Users of this interface are operators of the input section of 

TABLE I 

CLASSIFICATION COSTS 

Real 
  

D ND 

D 0 € 2.500 € 
Predicted 

ND 50.000 € 0 € 

D = Defective ND = Non−Defective 
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the galvanizing line, specifically, welding machine operators. 

 
Fig. 9 Real−Time Welding Monitor 

 

The other computer is an access point to the data stored by 

the system. The interface developed allows galvanizing line 

engineers to monitoring each welding process carried out in 

the line previously. This interface is shown in Fig. 10. It 

provides a navigation tool for each welding binary file stored 

in Welding PC (intermediate level of the architecture of the 

system) and allows monitoring all welding parameters, 

physical characteristics and chemical compositions of the 

welded coils.  

Users of this interface are maintenance engineers and 

quality engineers of the galvanizing line. They will be able to 

calculate, analyzing the data stored the unavailability of the 

manufacturing line due to defective welds. 

 
Fig. 10 Off−Line Welding Monitor 

V. RESULTS 

A system that allows detection of defective steel strip welds 

in real−time has been developed based on the strategy shown 

in this paper. The system is installed in a galvanizing line of 

Arcelor Group in Avilés (Spain). About eighty steel strip 

welds are manufactured each day. The entire data of these 

welding processes are on−line monitored and stored by the 

system.  

Based on the classification strategy described and the cost 

of each possible action, the system is able to indicate to the 

human operators of the input section of the galvanizing line, 

the recommended action for each weld carried out in the line. 
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