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 
Abstract—In this paper, an encryption algorithm is proposed for 

real-time image encryption. The scheme employs a dual chaotic 
generator based on a three dimensional (3D) discrete Lorenz attractor. 
Encryption is achieved using non-autonomous modulation where the 
data is injected into the dynamics of the master chaotic generator. The 
second generator is used to permute the dynamics of the master 
generator using the same approach. Since the data stream can be 
regarded as a random source, the resulting permutations of the 
generator dynamics greatly increase the security of the transmitted 
signal. In addition, a technique is proposed to mitigate the error 
propagation due to the finite precision arithmetic of digital hardware. 
In particular, truncation and rounding errors are eliminated by 
employing an integer representation of the data which can easily be 
implemented. The simple hardware architecture of the algorithm 
makes it suitable for secure real-time applications. 
 

Keywords—Chaotic systems, image encryption, 3D Lorenz 
attractor, non-autonomous modulation, FPGA. 

I. INTRODUCTION 

HAOTIC systems have properties which have been 
extensively studied due to their complex behavior. They 

derive their inherent complexity from the extreme sensitivity of 
the system to the initial conditions. This characteristic and 
others such as ergodicity and random like behavior, are 
connected with conventional cryptographic properties such as 
confusion and diffusion [1].  

In 1991, chaotic systems were shown to be controllable using 
master/slave synchronization [2]. In this case, the received 
signal is used as a driving state variable at the receiver, with the 
condition that the driven subsystem has negative Lyapunov 
exponents for all remaining state variables. The popularity of 
this approach comes from its simplicity. Subsequently, a wide 
variety of approaches have been proposed to achieve 
synchronization between the transmitter and receiver of chaotic 
communication systems. Continuous cryptographic systems 
have been developed which use the synchronization between 
the transmitter and receiver to retrieve data transmitted through 
an insecure medium. These include the first generation masking 
[3] and switching [4] techniques, and the second generation 
parameter and non-autonomous modulation techniques [5]-[7]. 
With chaotic masking, an analog message is added to the output 
of the chaotic generator at the transmitter. At the receiver, the 
chaotic signal is subtracted to recover the message. Several 
attacks on this cryptosystem have been developed [8]. Chaotic 
switching is a digital transmission technique and includes chaos 
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shift keying (CSK), chaos on-off keying (COOK), differential 
chaos shift keying (DCSK), and FM-differential chaos shift 
keying (FM-DCSK). With this approach, the message data is 
used to select the signal to be transmitted from two or more 
chaotic attractors. At the receiver, the received signal is used to 
drive chaotic systems identical to those at the transmitter. The 
system that becomes synchronized with this signal determines 
the transmitted symbol. Successful attacks on this technique 
have been developed [9]. 

Chaotic modulation is considered to be the second generation 
of chaotic cryptosystems. Two methods have been proposed to 
modulate the data. The first is chaotic parameter modulation 
and uses the data to modulate one or more parameters of the 
chaotic attractor [10]. The second method is chaotic non-
autonomous modulation. In this case, the data is injected into 
the dynamics of the chaotic attractor. Techniques developed to 
break chaotic parameter modulation include the return map 
[11], and adaptive observer [12]. While non-autonomous 
modulation is considered to be more secure than parameter 
modulation, for the Lorenz attractor return map and geometry 
attacks have been developed under the assumption that the data 
signal is sinusoidal and synchronization is done at the receiver 
[13]-[15]. 

Third generation techniques have been developed to provide 
a much higher level of security than the previous approaches. 
They can be implemented using dual chaotic systems which 
consist of a combination of two chaotic generators, or classical 
cryptographic techniques in conjunction with a high 
dimensional chaotic attractor [16]. Digital chaotic 
cryptosystems have also been developed which use chaotic 
maps directly to provide security rather than employing chaotic 
synchronization for this purpose [17]-[20]. 

In theory, chaotic systems used in communications 
applications are infinite precision systems. However, in practice 
they must be implemented using digital hardware with finite 
precision arithmetic, so that all computations are subject to 
truncation or rounding. The resulting degradation in the system 
means that the attractor orbits must eventually be periodic [21]. 
Refer to [22], the authors proposed three solutions to this 
problem. These solutions employ random perturbations with 
the digital chaotic systems to increase the orbits of the dynamic 
systems. This enhances the randomness and thus also the 
security. 

The use of finite precision arithmetic also introduces noise 
due to truncation and rounding. This noise affects the dynamics 
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of the chaotic attractor and grows exponentially, quickly 
leading to a significant variation from the original orbit. 
Because of these issues, most chaotic encryption systems 
employ chaos based pseudo random number generators 
(PRNGs) to encrypt the data, thus avoiding the error between 
the transmitter and the receiver. These numbers can be 
generated using either floating point or integer arithmetic. The 
initial conditions and control parameters play the role of the 
secret key. One dimensional chaotic systems are simple and 
efficient [23], and thus the Logistic map has been widely used 
[24], [25], but they suffer from a small key space and weak 
security [26]-[28]. 

In this paper, a discrete dual chaotic cryptographic system 
which consists of two discrete chaotic generators is proposed. 
Previously, dual chaotic cryptographic systems were developed 
with one generator used to drive the other and synchronize the 
receiver to retrieve the data. Conversely, the proposed approach 
uses one (permutation) generator to permute the other (master) 
generator to increase the key length, orbit length, and conserve 
the randomness. At the receiver, the master generator cannot 
achieve synchronization with the transmitter without the 
permutation signal from the permutation generator. This 
prevents an eavesdropper from synchronizing their receiver 
using the transmitted signal only. In addition, the data is 
encrypted using non-autonomous modulation as in the 
continuous chaotic systems [6], [7]. With this technique, the 
data is injected into the dynamics of the master generator. Since 
the data to be encrypted appears as a random source, it results 
in a random permutation of the dynamics of the master 
generator. This random permutation increases the length of the 
orbit, which enhances the security of the cryptosystem. Further, 
the method suggested in [22] is used to eliminate the 
degradation due to the use of finite precision arithmetic. The 
simplicity of the algorithm hardware implementation will be 
shown using FPGA technology which is widely employed in 
real-time applications. The speed of the proposed approach 
makes it very suitable for use in secure real time systems, 
particularly real-time image encryption applications which 
require high data rates.  

The rest of the paper organized as follows. The proposed dual 
chaotic cryptographic system is introduced in Section II. The 
chaotic properties of this system are examined in Section III, 
and Section IV presents a security analysis of the system. An 
FPGA hardware implementation is given in Section V which 
shows the practicality of this approach to encrypting and 
decrypting data. Finally, Section VI presents some conclusions.  

II. THE PROPOSED LORENZ DUAL CHAOTIC SYSTEM 

The state variables of the continuous Lorenz attractor are 
described by the following differential equations: 

  
ሶݑ ൌ ݒሺܣ െ  ሻݑ

ሶݒ ൌ ݑܤ െ ݒ െ  (1)                            ݓݑ20
ሶݓ ൌ ݒݑ5 െ  ݓܥ

 
Instead of that, the proposed system consists of two 3D 

chaotic generators based on the discrete Lorenz attractor, this is 

because a discrete attractor provides greater signal complexity 
and can be implemented simply in hardware [29]. A master 
generator is used to transmit the encrypted signal, while the 
permutation generator is used to permute the master generator 
dynamics. This permutation enhances the security of the 
system. The state equations of the discrete Lorenz generator 
are: 

  
ܷ௡ାଵ ൌ ሺܣ൫ݐ∆ ௡ܸ െ ܷ௡ሻ൯ ൅ ܷ௡	

௡ܸାଵ ൌ ௡ܷܤሺݐ∆ െ ௡ܸ െ 20ܷ௡ ௡ܹሻ ൅ ௡ܸ              (2)	
௡ܹାଵ ൌ ሺ5ܷ௡ݐ∆ ௡ܸ െ ܥ ௡ܹሻ ൅ ௡ܹ 

 
where A, B and C are constants, which differ for the master and 
permutation generators. The data is encrypted using non-
autonomous modulation via insertion into a state equation of 
the master generator, while the permutation signal is injected 
into another state equation of this generator. 

The state equations of the master generator at the transmitter 
are: 

 
ܷ௡ାଵ ൌ ሺܣሺݐ∆ ௡ܸ െ ܷ௡ሻ ൅ ݉௡ሻ ൅ ܷ௡	

௡ܸାଵ ൌ ሺBU୬ݐ∆ െ V୬ െ 20U୬W୬ ൅ p୬ሻ ൅ V୬         (3) 
௡ܹାଵ ൌ ሺ5ܷ௡ݐ∆ ௡ܸ െ ܥ ௡ܹሻ ൅ ௡ܹ	

 
where ݉௡ represents the data and 	݌௡ represents the 
permutation signal which can be one of the state variables of 
the permutation generator as defined in (2). State variable ܷ is 
used as the transmitted signal.  

At the receiver, the received signal is used with the signal 
generated by the permutation generator at the receiver to 
synchronize the master generator, and hence retrieve the data. 
Since the ܷ state is transmitted, the receiver uses this received 
state variable to update its own difference equations, and hence 
the retrieved data is given by: 

 

෥݉௡ ൌ ሾ݀݊ݑ݋ݎ
ଵ

∆௧
ሺܷ௡ାଵ െ ܷ௡ሻ െ ൫ܣ ෨ܸ௡ െ ܷ௡൯ሿ         (4) 

 
where round denotes rounding to the nearest integer. This is 
used to eliminate the noise due to finite precision arithmetic in 
the digital hardware. Since the data to be encrypted is digital 
(e.g. image, text or audio files), it is transmitted in blocks of bits 
(bytes or words). These blocks are represented as integers, and 
then scaled to floating point numbers. Scaling of the resulting 
values is used to preserve the chaotic behavior of the system 
[4]. These values are injected into the dynamics of the master 
generator to obtain the chaotic cipher signal. At the receiver, the 
real values are rounded to the nearest integers using (4), and 
these values are reused as	݉௡	in (3) to update the receiver state 
variables. This removes the noise and thus prevents these errors 
from propagating through the system dynamics. 

III. CHAOTIC PROPERTIES OF THE PROPOSED SYSTEM 

The proposed system was simulated using MATLAB with 
double precision floating point. The constants for the master 
generator are A= 10, B= 28, C= 8/3 and ∆t= 0.024, while the 
constants for the permutation generator are A= 9.8, B= 27, C= 
2.8 and ∆t = 0.024. The state variable ܸ of the permutation 
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generator is used as the permutation signal	݌௡. An image file of 
size 4,405,713 bytes (3072 × 2304 pixels), was used to 
investigate the system properties. This size was chosen to test 
the practicality of the proposed encryption algorithm to 
overcome the noise due to finite precision arithmetic. The data 

integers	݉௡ are scaled by a factor of 0.00001 to preserve the 
chaotic behavior, while the permutation values ݌௡ are scaled by 
a factor of 0.01 to blur the return map. Fig. 1 shows the original 
image, the transmitted signal, and the recovered image.  

 

 

(a)                                                                                 (b) 
 

 

(c)                                                                                (d) 

Fig. 1 An example of image file encryption: (a) the original image, (b) the transmitted signal, (c) the autocorrelation of the transmitted signal, 
and (d) the recovered image 

 
IV. SECURITY ANALYSIS 

Although the chaotic behavior of the continuous Lorenz 
attractor is very complex, there have been numerous attempts 
to break ciphers based on this attractor [30]-[33]. All of these 
approaches are based on the system synchronization for the 
continuous Lorenz system. The attacker uses the transmitted 
signal as the driving signal to synchronize their receiver to 
obtain the Lorenz attractor parameters. However, these methods 
cannot be used against the proposed system because the driven 
subsystem is non-autonomous with an external signal from the 
permutation generator injected into the second state equation. 

Fig. 2 shows the return map of the proposed algorithm. In 
Fig. 2 (a), the red dots represent the return map of the Lorenz 
attractor [30], and the blue dots represent the return map using 
the dual chaotic system without the data signal injected. This 
indicates that the return map of the proposed system is blurred 
by the signal from the permutation generator. Fig. 2 (b) shows 
the effect of the injected data on the return map. Clearly the data 
signal increases the blurriness of the return map, which is 
desirable. 

The importance of a blurry return map is that it prevents an 
attacker from extracting any useful information about the 
generator control parameters, and hence breaking the algorithm 
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[30]. The return map of the proposed algorithm is blurred using 
two random signals, namely the permutation signal and the data 

signal. This is much stronger than using a periodic signal to blur 
the return map as in [31], which was broken by [14]. 

 

 

(a)                                                                                 (b) 
                   

 

(c)                                                                                (d) 

Fig. 2 The return map of the proposed dual chaotic cryptosystem based on the Lorenz attractor: (a) and (b) without a data signal, (c) and (d) 
with a data signal 

 
A. Attacks on the System  

A known plaintext attack, a chosen plaintext attack, and a 
chosen ciphertext attack, the goal of these attacks is to obtain 
information about the secret key. When the encryption 
algorithm is based on non-autonomous modulation, the 
complex dynamics of the chaotic cipher are modified by the 
data being encrypted, and the second generator. Thus, the 
permutation and diffusion in the chaotic system are directly 
affected by external forces. In addition, this modulation is done 
over two of the three state equations of the discrete Lorenz 
generator. At the receiver, the decrypted plaintext values are 
used to update the chaotic generator. Thus, the generator 
dynamics are related to: the plaintext being encrypted, the 
permuting chaotic signal, and the ciphertext being decrypted. 
Therefore, without knowledge of the particular plaintext being 
encrypted and the permuting chaotic signal, an attacker will not 
be able to reproduce the particular system dynamics, so the 
proposed algorithm is resistant to these attacks. 

One situation that should be considered is when the attacker 
has access to the encryption system and can encrypt null 
message. In this case the transmitted signal will reflect the 
dynamics of the chaotic generator without any variations due to 
the data, but still permuted due to the second generator. The 
attacker still cannot perform a geometric attack on the Lorenz 
generator, as in [13]-[15], [30]-[33]. In addition, these attacks 
will not work because the discrete Lorenz generator used in the 
proposed technique has an additional parameter Δt which 
appears in all three difference equations. Since each Δt can be 
assigned a different value, they represent three additional key 
parameters beyond those of the differential equations of the 
continuous Lorenz generator, and so provide an additional level 
of security. This greatly decreases the probability of a 
geometric attack on the proposed cipher being successful as will 
be shown later when attacks on the Lorenz generator are 
considered. 
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(a)                                                                                 (b) 
 

 

(c) 

Fig. 3 The encrypted signals and their correlations using the proposed dual chaotic encryption system: (a) transmitted signal, (b) its 
autocorrelation without an injected data signal, (c) cross-correlation of the transmitted signals with and without an injected data signal 

 
B. Key Space Analysis and Brute-Force Attack  

At present, a key length of 2100 is sufficient to protect an 
algorithm against a brute-force attack [34]. Table I shows the 
sensitivity of each control parameter of the discrete Lorenz 
attractors for both the master and the permutation generators 
using double precision floating point. This sensitivity is the 
value below which the dynamics of the generators at the 
transmitter and receiver converge. Conversely, the dynamics 
differ for larger parameter differences. The product of the 
sensitivities (or equivalently the sum of their digits), gives the 
key length for the algorithm. This gives a key-length of 60 
decimal digits, and 1060 > 2100. Note that this does not include 
the initial values of the master generator. This is because 
synchronization of this generator can be achieved even if the 
initial values are not known exactly. On the other hand, the 
initial values of the permutation generator are very important 
since the output is used to permute the master generator. This 
greatly increases the robustness against a brute force attack, as 
indicated in Table I. 

C. Statistical Analysis  

The transmitted chaotic signal ܷ of the master generator was 
subjected to a statistical analysis in an attempt to obtain 
information about the dynamics of the chaotic system. Fig. 1 
(b) and 1 (c) show the transmitted signal in time and the 
autocorrelation of this signal, respectively. The nearly flat 
autocorrelation illustrates the randomness of the transmitted 
signal, and thus the difficulty in exploiting it via correlation 
techniques. Further, Fig. 3 shows the low correlation between 
the transmitted signal with and without the injected data signal. 

D. Differential Analysis  

In a differential attack, the cryptanalyst is assumed to have 
the capability of modifying individual values of the plaintext 
(data) and observing the resulting encrypted signal. If such a 
change results in a significant change in this signal, then the 
attack is considered to be inefficient and impractical. The 
proposed algorithm was used to encrypt an image as shown in 
Fig. 1, and the file with the first byte changed. Figs. 4 (a) and 4 
(b) show the difference between the two transmitted signals in 
time, and their cross-correlation, respectively. 
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(a)                                                                                 (b) 

Fig. 4 (a) the difference between two encrypted signals in time, and (b) the cross-correlation of the two transmitted signals 
 

 

(a) 
 

 

(b) 

Fig. 5 Xilinx blocks integrated with MATLAB for hardware implementation: (a) transmitter implementation, (b) receiver implementation 
 

E. Encryption Time Performance 

The time to execute an encryption algorithm is an important 

factor in many applications. The time required for the proposed 
algorithm is compared in Table II with several algorithms in the 
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literature. The proposed algorithm is faster than the other 3D 
chaotic systems and AES, and has an acceptable speed 
compared with 1D and 2D systems. While 1D chaotic systems 

are very fast, they suffer from low security compared to higher 
dimensional chaotic systems. 

 
TABLE I 

THE KEY LENGTH BASED ON THE MASTER AND PERMUTATION GENERATOR PARAMETERS 

Master generator parameter Sensitivity Number of digits Permutation generator parameter Sensitivity Number of digits
Initial values 

ܷ଴ 

଴ܸ 

଴ܹ 

 
- 
- 
- 

 
- 
- 
- 

Initial values 
ܷ଴ 

଴ܸ 

଴ܹ 

 
10-4 
10-4 
10-4 

 
4 
4 
4 

Lorenz parameters 
A 
B 
C 

 
10-3 
10-3 
10-3 

 
3 
3 
3 

Lorenz parameters 
A 
B 
C 

 
10-4 
10-4 
10-4 

 
4 
4 
4 

 parameter for ݐ∆
ܷ 
ܸ 
ܹ 

 
10-4 
10-4 
10-4 

 
4 
4 
4 

 parameter for ݐ∆
ܷ 
ܸ 
ܹ 

 
10-5 
10-5 
10-5 

 
5 
5 
5 

Combination 10-21 21  10-39 39 

 
TABLE II 

ENCRYPTION/DECRYPTION EXECUTION TIMES FOR SEVERAL ALGORITHMS 

Algorithm System characteristics Dimension of the chaotic generator Execution Time 

[35] Pentium IV 2.1 GHz 1D 74.4 Mbps 

[36] Dual core 2.7 GHz 1D 15.6 Mbps 

[37] Intel core 2 duo 2.1 GHz 2D 6.69 to 22.6 Mbps 

[38]  2D 

AES [128 key]         11.2 Mbps 
AES [192 key]          9.25 Mbps 
AES [256 key]          9.19 Mbps 
Algorithm in [38]     44.9 Mbps 

[39]  3D 8 Mbps 

[40] Intel core i5 2.27 GHz 3D 15.4 Mbps 

Proposed algorithm Pentium (R) dual core 1.6GHz 3D 
33.6 Mbps 
27.7 Mbps 

 
V.   FPGA IMPLEMENTATION 

The proposed encryption system was implemented using a 
Field Programmable Gate Array (FPGA). Using the Xilinx tool 
in MATLAB, the transmitter and the receiver blocks were 
constructed and are presented in Fig. 5. Fig. 5 (a) shows the 
permutation generator on the left of the transmitter block, and 
the master generator on the right. The data values (integers) are 
converted to floating point numbers and injected after scaling. 
At the receiver, the information is retrieved using (4). The 
floating point values are rounded to integers and then used to 
update the receiver master generator state variables as shown in 
Fig. 5 (b).  

VI. CONCLUSION 

In this paper, an encryption algorithm was proposed based on 
a dual chaotic system for secure real-time image applications. 
A three dimensional (3D) discrete Lorenz attractor is employed 
with non-autonomous modulation. The dynamics of the master 
chaotic generator are permuted by the data values and the output 
of a second (permutation) chaotic generator. This permutation 
prevents an eavesdropper from synchronizing their receiver 
with the encrypted signal since they have no information about 
the permutation signal from the second generator. The effects 
of using finite precision arithmetic were mitigated by using 
integers to represent the data values and rounding the received 

floating point values to integers. These integer values are used 
to update the state variables at the receiver, so that it can track 
the transmitter. Based on an evaluation and simulation of the 
system, it was shown that the security of the proposed scheme 
is excellent, and that the execution time is suitable for secure 
real-time applications. 
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