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Abstract—For the communication between human and computer 

in an interactive computing environment, the gesture recognition is 
studied vigorously. Therefore, a lot of studies have proposed efficient 
methods about the recognition algorithm using 2D camera captured 
images. However, there is a limitation to these methods, such as the 
extracted features cannot fully represent the object in real world. 
Although many studies used 3D features instead of 2D features for 
more accurate gesture recognition, the problem, such as the processing 
time to generate 3D objects, is still unsolved in related researches. 
Therefore we propose a method to extract the 3D features combined 
with the 3D object reconstruction. This method uses the modified 
GPU-based visual hull generation algorithm which disables unneces-
sary processes, such as the texture calculation to generate three kinds 
of 3D projection maps as the 3D feature: a nearest boundary, a farthest 
boundary, and a thickness of the object projected on the base-plane. In 
the section of experimental results, we present results of proposed 
method on eight human postures: T shape, both hands up, right hand 
up, left hand up, hands front, stand, sit and bend, and compare the 
computational time of the proposed method with that of the previous 
methods.  
 

Keywords—Fast 3D Feature Extraction, Gesture Recognition, 
Computer Vision. 

I. INTRODUCTION 
HE recognition algorithm is significant to the interactive 
computing environment. Additionally, the processing time 

and recognition accuracy are the main concerns of the recogni-
tion algorithm. Therefore, various researches related to these 
concerns have been studied in the last few years.  

Generally, computer vision-based recognition algorithms 
use 2D images for extracting features. The 2D images can be 
used efficiently when the camera position and viewing direc-
tion are fixed. The features, extracted from 2D input images, 
are invariant to the scale, the translation, and the rotation in 2D 
planes. However, in spite that the targets, which are captured 
and recognized, are 3D objects, the features, which are ex-
tracted in 2D images, can have 2D information or limited 3D 
information.  
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To solve this problem, a lot of studies proposed methods us-
ing multi-view images[1,2,3]. These methods recognize objects 
or postures using comparison results between camera input 
images and multi-view camera captured images which are 
captured by real or virtual cameras around the objects of rec-
ognition. However, these methods spend very long time to 
generate features and to compare the features with input data, 
since the accuracy of recognition is proportional to the number 
of camera view images. And the major problem of these me-
thods is that the features extracted from multi-view images 
cannot fully represent the 3D information. This is due to those 
images still containing only the 2D information. 

Therefore, recently a lot of studies are proposing many kinds 
of methods using reconstructed 3D objects. The reconstructed 
3D objects can represent positions of components which in-
clude 3D objects and can provide 3D information to extracted 
features. Therefore, these ways can recognize more accurate 
than the methods which use the 2D images. Table I shows the 
kinds of computer vision-based feature extraction methods 
using the reconstructed 3D objects. 

 
TABLE I 

THE VISION-BASED 3D FEATURE EXTRACTION METHODS USING 
RECONSTRUCTED 3D OBJECTS 

Type of 
Extracted 
Features 

Algorithms 
for Feature 
 Extraction 

Authors[paper] 
Feature 

Extraction 
Time(sec) 

C. Chu, I. Cohen [4] Less than 
0.1 3D 

Bin-distribution D. Kyoung et al. [5] Less than 1 Histogram 
Spherical har-

monic T. Funkhouser et al. [6] Less than 1 

Reeb graph M. Hilaga et al. [7] 1 
3D thinning H. Sundar et al. [8] 10 

N. D. Cornea et al. [9, 10] 103 Graph 
Curve-skeleton A. Brennecke, T. Isenberg [11] 103 

 
The methods using the structural feature of 3D objects are 

more accurate for recognition, because these extract the fea-
tures using 3D information of each component that constructs 
the subjects of recognition (Table I). However, the methods 
producing skeletons from 3D objects [7-11] required long time, 
since these are divided into two processes: the 3D object re-
construction and the feature extraction. To solve this problem 
in the feature extraction part, the methods, which use a spheri-
cal harmonic [6] or a 3D bin-distribution algorithm [4,5] for 
fast feature extraction and represent distances between the 
center point and the boundary point by a histogram, is proposed. 
However, even though these methods can represent the global 
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shape, they cannot represent the local characters. Due to the 3D 
object reconstruction part still exists, it is difficult to apply 
these methods using 3D objects to the real-time recognition 
environment. 

 

 
 
Fig. 1 The overviews of 3D feature extraction processes: (a) process of 

previous studies and (b) proposed method 
 
In this paper, we propose the method of a real-time 3D fea-

ture extraction without the explicit 3D object reconstruction. 
Fig. 1 shows the difference between the previous feature ex-
traction methods and the proposed one in their processes. This 
method can generate three kinds of features which contain 
different types of 3D information: nearest boundary, farthest 
boundary, and thickness of the object projected on a base-plane. 
The projection map can be obtained by rendering the target 
object. For this purpose, the visual hulls can be used as a 3D 
geometry proxy. It is an approximate geometry representation 
resulting from the shape-from-silhouette 3D reconstruction 
method[12]. 

The visual hull reconstruction and rendering can be accele-
rated by modern graphics hardware. Li et al.[13] present a 
hardware-accelerated visual hull (HAVH) rendering technique. 
Since we extract features from the results of the visual hull 
rendering, our proposed method does not need explicit geome-
tric representation. Therefore we use the modified HAVH 
algorithm which disables unnecessary processes, such as the 
texture calculation, in the general HAVH algorithm. Moreover, 
we can save the drawing time by disabling all lighting and 
texture calculations for this rendering, due to these processes 
are not necessary for feature extraction (Fig. 1(b)).  

The structure of the paper is as follows. We describe the 
visual hull in Section II. Next, we describe the details of our 
methods in Section III: the silhouette extraction (Section III.A), 
the visual hull rendering (Section III.B) and the projection map 
generation (Section III.C). Experimental results are provided in 
Section IV. And, we conclude in Section V.  

II.   VISUAL HULL 
For extracting features of dynamic 3D objects, we can use 

video streams or images as input from multiple cameras, and 
reconstruct an approximate shape of the target object from 
multiple images. By rendering the reconstructed object, we are 
able to obtain projection maps, which can be used as important 
features of the object. For the purpose of reconstructing and 
visualizing the dynamic object, the visual hull can be used. It 

has been widely used as 3D geometry proxy, which represents a 
conservative approximation of true geometry [12]. 

We can reconstruct a visual hull of an object with calibrated 
cameras and the object's silhouette in multiple images. The 
silhouette of the object in an input image refers to the contour 
separating the target object from the background. Using this 
information, combined with camera calibration data, the sil-
houette is projected back into the 3D scene space from the 
cameras' center of projection. This generates a cone-like vol-
ume (silhouette cone) containing the actual 3D object. With 
multiple views, these cones can be intersected. This produces 
the visual hull of the object (Fig. 2). 

 

 
                                       (a)                                            (b) 
Fig. 2 Visual hull reconstruction: (a) 8 silhouette cones are generated 
from silhouette images taken from different viewpoints, (b) Recon-

structed 3D surface 
 
Many different implementations of visual hull reconstruction 

are described in the literature [13-16]. Some compute an ex-
plicit geometric representation of the visual hull, either as voxel 
volume [14] or polygonal mesh [15]. However, if the goal is 
rendering visual hulls from novel viewpoints, the reconstruc-
tion does not need to be explicit. Li et al. [13] present a hard-
ware-accelerated visual hull (HAVH) rendering technique. It is 
a method for rendering of visual hull without reconstructing the 
actual object. The implicit 3D reconstruction is done in ren-
dering process by exploiting projective texture mapping and 
alpha map trimming. It runs on modern graphics hardware and 
achieves high frame rates. 

We can obtain projection maps for feature extraction by 
rendering the visual hull. The explicit geometry representation 
is not needed for this process. Moreover, explicit geometry 
reconstruction is very time-consuming. Instead of recon-
structing 3D visual hull geometry, we render the visual hull 
directly from silhouettes of input images by using HAVH me-
thod and obtain the projection maps from the rendering results. 

III. FAST FEATURE EXTRACTION 
For extracting features of a dynamic 3D object, we render a 

visual hull of the target object from multiple input images. By 
using HAVH rendering method, we can render the visual hull 
without reconstructing the actual object in real time. From the 
rendering results of the visual hull, we obtain projection maps 
which contain 3D information of the target object, such as 
nearest boundary, farthest boundary, and thickness of the object 
(Fig. 3). They can be used as important features of the target 
object.  

(a) 

(b) 
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The projection maps are obtained by rendering the target 
object. When an object is rendered by a 3D graphics card, the 
depth of a generated pixel is stored in a depth buffer. The depth 
buffer can be extracted and saved as a texture [17], called a 
depth map. By rendering the front-most surfaces of the visual 
hull, we can get a depth map which stores the distance from a 
projection plane to the nearest boundary. It is called a nearest 
boundary projection map (Fig. 3(a)). Likewise, we can get a 
farthest boundary projection map by rendering the rear-most 
surfaces of the visual hull (Fig. 3(b)). By subtracting the values 
from the two maps, we can get a thickness map which stores the 
distance between the front-most surfaces and rear-most sur-
faces (Fig. 3(c)). 

 

 
 

Fig. 3 Projection maps: (a) nearest boundary projection map, (b) far-
thest boundary projection map, and (c) thickness map 

 
Our method consists of two major parts as shown in Fig. 4. 

When images are captured from cameras, an object's silhouette 
can be extracted in the multiple images. Using this information, 
combined with calibration data, we can render the visual hull of 
the target object. We are able to obtain projection maps of the 
object while rendering the visual hull. 

 

 
Fig. 4 Work flow of our method. 

 

A.  Silhouette Extraction 
When images are captured from multiple cameras, an ob-

ject's silhouette can be computed in multiple images. The target 
object in each captured image(Ic) is segmented from the back-
ground (Ib). We store the information into silhouette images(S). 
The alpha values of a silhouette image are set to 1 for the fo-
reground object and to 0 for the background as in (1).  

        (1) 

Silhouettes are then generated from each silhouette image. 
The silhouette of the object in a silhouette image refers to the 
collection of all edges separating the foreground object from 
the background. Using this information, combined with cali-
brated cameras, we are able to generate silhouette cones by 
projecting back each silhouette into 3D scene space. 

B.  Visual Hull Rendering 
The visual hull surfaces can be determined on graphics 

hardware by exploiting projective texturing in conjunction with 
alpha blending while rendering silhouette cones. As shown by 
Fig. 5(a), for rendering a silhouette cone of the nth camera, all 
silhouette images(S1, S2, …, Sn-1) except the one associated 
with the cone currently being drawn are projected onto the 
silhouette cone of Cn using the projection matrices from their 
corresponding calibrated cameras. These silhouette images are 
used as a mask eliminating the portions of each cone that do not 
lie on the surface of the visual hull. In the texture units, alpha 
values projected from multiple textures are modulated. As a 
result, only those pixels projected with the alpha value 1 from 
all the other silhouette images produce the output alpha value 
1(Fig. 5(b)). Thus, visual hull faces are drawn. All polygons of 
silhouette cones are still rendered entirely, but using the alpha 
testing, only the correct parts of them actually generate pixels in 
the image. 
 

 
 

Fig. 5 Silhouette cone rendering: (a) while rendering each silhouette 
cone, it is protectively textured by the silhouette images from all other 
views. (b) alpha map trimming, alpha values from multiple textures are 

modulated. Thus, visual hull faces are drawn 
 

C.  Projection Map Generation 
We can compute the distance from a projection plane to 

front-most surfaces of a target object as well as the distance to 
rear-most surfaces. We are then able to compute the thickness 
of the object, which is the distance between front-most surfaces 
and rear-most surfaces. Consider the example in Fig. 6. Given a 
vector  perpendicular to the projection plane, we can find 
hitpoints: P1 on the front-most surface and P2 on the rear-most 
surface. The distance  between P1 and P2 can be computed. It 
equals to ||P2-P1||. 

We can generate the projection map by rendering the target 
object. First, we set a virtual camera to be able to view the 3D 
object. The object from a viewpoint is then projected onto the 
camera's view plane (or projection plane). An orthographic 

(a) (b)

(a) (b) (c)
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projection can be used in order to avoid perspective projection 
distortion. Rasterization, which is the process of converting 
geometric primitives into pixels, determines the viewing di-
rection and its hitpoint. In rendering the object’s front-most 
surface, the hitpoint P1 on the front-most surface along the 
viewing direction   is easily extracted for each pixel and saved 
in a buffer. Likewise, the hitpoint P2 on the rear-most surface 
can be obtained by re-rendering the object from the same 
viewpoint and saved in another buffer. With the information 
from the two buffers, we can compute the distance. 

 

 
Fig. 6 Distance from a projective plane to front-most of an object, 

distance to rearmost surfaces, and its thickness 
 
For the implementation, we can generate projection maps 

using depth information from the viewpoint by rendering the 
target object. When an object is rendered by a 3D graphics card, 
the depth of a generated pixel is stored in a depth buffer. It is 
done in hardware. The depth buffer can be extracted and saved 
as a texture, called a depth map. It is usual to avoid updating the 
color buffers and disable all lighting and texture calculations 
for this rendering in order to save drawing time. We render the 
target object from a viewpoint with the depth test reversed (i.e., 
GL_GREATER instead of GL_LESS) in order to draw the 
rear-most faces of the object. From this rendering, the depth 
buffer is extracted and store in a texture, which is a farthest 
boundary map (Fig. 7(a)). To obtain a nearest boundary map, 
we render the object again from the same viewpoint with the 
normal depth test only passing fragments closer to the view-
point (i.e. GL_LESS) (Fig. 7(b)). We can compute the distance 
by subtracting the values from the two depth buffers in order to 
generate a thickness map. It can be done by multiple textures 
blending function (i.e., GL_SUBTRACT)(Fig. 7(c)). 

 

 
 

Fig. 7 Projection map generation using depth map. (a),(b), and (c) are 
1D version of projection maps of an object shown in left: (a) farthest 

boundary projection map stores the depth from view plane to rear-most 
surface, (b) nearest boundary projection map stores the depth values of 
front-most surface, (c) thickness map is generated by subtracting (b) 

from (a) 
 

IV. EXPERIMENTAL RESULTS 
This section demonstrates our results of the fast feature ex-

traction. All images have been generated on a 2.13GHz CPU 
with 2Gbyte memory and an nVidia GeForce 8800GTX 
graphic card, using Direct3D with HLSL. We used 8 cameras to 
acquire input images. The cameras were positioned around an 
object in an accurately calibrated system. The resolution both 
acquired images and rendered result images was set to 
640 480. Under this setting, we have measured the speed of 
our method. We obtained 8 silhouette cones from silhouette 
images. It took around 8ms per image on the CPU. However, 
we did not check the calculation time of this process (generat-
ing silhouette cones), due to this is a common factor for all 
algorithm. Generating a single projection map by rendering 
front-most (or rear-most) surfaces of the visual hulls, which is 
the process of a nearest (or furthest) boundary projection map, 
took around 1.5ms. The generation times for a thickness map 
including the generation of two projection maps and distance 
computation by rendering the visual hull twice were about 3ms 
(Table II). 

 
TABLE II 

THE COMPARISON OF THE PROPOSED METHOD WITH THE 3D FEATURE 
EXTRACTION METHODS WHICH USE EXPLICIT 3D MODELS 

Using Methods Visual Hull 
Generation 

Feature 
Extraction Total 

Thinning-based Skeletonization 370ms 107 ms 107 ms 
3D bin-distribution 370 ms 10 ms 380 ms 
Proposed method 3 ms 3 ms 

 
Experimental results show that the proposed method pro-

vides high accuracy of recognition and fast feature extraction. 
Table II shows the comparison of the proposed method with the 
3D feature extraction methods which use explicit 3D models. 
For this experiment, we use the 3D models that are recon-
structed in the voxel space of 300x300x300 size, and that are 
generated by GPU. Because we generate the projection map 
using GPU programming without explicit 3D object recon-
struction, the proposed method is faster than other methods and 
can manage 13 or 14 image sets per second. Therefore this 
method is affected to real-time recognition system. 

Fig. 8 shows the silhouette images which are extracted only 
foreground objects in a camera captured image (Fig. 8(a)) and 
projection maps which are generated using the reconstructed 
3D objects. In this paper, we use 8 kinds of human posture 
images. And, the projection maps are generated using a 
top-view camera with an orthographic projection. Because the 
human postures are limited to the z=0 plane and the top-view 
image is invariant to the translation, scale and rotation, we use 
the top-view image. As shown by Fig. 8(b), there are many 
similar silhouette images in different posture and different 
camera views. However, the projection maps can represent the 
difference of each posture, since they have the 3D information 
of each posture (Fig. 8(c-e)). 

 

(a) (b) (c)
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Fig. 8 Extracted features from the captured images of 8 human postures: (a) camera captured images, (b) silhouette images, (c) nearest boundary 
projection map, (d) farthest boundary projection map and (e) thickness map 

 

(a) (b) (c) (d) (e) 
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V.    CONCLUSION 
In this paper, we proposed a 3D feature extraction method 

without the explicit 3D object reconstruction. The proposed 
method generates 3 kinds of projection maps, which project all 
data on the z=0 plane using the input images of the multi-view 
camera system, instead of 3D object. This method is fast for 
presenting the 3D information of the object in input images, 
due to we use the modified HAVH algorithm that the unnec-
essary processes are disabled such as the light and texture 
calculation. Therefore the proposed method can apply to 
real-time recognition system. However, some problems re-
main in this method: error in visual hull rendering, limitation 
of the number of camera, data transferring time in memories 
and distance calculating between overlapping components. 

In our method, we use the silhouette-based visual hull ren-
dering algorithm. But this algorithm cannot generate the ac-
curate 3D object, because the silhouette images are binary 
images and does not have the input object's texture informa-
tion. And our method cannot use more than 16 camera images. 
However, this is a hardware limitation and we can solve this 
problem using parallel visual hull rendering method. Finally, 
the proposed method cannot detect the z-position of arms or 
legs, because we calculate only the distance between the 
nearest and the farthest parts from a camera. Now we are 
studying about reducing transfer time and more accuracy to 
provide good performance. 
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