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Reflectance Imaging Spectroscopy Data
(Hyperspectral) for Mineral Mapping in the Orientale
Basin Region on the Moon Surface
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Abstract—Mineral mapping on the Moon surface provides the
clue to understand the origin, evolution, stratigraphy and geological
history of the Moon. Recently, reflectance imaging spectroscopy
plays a significant role in identifying minerals on the planetary
surface in the Visible to NIR region of the electromagnetic spectrum.
The Moon Mineralogy Mapper (M?) onboard Chandrayaan-1
provides unprecedented spectral data of lunar surface to study about
the Moon surface. Here we used the M3 sensor data (hyperspectral
imaging spectroscopy) for analysing mineralogy of Orientale basin
region on the Moon surface. Reflectance spectrums were sampled
from different locations of the basin and continuum was removed
using ENvironment for Visualizing Images (ENVI) software.
Reflectance spectra of unknown mineral composition were compared
with known Reflectance Experiment Laboratory (RELAB) spectra
for discriminating mineralogy. Minerals like olivine, Low-Ca
Pyroxene (LCP), High-Ca Pyroxene (HCP) and plagioclase were
identified. In addition to these minerals, an unusual type of spectral
signature was identified, which indicates the probable Fe-Mg-spinel
lithology in the basin region.

Keywords—Chandrayaan-1, moon mineralogy mapper, orientale
basin, moon, spectroscopy, hyperspectral.

[. INTRODUCTION

YPERSPECTRAL imaging spectrometer (spectroscopy)

acquire images in many narrow and contiguous spectral
bands. Imaging spectrometry has been widely used in
geological / mineral mapping in the Earth and planetary
surface. Hyperspectral data facilitate the discriminating
various minerals across the spectrum. Reflectance
spectroscopic data is helpful for identifying minerals on the
planetary surface due to analytical absorption bands as a result
of transitions of electrons in a crystal field [1]. The spectral
(spectra) characteristics such as shape and absorption centers
are very much useful for identifying various minerals.
Mapping and analysing mineralogy of the lunar surface
provides insights into the origin, evolution of crust, geological
history and stratigraphy of the Moon. The M? instrument
onboard Chandrayaan-1 provides reflectance spectral data of
Moon surface. Many literatures are provides insight into
detection of minerals on the lunar surface based on minerals
absorption characteristics [2]-[7]. This present study aims to
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identifying minerals on the lunar surface using Chadrayaan-1
M? data.
II. STUDY AREA

The Orientale basin is located on the western limb of the
Moon highland terrain and centered at 19° S, 95° W (Fig. 1).
This basin is the youngest and most well-preserved large multi
ring basin on the Moon and is sparsely filled by mare basalt
[8]. The Orientale is a large impact structure basin and
displays at least four concentric rings (multi-ring basin) [8],
[9]. Scientists are curiosity to investigate on this basin due to
its unique morphological setup. The study area elevation
ranges from -4700 m to 9400 m (Fig. 2). Lower areas are
shaded blue, with higher altitudes in red. The lowest areas are
about -4700 m below the average height with the highest
being about 9400 m above average (Fig. 2).

A. Geology

Orientale basin partly filled by mare basalt, therefore its
original floor configuration can be clearly seen over most of
the basin interior (Fig. 3). Recently, this basin has been
remapped and named two new units namely mare and massif
material by [10], utilizing the stratigraphic nomenclature of
[11], which has been largely unchanged except that some
formations have been subdivided into members on the basis of
surface texture. Several geological formations collectively
make up the Orientale Group; in the interior of the basin,
formations are the Maunder, Montes Rook, and Hevelius
formations. The Orientale basin interior displays a number of
small melt ponds. The innermost center of the basin covers
thinly basalt [10]. The basalts of Mare Orientale appear to be
moderate in titanium content (~2.3 wt), which is relatively low
Ti compared to the Apollo samples but higher than the Ti
content of other typical farside maria [12]. The other informal
rock unit is made up of the massifs of the inner basin rings.
Some parts of the Inner ring are composed of massifs made up
of pure anorthosite [13]-[15]. In some cases, these anorthosites
are shocked to levels of at least 20 GPa, but less than 30 GPa,
as evidenced by the presence of the 1250 nm plagioclase
absorption feature [15].

III. MATERIALS AND METHODS

M3 data is used for collecting reflectance spectra for
identifying the minerals in the Orientale basin area. The Indian
Space Research Organisation’s (ISRO) first mission to the
Moon Chandrayaan-1 has M? instrument, as a guest
instrument from NASA [16]. The M? records the reflected
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radiance from the Moon’s surface in pushbroom mode
between 0.46 and 2.97 um in 85 contiguous spectral bands,
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Fig. 1 Study area location (M? coverage) is highlighted with back color box on Diviner Global Composition map [18]

Fig. 2 LRO's Wide-Angle Camera Digital Terrain Model of the Orientale Basin (1,100 km diameter). Lower areas are shaded blue, with higher
altitudes in red. The lowest areas are about -4700 and highest are about 9400 m. Image credit: NASA/Goddard/Arizona State University

Photometrically and thermally corrected Level-2 was
downloaded from PDS geosciences node (Fig. 4 (a)). The
spectral profiles from different locations were collected
(fresh/bright exposures are considered as representative pixel)
using ENVI image processing software and continuum was
removed for better understanding of absorption parameters
(Fig. 4 (c). The sample locations are show on M? image (Fig. 4
(a)). Reflectance spectral profiles (3*3 pixel average) were
collected from different locations of the basin area and

continuum has been removed for reflectance spectra for better
understanding absorption spectra characteristic. Unknown
sample reflectance spectras were matched with known
RELAB spectra (Fig. 4 (b)) [19] for identifying minerals. The
comparison was carried out based on pixel-by-pixel to express
the similarity between the unknown and know spectra.

IV. RESULT

Fig. 4 (c) shows the continuum removed reflectance spectra
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of olivine, LCP, HCP, plagioclase and Fe-Mg-spinel minerals. 03 -
Olivine shows strong absorption band near 1000 nm and weak
absorption band near 2000 nm [20]. Near 2000 nm weak
absorption band of olivine may be presence of spinel in the 0
olivine. LCP shows absorption bands near 1000 nm and 2000 i d
nm [7], [21]. HCP shows absorption band near 1000 nm and
also beyond >2000 nm, the band shift of longer wavelength
(>2000 nm) may be due to Cat contribution [7], [20].
Plagioclase shows absorption band near 1250 nm [22], [23].
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Fig. 4 (a) M3 coverage of the study area. Reflectance sample
locations are plotted on the M? image. 1-Plagoclase, 2-Low-Ca
pyroxene (LCP), 3-Fe-Mg-Spinel, 4-Olivine and 5-High-Ca pyroxene
(LCP), (b) RELAB reflectance spectral data, and (c¢) Continuum
removed reflectance spectra of 1-Plagoclase, 2-Low-Ca pyroxene
(LCP), 3-Fe-Mg-Spinel, 4-Olivine and 5-High-Ca pyroxene (LCP)
minerals

V.CONCLUSION

Reflectance imaging spectroscopy data has allowed
mapping/identifying minerals in the Orientale basin region on
the Moon surface. Olivine, Low-Ca pyroxene (LCP), High-Ca
pyroxene (LCP), plagioclase and Fe-Mg-spinel minerals were
identified. This study put forward that Reflectance imaging
spectroscopy (Hyperspectral imaging) is suitable for the
mineral mapping on the lunar surface.
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