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Rayleigh-Bénard-Taylor Convection of Newtonian
Nanoliquid

P. G. Siddheshwar, T. N. Sakshath

Abstract—In the paper we make linear and non-linear stability
analyses of Rayleigh-Bénard convection of a Newtonian nanoliquid
in a rotating medium (called as Rayleigh-Bénard-Taylor convection).
Rigid-rigid isothermal boundaries are considered for investigation.
Khanafer-Vafai-Lightstone single phase model is used for studying
instabilities in nanoliquids. Various thermophysical properties of
nanoliquid are obtained using phenomenological laws and mixture
theory. The eigen boundary value problem is solved for the Rayleigh
number using an analytical method by considering trigonometric
eigen functions. We observe that the critical nanoliquid Rayleigh
number is less than that of the base liquid. Thus the onset of
convection is advanced due to the addition of nanoparticles. So,
increase in volume fraction leads to advanced onset and thereby
increase in heat transport. The amplitudes of convective modes
required for estimating the heat transport are determined analytically.
The tri-modal standard Lorenz model is derived for the steady state
assuming small scale convective motions. The effect of rotation on
the onset of convection and on heat transport is investigated and
depicted graphically. It is observed that the onset of convection is
delayed due to rotation and hence leads to decrease in heat transport.
Hence, rotation has a stabilizing effect on the system. This is due to
the fact that the energy of the system is used to create the component
V. We observe that the amount of heat transport is less in the case
of rigid-rigid isothermal boundaries compared to free-free isothermal
boundaries.
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NOMENCLATURE

Latin symbols
Cp specific heat at constant pressure
�g acceleration due to gravity (0, 0,−g)
h distance between the plates
k thermal conductivity
p pressure
�q velocity vector (u, 0, w)
T dimensional temperature
T0 temperature of the upper plate(reference temperature)
u dimensional horizontal velocity component
w dimensional vertical velocity component
U non-dimensional horizontal velocity component
W non-dimensional vertical velocity component
x dimensional horizontal coordinate
z dimensional vertical coordinate
X non-dimensional horizontal coordinate
Z non-dimensional vertical coordinate
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Greek symbols
α thermal diffusivity
β thermal expansion coefficient
χ volume fraction
ΔT temperature difference
μ dynamic viscosity

∇2 Laplacian operator ( ∂2

∂x2 + ∂2

∂z2
)

ψ stream function
Ψ non-dimensional stream function
ρ density
Θ non-dimensional temperature

Subscripts

b basic state
l base liquid
nl nanoliquid
np nanoparticle
c critical

I. INTRODUCTION

THE effect of rotation is shown to have a significant

impact on the flow in porous media. The effect of

Coriolis force on the onset of convection and extent to

which it delays the onset of convection was examined by

Chandrasekhar [8]. Experimental study that includes the

stability of Rayleigh-Bénard convection over a wide range

of Taylor numbers was conducted by Rossby [17]. Liu and

Ecke [13] presented the experimental studies of turbulent

thermal convection in water confined in a cell with a square

cross section with and without rotation Some of the recent

developments in bifurcation theory and their relevance to the

study of rotating convection was summarized by Knobloch

[12]. Thermal instablities of a fluid contained in rotating

system are investigated by Busse [6]. Agarwal et al. [1]

studied the thermal instability in a rotating anisotropic porous

layer saturated by a nanofluid while the thermal instability

in a rotating horizontal porous layer considering the effect

of Brownian motion and thermophoresis was discussed by

Bhadauria and Agarwal [3]. Galdi and Straughan [10] applied

the nonlinear energy stability theory to study the stabilizing

effect of rotation. Vadasz [20] carried out an analytical

investigation of the Coriolis effect on three dimensional

gravity-driven convection in a rotating porous layer using

linear and weakly non linear stability theories. Beaume et

al. [2] computed the non-linear solutions of the equations

describing two-dimensional convection in a rotating horizontal

layer with constant angular velocity. The stability of a rotating

doubly diffusive fluid was studied by Pearlstein [15]. The

influence of various parameters on convection in the presence

of rotation, for both high and low rotation rates was discussed
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by Vanishree and Siddheshwar [21]. The effect of modulation

of the rotation speed on the Rayleigh-Bénard instability was

investigated by Bhattacharjee [4]. Cox and Matthews [9]

described new instabilities arising in three related convection

problems namely rotating convection, magnetoconvection

and rotating magnetoconvection. Riahi [16] discussed the

nonlinear convection in a porous medium and rotation about

vertical axis. The preferred cellular pattern depending upon

the rotation rate was reported by Veronis [22]. Tagare et al.

[19], Yadav et al. [23] studied the effect of Coriolis force on

gravity-driven convection for idealised stress-free boundary

conditions. The influence of centrifugal force on a rotating

convection system was examined by Lopez and Marques [14].

A. Mathematical Formulation

The schematic of the flow configuration is as shown in Fig.

1. The coordinate system is taken at the lower boundary with

the z-axis taken vertically upwards and the x-axis along the

plates. The system is rotated about the z-axis with uniform

angular velocity
−→
Ω .

                                                                                          

                                 

                                                                                                     
   

                                

Newtonian liquid with 
nanoparticles 

   z     

 Hot, T0+ΔT 

                 Cold, T0 
z = 2

h  

z = 2
h  

x 

 

Fig. 1 Schematic representation of Rayleigh-Bénard-Taylor convection of
Newtonian nanoliquid

The governing equations describing

Rayleigh-Bénard-Taylor convection are:

∇.−→q = 0, (1)

ρnl(
−→q .∇)−→q = −∇p+μnl∇2−→q +ρnl

−→g +2ρnl(
−→q ×−→

Ω ), (2)

αnl∇2T = (−→q .∇)T, (3)

ρnl(T ) = ρnl(T0)− (ρβ)nl(T − T0), (4)

where the nanoliquid properties are obtained from either

phenomenological laws or mixture theory as given below:

a) Phenomenological laws

μnl

μl
=

1

(1− χ)2.5
(Brinkman model [5]), (5)

knl
kl

=

(
knp
kl

+ 2

)
− 2χ

(
1− knp

kl

)
(
knp
kl

+ 2

)
+ χ

(
1− knp

kl

) (6)

(Hamilton-Crosser model [11]).

b) Mixture theory

αnl =
knl

(ρCp)nl
,

ρnl
ρl

= (1− χ) + χ
ρnp
ρl

,

(ρCp)nl
(ρCp)l

= (1− χ) + χ
(ρCp)np
(ρCp)l

,

(ρβ)nl
(ρβ)l

= (1− χ) + χ
(ρβ)np
(ρβ)l

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (7)

1) Basic State Solution: We assume boundary conditions

on −→q and T to be:

−→q = 0, T = T0 +ΔT at z = −h

2
,

−→q = 0, T = T0 at z =
h

2
.

Taking the velocity, temperature, density and pressure in the

quiescent basic state as follows:

−→q = −→q b = (0, 0)

p(z) = pb(z)

ρ(z) = ρb(z)

T (z) = Tb(z)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (8)

we obtain the quiescent state solution for the temperature in

the form:

Tb(z) = T0 +ΔT

(
1

2
− z

h

)
. (9)

We now superimpose perturbations on the quiescent basic

state and so we write:

−→q = −→q b +
−→q ′

p = pb + p
′

ρ = ρb + ρ
′

T = Tb + T
′

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (10)

where the primes indicate a perturbed quantity. Now

eliminating the pressure p between the x- and y-components

of (2), introducing the stream function ψ(x, z) in the form

u =
∂ψ

∂z
and w = −∂ψ

∂x

and incorporating the quiescent state solution and non

dimensionalizing the resulting equations as well as (3) using

the following definition

(X,Z) =
(x
h
,
z

h

)
, Ψ =

ψ

αl
, Θ =

T

ΔT
, V =

vh

αl
,

U =
uh

αl
,W =

wh

αl
,

we obtain the dimensionless form of governing equations as:

a1∇4Ψ− a21Ranl
∂Θ

∂X
+ a1

√
Ta

∂V

∂Z
+

1

Prnl

∂(Ψ,∇2Ψ)

∂(X,Z)
= 0,

(11)

− ∂Ψ

∂X
+ a1∇2Θ+

∂(Ψ,Θ)

∂(X,Z)
= 0, (12)
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∇2V −
√
Ta

∂Ψ

∂Z
+

1

Prnl

∂(Ψ, V )

∂(X,Z)
= 0, (13)

where V is the velocity in the y direction which vary along x

and z directions,

a1 =
α

α1
(thermal diffusivity ratio),

Ranl =
(ρβ)nlh

3gΔT

μnl αnl
(nanoliquid Rayleigh number),

Ta =

(
2ρnlΩh

2

φμnl

)2

(modified Taylor number),

P rnl =
μnl

ρnlαnl
(nanoliquid Prandtl number).

In the next section, we make a linear stability analysis and

study the onset of convection.

B. Linear Stability Analysis

The boundary conditions suitable for rigid-rigid isothermal

boundaries are:

Ψ =
∂Ψ

∂Z
= Θ = V = 0 at Z = ±1

2
. (14)

The normal mode solution for solving eigen boundary value

problem is:

Ψ = A sin(νX) (Cf )e(Z),

Θ = B cos(νX) sin[π(Z +
1

2
)],

V = C sin(νX) z sin[π(Z +
1

2
)],

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (15)

where A, B and C are the amplitudes, ν is the wave number

and (Cf )e(Z) is the Chandrasekhar function (even solution)

[7] and μ1=4.73004074 is the eigen value satisfying the

following equation,

tanh
(μ1

2

)
+ tan

(μ1

2

)
= 0. (16)

Substituting (15) in the dimensionless form of the

governing equations (11)-(13) and following the standard

orthogonalization procedure, we obtain the expression of the

critical value of nanoliquid Rayleigh number for stationary

onset as:

Ranlc =
δ2c

(
F1

(
ν4c + μ4

1

)
+ 2F2ν

2
cμ

2
1

)
2F 2

3 ν
2
c

+
12π4F 2

4 δ2c Ta

F 2
3 ν

2
c (−6ν2c + π2 (ν2c + 6) + π4)

(17)

where

δ2c = ν2c + π2,

F1 =
1

1 + cos (μ1)
−

tan
(μ1

2

)
μ1

+
1

1 + cosh (μ1)

−
tanh

(μ1

2

)
μ1

,

(18)

F2 =
1

1 + cos (μ1)
+

tan
(μ1

2

)
μ1

− 1

1 + cosh (μ1)

−
tanh

(μ1

2

)
μ1

,

(19)

F3 =
4πμ2

1

π4 − μ4
1

, (20)

F4 =
8
(
μ4
1 + π4

)
μ2
1

(π4 − μ4
1)

2
+ μ3

1

⎛
⎝ tan

(μ1

2

)
(π2 − μ2

1)
2
−

tanh
(μ1

2

)
(μ2

1 + π2) 2

⎞
⎠

− π2μ1

⎛
⎝ tan

(μ1

2

)
(π2 − μ2

1)
2
+

tanh
(μ1

2

)
(μ2

1 + π2) 2

⎞
⎠ .

(21)

The non-linear analysis will now be used to study the

enhancement of heat transport.

C. Weakly Non-Linear Stability Analysis

The truncated representation for making a weakly non-linear

analysis for rigid-rigid, isothermal boundaries is

Ψ = A sin(νcX) (Cf )e(Z),

Θ = B cos(νcX) sin[π(Z +
1

2
)] + C sin[2π(Z +

1

2
)],

V = D sin(νcX) z sin[π(Z +
1

2
)]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

(22)

Substituting (22) into (11)-(13) and using the orthogonality

condition with the eigen functions on the resulting equations,

we get the following algebraic equations:

2a1νc

[
F1

(
ν3c +

μ4
1

νc

)
+ 2F2νcμ

2
1

]
A− 2a21F3νcRanlB

+2πa1F4

√
TaD = 0,

(23)

A
(F5C + 2F3)νc

a1δ2c
−B = 0, (24)

AB +
8a1π

2

F5νc
C = 0, (25)

2πF4

√
TaA−

[−6ν2c + π2(6 + δ2c )
]

12π2
D = 0. (26)

where F1, F2, F3, F4 are given by (18)-(21) and

F5 =
16π2μ2

1

(
μ4
1 + 39π4

)
μ8
1 − 82π4μ4

1 + 81π8
. (27)
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Solving (23)-(26), we get

A2 =
8π2δ2ca

2
1r

ν2cF
2
5

[
1− 1

r

]
, (28)

B =
2νcF3

a1δ2cr
A, (29)

C = − F3F5ν
2
c

4π2a21δ
2
cr

A2 = −2F3

F5

[
1− 1

r

]
, (30)

D =
24π3F4

√
Ta

−6ν2c + π2(6 + δ2c )
A, (31)

where

r =
Ranl
Ranlc

(32)

is the scaled Rayleigh number.

We next study the heat transport in terms of Nusselt number.

D. Nusselt Number

The amount of heat transport by Rayleigh-Bénard-Taylor

convection for rigid-rigid, isothermal boundaries can be

quantified in terms of the Nusselt number, Nunl, as follows:

Nunl =
Heat transport by(conduction + convection)

Heat transport by conduction
.

Using Fourier first law and further simplyfying, we get:

Nunl = 1 +
knl
kl

⎡
⎢⎢⎣
− ∫ 2π

ν

0

(
∂Θ

∂Z

)
dX

− ∫ 2π
ν

0

(
dΘb

dZ

)
dX

⎤
⎥⎥⎦
Z=−

1

2

, (33)

where knl and kl are the thermal conductivities of the

nanoliquid and base liquid respectively.

Substituting dimensionless form of (9) and (22) in (33)

and completing the integration, we get

Nunl = 1− 2π
knl
kl

C. (34)

Using (30), (33) takes the form

Nunl = 1 + 2
2πF3

F5

knl
kl

[
1− 1

r

]
,

where F3, F5 are given by (20) and (27) and r is given by

(32).

II. CONCLUSION

From Tables I and II it is found that the thermophysical

properties of the base liquid, nanoliquid and nanoparticles

vary as shown below:

a) kl < knl << knp,

b) (Cp)np > (Cp)l > (Cp)nl,

c) ρnp > ρnl > ρl,

TABLE I
THERMO-PHYSICAL PROPERTIES OF ETHYLENE GLYCOL AND COPPER

NANOPARTICLES AT 300K [18]

Quantity
Ethylene
Glycol

Copper
nanoparticles

Density
[kg.m−3]

ρl=1114.4 ρnp=8933

Specific heat
[J/kg −K]

(Cp)l=2415 (Cp)np=385

Thermal conductvity
[W/m−K]

kl=0.252 knp=401

Thermal expansion
coefficient

[K−1 × 105]
βl=65 βnp=1.67

Dynamic coefficient
of viscosity
[kg/m− s]

μl=0.0157 -

Thermal diffusivity
[m2.s−1 × 107]

αl=0.93636 αnp=1165.9

TABLE II
THERMO-PHYSICAL PROPERTIES OF ETHYLENE GLYCOL-COPPER

NANOLIQUID AT 300K FOR VOLUME FRACTION, χ = 0.1 [18]

Quantity Ethylene glycol-Copper
Density

(ρnl)[kg.m
−3]

1896.26

Specific heat
(Cp)nl[J/kg −K]

1458.70

Thermal conductvity
(knl)[W/m−K]

0.335824

Thermal expansion coefficient
(βnl)[K

−1 × 105]
35.1662

Dynamic coefficient of viscosity
(μnl)[kg/m− s]

0.020431

Thermal diffusivity
(αnl)[m

2.s−1 × 107]
1.21408

(ρCp)nl

[J/m3 −K × 10−6]
2.76607

(ρβ)nl

[kg/m3 −K]
0.666842

d) βl > βnl > βnp,

e) αnp >> αnl > αl.

To study the implications of linear stablity results, we

may write Ra as:

Ranl = FRal,

where

F =

[
(ρβ)nl
ρlβl

μl

μnl

αl

αnl

]
and Ral =

ρlβlgh
3ΔT

μlαl
.

On further computation it is seen that the factor, F,

multiplying Ral decreases with increase in χ. This leads

to the conclusion that the critical value of nanoliquid

Rayleigh number is less than that of the base liquid without

nanoparticles.

Rotation delays the onset of convection and thereby

decreases heat transport. This result is shown in Fig. 2. This

is because the energy of the system is used to create the

component V.

The amount of heat transport increases with increase in χ
and this is depicted in Fig. 3. Increase in the value of χ implies

increase in volume fraction of nanoparticles.
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Fig. 2 Variation of Nu with Ra for different values of Ta, for χ=0.1
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Fig. 3 Variation of Nu with Ra for different values of χ, for Ta=100
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