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Abstract—In this paper we study a food chain model with three
trophic levels and Michaelis-Menten type ratio-dependent functional
response. Distinctive feature of this model is the sensitive
dependence of the dynamical behavior on the initial populations and
parameters of the real world. The stability of the equilibrium points
are also investigated.
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1. INTRODUCTION

HE term “ratio-dependent predation” is introduced [1] to

describe situations in which the feeding rate of predators

depends on the ratio of the number of preys to the number
of predators rather than on prey density alone, as is the case in
most classical models. One advantage of the ratio dependence
is that they prevent paradoxes of enrichment and biological
control predicted by classical models [2].

Experimental observations [3] suggest that prey dependent
models are appropriate in homogeneous situations and ratio-
dependent models are good in heterogeneous cases. By many
investigators [3, 4] it has also been concluded that natural
systems are closer to the models with ratio dependence than to
the ones with prey dependence.

Generally, a ratio-dependent predator-prey model leads a
system of nonlinear ordinary differential equations of the
following form:
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If F(x):r[lfij, P(x)=-2_ than (1) becomes a
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ratio-dependent predator-prey model with Michaelis-Menten
type functional response:
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Analysis of (2) by Hsu, Hwang and Kuang [5], shows that the
ratio-dependent models are capable of producing far richer
and biologically more realistic dynamics. Specifically, they do
not produce the paradoxes of biological control and
enrichment. It also allows mutual extinction as a possible
outcome of a given predator-prey interaction.

II. Foob CHAIN MODELS WITH
THREE TROPHIC LEVELS

The classical food chain models with only two trophic levels
are insufficient to produce realistic dynamics. Therefore we
consider the following three trophic levels food chain model
with ratio-dependence:
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where x, y, z stand for the population density of the prey,
predator and top predator. For i=12, n;,m;,a;,d; are the

yield constants, maximal predator growth rates, half-saturation
constants and predators’ death rates, » and K are the prey
intrinsic growth rate and carrying capacity, respectively.

(3) is a simple relation between the populations of the three
species: z prey on y and only y, and y prey on x and nutrient
recycling is not accounted for. For simplicity, we non-
dimensionalize the system (3) along the following scaling:
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to reduce the system (4) into
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III. EQUILIBRIUM POINTS
Considering the nonnegative ness of the parameters and

unknowns, we get two equilibrium points. One of them is of
the form £, (X, »,0) and the other is £ (x*, y*, z*).

The Equilibrium Point E,(X,y,0)

The first equilibrium point £ (X, ,0) with

cid, y= (m, —d, )(ml (1*01)+Cld1)

X=1-c +
m dym,

,z2=0
(6)
is a nonnegative equilibrium point of the system (2.2) if

m(l—c )+cd, >0 and m, >d,. @)

The Equilibrium Point E|(x*,y*,z*)

The second equilibrium point E; (x*, y*, z*) with
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is an interior equilibrium of the system (5) if
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IV. STABILITY OF EQUILIBRIUMS

The dynamical behavior of equilibrium points is studied by
computation of the eigenvalues of the variational matrix J ;
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at each equilibrium point.

For the equilibrium point E: The eigenvalues are:

m

Where L = d,>(m, —c,)—m;*(1-¢, +d,), and
M = L% +4mjd,(dy —m)(m (1= ¢,) + ¢,dy ).

When Eis a nonnegative equilibrium point of the system (5),

m (l—cl)+ cd; >0 and m >d;,. Hence one has
4m12a’1 d, - ml)(ml (A—=c¢))+cd, ) <0, and therefore
L’-M
A Ay :474:—4m12d1(d1 —m)(m,(1=¢;)+c,d,)> 0.
m

That is the roots have the same sign if they are real. On the
other hand if L >0 one also has

A+, = Lz > 0.

m
That is  A4;,4,>0if the roots are real and
R(4;) =R(4,)>0if the two roots are complex conjugate.
Ifm, >d,, then A; >0 and in this case E, is a repeller
point. Ifm, <d,, one has A; <0 then E, is saddle point, that

is, Eis unstable in both cases.

On the other hand, if L <0, then A;, 4, <0 if the two roots are
real. R(4)=R(1,)<0if the two roots are complex
conjugate. If m, >d, then A; >0andE, is saddle point. If
m, <d,,then A; <0 and E, is spiral node.

When m, <d,, E, does not lie in the physical space. Hence

the system can not have two stable equilibrium points for the
same set of parameters.

For the equilibrium point E;: It can be shown that the real
parts of the roots of the cubic algebraic equation

2+ A4, 2% + AyA+ A, =0 with real coefficients are all with
negative real parts if and only if 4,,4,,4,>0
and 44, > 4;.
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For the Jacobi matrix J(E,) =| a,, a,, dy |,
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one has
Ay =—ay —ay —azy,
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Using equilibrium conditions obtained from (5), we see that
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It can be shown that the coefficients A4, 4,, 4; satisfy the
inequalities 4, A4,,A4; >0 and 4,4, > A;if
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Therefore the characteristic equation of the Jacobi matrix (9)
has roots with all negative real parts, and hence £, is a stable

equilibrium point under these conditions.

V. NUMERICAL EXPERIMENTS

The numerical experiments are designed to show the
dynamical behavior of the system in three main different sets
of parameters: I. £, is stable while E; is an unstable
equilibrium point. II. E; is stable while E is an unstable
equilibrium point. III. E, E| are both unstable equilibrium
points.

I. E,__is stable, E,_is unstable: For the parameter set
{c1,¢5,d,,dy,my,my} = {1.0,0.1,0.2,0.2,2.1,0.1} the
coordinates of equilibrium points are

E, =(0.095,0.905, 0.) , E, =(0.048,0.952, —0.476) .

The eigenvalues are

E, :{0.095+0.0917,0.095-0.0917,—0.100},

E, :{-0.136,0.110, —0.054}. The solution is found not

sensitive to the changes in the parameter set and in the initial
conditions. For the initial data {1.0,2.0,1.0} the three
dimensional plot of the solution is:

Fig. 1 The solution for the initial data {1.0, 2.0, 1.0}

II. E, is stable, Eunstable. Three numerical experiments are

set to reveal the sensitivity of the solution both to the changes
in the initial conditions and in the parameter set.

First the parameter set {c,,c,,d|,d,,m,m,} =
{1.000, 11.000,1.000, 1.000, 10.000, 2.005}

the coordinates of equilibrium points are
E,=(0.1,0.9, 0.0), E, =(0.6514,0.3486,0.3504) .
The eigenvalues are

E, :{1.005, =0.797,-0.113},

E, :{-0.0003+1.2896 I, —0.0003—1.2896 I, —0.4458} . For
the initial data {0.70, 0.40, 0.42} the three dimensional plot of
the solution is as follows:

278

0,35

Fig. 2 The solution for the initial data {0.70, 0.40, 0.42}

For large time this solution shrinks to a point.
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Fig. 3 The solution shrinks to a point by the time.

For a slightly different initial data{0.70,0.40, 0.45}, we
obtain a completely different solution:

Fig. 4 The solution for the slightly different initial data
{0.70, 0.40, 0.45} .

For large time this solution approaches to the following limit
cycle with period 8.23.

Fig. 5 This solution approaches to an internal limit cycle with
period 8.23.

On the other hand if we slightly change the parameter m, , for
the the parameter set

{c1,cq,dy,dy,my,my} =

{1.000, 11.000, 1.000, 1.000, 10.000, 1.500}

the coordinates of equilibrium points are

E,=(0.1,09,0.0), E, =(0.467,0.533,0.267) .

The eigenvalues are

E, :{-0.797, 0.500,-0.113},

E, :{-0.1637+1.190 I, —0.1637—1.190 7, 0.110, —0.2682}

The solution is still sensitive to the changes in the initial
conditions, and for the initial data given in
E, =(0.467,0.533,0.267) ,

the three dimensional plot of the solution is as follows:

Fig. 6 The solution for a slightly different m, =1.500.

While for an initial data given away from
E, =(0.467,0.533,0.267) , the three dimensional plot of the
solution is qualitatively different from the one in the above:
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Fig. 7 The solution for the different initial data {1.0, 2.5, 2.0} .
1lI. E, andEare both unstable.

Numerical experiments are set to reveal the sensitivity of the
solutions both to the changes in the initial conditions and in
the parameter set. First we keep all parameters as in the case II
except m,, change m,slightly towards the unstability of
E| and take

{c,¢q,dy,dy,my,my} =

{1.000, 11.000, 1.000, 1.000, 10.000, 2.008}

then the coordinates of equilibrium points are
E;=(0.1,0.9, 0.0), E, =(0.6522,0.3478,0.35006).

The eigenvalues are

E, :{1.0080, —0.7971,-0.1129} ,

E,; :{0.0005+1.2893 1, 0.0005-1.2893 1, —0.4467}.
For the initial data given in E, =(0.6522, 0.3478, 0.3506),

the three dimensional plot of the solution is an enlarging
spiral:

2E07328

=

2350738

Fig. 8 For the initial data given in £}, the solution is an enlarging
spiral.

The following figure shows how spiral enlarges in the time. It
is surprising enough that the statistical work on the motion
gives an almost constant period 4.87.

1L 3E07E2
1. 3E07327
=

1. 2E0728

130735

Fig. 9 Solution spiral enlarges in the time keeping a constant
period 4.87.

While for an initial data given a little bit away from £, we

obtain a solution which is qualitatively completely different
from the one in the above:

Fig. 10 The solution for the different initial data {0.7,1.4, 0.4} a
little bit away from £ .

For large time this solution approaches to the following limit
cycle with period 8.43 as in the stable E| case.
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Fig. 11 For large time this solution approaches to an inner limit

cycle with period 8.43

For an initial data {2.,2.,2.} given away from £, one obtains

a solution which is completely different from the ones in the
above, the solution stops when the top predator disappears:

Fig. 12 The solution stops when the top predator disappears

On the other hand if the parameter set is chosen far away of
the transition regions, we obtain solutions which are not
sensitive to the changes in the initial conditions and in the

parameter set.

For the parameter set {c|,c,.d,,d,,m;,m,} =

{1.0, 11.0, 1.0, 1.0, 10.0, 2.3}

the coordinates of equilibrium points are

E, =(0.10,0.90, 0.) , E, =(0.7217,0.2783, 0.3617) .
The eigenvalues are

E, :{1.3000,-0.7971,-0.1129},

E, :{0.0696+1.2409 1,0.0696 —1.2409 7,0.110, —0.5304} .

The solution is found not sensitive to the changes in the
parameter set and in the initial conditions. For the initial data

{0.8,0.1, 0.3} the solution stops when the top predator

disappears and the three dimensional plot of the solution is:

Fig. 13 The solution stops when the top predator disappears.

In this study, ratio-dependent food chain model is analyzed
and possible dynamical behavior of this system investigated at
equilibrium points. It has been shown that, in certain regions
of the parameter space, ratio dependent food chain model is
sensitively depending on the parameter values and initial
conditions. That is a very small change in these values,
produces unpredictable results. Another property of the
nonlinear systems also experienced during the calculations,

VI. CONCLUSION

long-term predictions are impossible.
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