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Abstract—In this paper we study a food chain model with three 

trophic levels and Michaelis-Menten type ratio-dependent functional 

response. Distinctive feature of this model is the sensitive 

dependence of the dynamical behavior on the initial populations and 

parameters of the real world. The stability of the equilibrium points 

are also investigated.  

Keywords—Food chain, Ratio dependent models, Three level 

models 

I. INTRODUCTION

HE term “ratio-dependent predation” is introduced [1] to 

describe situations in which the feeding rate of predators 

depends on the ratio of the number of preys to the number 

of predators rather than on prey density alone, as is the case in 

most classical models. One advantage of the ratio dependence 

is that they prevent paradoxes of enrichment and biological 

control predicted by classical models [2].  

Experimental observations [3] suggest that prey dependent 

models are appropriate in homogeneous situations and ratio-

dependent models are good in heterogeneous cases. By many 

investigators [3, 4] it has also been concluded that natural 

systems are closer to the models with ratio dependence than to 

the ones with prey dependence. 

Generally, a ratio-dependent predator-prey model leads a 

system of nonlinear ordinary differential equations of the 

following form: 
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lrxF  than (1) becomes a 

ratio-dependent predator-prey model with Michaelis-Menten 

type functional response: 
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Analysis of (2) by Hsu, Hwang and Kuang [5], shows that the 

ratio-dependent models are capable of producing far richer 

and biologically more realistic dynamics. Specifically, they do 

not produce the paradoxes of biological control and 

enrichment. It also allows mutual extinction as a possible 

outcome of a given predator-prey interaction. 

II. FOOD CHAIN MODELS WITH

THREE TROPHIC LEVELS

The classical food chain models with only two trophic levels 

are insufficient to produce realistic dynamics. Therefore we 

consider the following three trophic levels food chain model 

with ratio-dependence: 
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where x, y, z stand for the population density of the prey, 

predator and top predator. For  ,2,1i iiii dam ,,,  are the 

yield constants, maximal predator growth rates, half-saturation 

constants and predators’ death rates, r and K are the prey 

intrinsic growth rate and carrying capacity, respectively.  

(3) is a simple relation between the populations of the three 

species: z prey on y and only y, and y prey on x and nutrient 

recycling is not accounted for. For simplicity, we non-

dimensionalize the system (3) along the following scaling: 
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to reduce the system (4) into 
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III. EQUILIBRIUM POINTS

                                                                                                                  

Considering the nonnegative ness of the parameters and 

unknowns, we get two equilibrium points. One of them is of 

the form )0,,(0 yxE  and the other is *)*,*,(1 zyxE .

The Equilibrium Point )0,,(0 yxE

The first equilibrium point )0,,(0 yxE with 

0,
1)(

,1
11

111111

1

11
1 z

md

dccmdm
y

m

dc
cx    

                 (6)                            

is a nonnegative equilibrium point of the system (2.2) if   

.and01 111111 dmdccm   (7) 

The Equilibrium Point *)*,*,(1 zyxE

The second equilibrium point *)*,*,(1 zyxE with 
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is an interior equilibrium of the system (5) if  
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IV. STABILITY OF EQUILIBRIUMS

The dynamical behavior of equilibrium points is studied by 

computation of the eigenvalues of the variational matrix J ;
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at each equilibrium point. 

For the equilibrium point 0E : The eigenvalues are: 
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When 0E is a nonnegative equilibrium point of the system (5), 

111111 and01 dmdccm . Hence one has 
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That is the roots have the same sign if they are real.  On the 

other hand if  0L  one also has 
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That is 0, 21 if the roots are real and 

0)()( 21 if the two roots are complex conjugate. 

If 22 dm , then 03  and in this case 0E  is a repeller 

point. If 22 dm , one has 03 then E0 is saddle point, that 

is, 0E is unstable in both cases.  

On the other hand, if 0L , then 0, 21  if the two roots are 

real. 0)()( 21 if the two roots are complex 

conjugate.  If 22 dm  then 03 and 0E  is saddle point. If 

22 dm , then 03 and E0 is spiral node. 

When 22 dm , 1E  does not lie in the physical space. Hence 

the system can not have two stable equilibrium points for the 

same set of parameters.  

For the equilibrium point E1: It can be shown that the real 

parts of the roots of the cubic algebraic equation 

032
2

1
3 AAA  with real coefficients are all with 

negative real parts if and only if 0,, 321 AAA

and 321 AAA .
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For the Jacobi matrix
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Using equilibrium conditions obtained from (5), we see that  
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It can be shown that the coefficients 321 ,, AAA satisfy the 

inequalities 0,, 321 AAA  and 321 AAA if 
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Therefore the characteristic equation of the Jacobi matrix (9) 

has roots with all negative real parts, and hence 1E  is a stable 

equilibrium point under these conditions.   

V. NUMERICAL EXPERIMENTS

 The numerical experiments are designed to show the 

dynamical behavior of the system in three main different sets 

of parameters: I. 0E   is stable while 1E  is an unstable 

equilibrium point. II. 1E   is stable while 0E  is an unstable 

equilibrium point.  III. 10 , EE  are both unstable equilibrium 

points. 

I. 0E   is stable, 1E  is unstable: For the parameter set 

},,,,,{ 212121 mmddcc }1.0,1.2,2.0,2.0,1.0,0.1{ the 

coordinates of equilibrium points are  

.)0,905.0,095.0(0E , )476.0,952.0,048.0(1E .

The eigenvalues are 

},100.0,091.0095.0,091.0095.0{:0 IIE

}054.0,110.0,136.0{:1E .  The solution is found not 

sensitive to the changes in the parameter set and in the initial 

conditions. For the initial data }0.1,0.2,0.1{  the three 

dimensional plot of the solution is: 

Fig. 1 The solution for the initial data }0.1,0.2,0.1{

II. 1E   is stable, 0E unstable.  Three numerical experiments are 

set to reveal the sensitivity of the solution both to the changes 

in the initial conditions and in the parameter set.  

First the parameter set },,,,,{ 212121 mmddcc

}050.2,000.10,000.1,000.1,000.11,000.1{

the coordinates of equilibrium points are  

),0.0,9.0,1.0(0E )3504.0,3486.0,6514.0(1E .

The eigenvalues are 

}113.0,797.0,005.1{:0E ,

}4458.0,2896.10003.0,2896.10003.0{:1 IIE .  For 

the initial data }42.0,40.0,70.0{  the three dimensional plot of 

the solution is as follows: 

Fig. 2 The solution for the initial data }42.0,40.0,70.0{

For large time this solution shrinks to a point. 
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Fig. 3 The solution shrinks to a point by the time. 

For a slightly different initial data }45.0,40.0,70.0{ , we 

obtain a completely different solution: 

Fig. 4 The solution for the slightly different initial data 

         }45.0,40.0,70.0{ .

For large time this solution approaches to the following limit 

cycle with period 8.23. 

Fig. 5 This solution approaches to an internal limit cycle with 

          period 8.23. 

On the other hand if we slightly change the parameter 2m , for 

the the parameter set  

},,,,,{ 212121 mmddcc

}050.1,000.10,000.1,000.1,000.11,000.1{

the coordinates of equilibrium points are  

),0.0,9.0,1.0(0E )267.0,533.0,467.0(1E .

The eigenvalues are 

}113.0,500.0,797.0{:0E ,

}2682.0,110.0,190.11637.0,190.11637.0{:1 IIE

The solution is still sensitive to the changes in the initial 

conditions, and for the initial data given in  

)267.0,533.0,467.0(1E  ,

the three dimensional plot of the solution is as follows: 

Fig. 6 The solution for a slightly different 500.12m .

While for an initial data given away from 

)267.0,533.0,467.0(1E , the three dimensional plot of the 

solution is qualitatively different from the one in the above: 
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Fig. 7 The solution for the different initial data }0.2,5.2,0.1{ .

III. 1E   and 0E are both unstable.

Numerical experiments are set to reveal the sensitivity of the 

solutions both to the changes in the initial conditions and in 

the parameter set. First we keep all parameters as in the case II  

except 2m , change 2m slightly towards the unstability of 

1E and take  

},,,,,{ 212121 mmddcc

}080.2,000.10,000.1,000.1,000.11,000.1{

then the coordinates of equilibrium points are 

),0.0,9.0,1.0(0E )3506.0,3478.0,6522.0(1E .

The eigenvalues are 

}1129.0,7971.0,0080.1{:0E ,

}4467.0,2893.10005.0,2893.10005.0{:1 IIE .

 For the initial data given in )3506.0,3478.0,6522.0(1E ,

the three dimensional plot of the solution is an enlarging 

spiral: 

Fig. 8 For the initial data given in 1E , the solution is an enlarging 

          spiral.

The following figure shows how spiral enlarges in the time.  It 
is surprising enough that the statistical work on the motion 

gives an almost constant period 4.87. 

Fig. 9 Solution spiral enlarges in the time keeping a constant 

          period 4.87.   

While for an initial data given a little bit away from 1E , we 

obtain a solution which is qualitatively completely different 

from the one in the above: 

Fig. 10 The solution for the different initial data }4.0,4.1,7.0{  a 

little bit away from 1E .

For large time this solution approaches to the following limit 

cycle with period 8.43 as in the stable 1E  case.
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Fig. 11 For large time this solution approaches to an inner limit 

cycle with period 8.43 

For an initial data .}2.,2.,2{ given away from 1E , one obtains 

a solution which is completely different from the ones in the 

above, the solution stops when the top predator disappears: 

Fig. 12 The solution stops when the top predator disappears 

On the other hand if the parameter set is chosen far away of 

the transition regions, we obtain solutions which are not 

sensitive to the changes in the initial conditions and in the 

parameter set.  

For the parameter set },,,,,{ 212121 mmddcc

}3.2,0.10,0.1,0.1,0.11,0.1{

the coordinates of equilibrium points are  

.)0,90.0,10.0(0E , )3617.0,2783.0,7217.0(1E .

The eigenvalues  are 

},1129.0,7971.0,3000.1{:0E

}5304.0,110.0,2409.10696.0,2409.10696.0{:1 IIE .

The solution is found not sensitive to the changes in the 

parameter set and in the initial conditions. For the initial data 

}3.0,1.0,8.0{  the solution stops when the top predator 

disappears and the three dimensional plot of the solution is: 

Fig. 13  The solution stops when the top predator disappears. 

VI. CONCLUSION

In this study, ratio-dependent food chain model is analyzed 

and possible dynamical behavior of this system investigated at 

equilibrium points. It has been shown that, in certain regions 

of the parameter space, ratio dependent food chain model is 

sensitively depending on the parameter values and initial 

conditions. That is a very small change in these values, 

produces unpredictable results. Another property of the 

nonlinear systems also experienced during the calculations, 

long-term predictions are impossible.  
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