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Ranking DMUSs by Ideal PPS in Data
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Abstract—An original DEA model is to evaluate each DMU
optimistically, but the interval DEA Model proposed in this paper
has been formulated to obtain an efficiency interval consisting of
Evaluations from both the optimistic and the pessimistic view points.
DMUs are improved so that their lower bounds become so large as to
attain the maximum Value one. The points obtained by this method
are called ideal points. Ideal PPS is calculated by ideal of efficiency
DMUs. The purpose of this paper is to rank DMUs by this ideal PPS.
Finally we extend the efficiency interval of a DMU under variable
RTS technology.
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I. INTRODUCTION

EA is a non-parametric technique for measuring the

efficiency of DMUs with common input And output

terms [1,2]. The DEA models may be generally classified
into radial and non-radial Models. Russell [7] discussed four
conditions that are desirable in measuring “technical
efficiency”. Fare and Lovell [6] proposed an analytical model
that aggregates both output and input efficiencies in the
framework of a radial measure, the efficiency measure of the
model is called the ”Russell measure(RM)”. RM has a major
difficulty in efficiency measurement, because its objective
function is formulated as a nonlinear programming problem.
Cooper and Pastor [14] have, therefore, considered this
problem and have proposed an adjustment to the Russell
measure. Since DEA is a model for evaluation from the
optimistic viewpoint, Entani and Tanaka [11] have already
proposed the interval DEA model to obtain the efficiency
interval. The efficiency interval is represented by its upper and
lower bounds. The upper and lower bounds of the efficiency
interval denote the evaluations from the optimistic and
pessimistic viewpoints, respectively. The problem that obtains
the upper bound of the efficiency interval is formulated as
follows:

Uy,
T
©, :lIJnfl\)/( max : l)J(TOYJ. M
i VTXj
stU >0,V <0.

Where Xj and Y] are the input and output vectors of DMU]J,
respectively, whose elements are all positive and the decision

variables are the weight vectors U and V.
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Also, the lower bound of the Efficiency interval for DMUo
can be determined as follows:

u'y,
T
®; = max v X$ 2
uyv U YJ
max
uv VT)(j
stU =0,V 20.

According to [11], Model (2) can be changed to the following
problem:

Yro

0r = max e 3)
r,l -
max —
X
Where the ith element of the input weight vector V and the rth
element of the output vector U are One and the other elements
are all zero. Theorem 1. The optimal value of (2) and (3) are
equal. Proof: The proof of the theorem is provided in [11].
DMUs are improved so that their lower bounds become so
large as to attain the maximum value One. The points obtained
by this method are called ideal points. The ith input element
and the Rth output elements of the ideal point for DMUo are
denoted as follows:

¥ =min yf°y _ i=L..m @
" |max%
i Xij
y o= Max rnaxﬁxio r=1,..,s. ©)
I ] X

When DEA models are used to calculate the efficiency of
DMUs, a number of them may have an equal efficiency score
of one. Many methods have been proposed in order to rank
best performers; Andersen and Petersen (AP) [8] and
Mehrabian et al. [9] (MAJ) presented two most popular of
these methods. These methods would fail if data have certain
structures. There are some methods based on norms.
Jahanshahloo et al. [4] introduced an 11-norm approach that
removes some deficiencies arising from AP and MAJ,
but that cannot rank non-extreme DMUs.
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The method we propose in this paper, ranks such
DMUs, and does not have the above-mentioned
problems.

The current paper is organized as follows. The next
section addresses proposed model. In section 3 we give a
proposed ranking and compare it with other models and,
we consider the interval DEA with variable return to
scale. End the paper concludes in section 4.

II. PROPOSED MODEL

We are dealing with n DMUs with the input and output
matrices X = (xij) ¢ R™ and Y= (y5j) € R, respectively.
The data set is positive, i.e. X > 0 and Y > 0. The production
possibility set (PPS) of n DMUs is as follows:
Te={X,Y)X=2XA,YSYA, 120}

First we obtain efficiency DMUs by adjusting Russell
measure DMUs become divided into two categories:

1) Efficiency (E)

2) Inefficiency (F)

Inefficiency DMUs that have higher O Russell than they will
have better Rank.
We know all DMUs that belong into E set:

VJ € E ®* Russell=1

For ranking efficiency DMUs, we do on aspect following:

1) We calculate the ideal points of efficiency DMUs (E) by
models (4), (5).

2) We calculate ideal PPS by Ideal of efficiency DMUs, and
already DMUs.

Ideal PPS ={ (X, e Xpu Vyoes Yo )| X 2

DA+ A >7<.,',yr <Y Ay + 2 )7/”», =l.,mr=1..,s }
=1 =1 j

jeE jeE

Theorem 2. Ideal of strong efficiency DMUs are not
dominated with any DMUs. ((DMU_ ,0¢ {1,..., n })

Proof: To prove the theorem, it is sufficient to show that the
following inequalities are true.

S X,i = 17"'7m7 J = 1,---,“. (6)
;/ro 2 yij,r = 19‘—-9 S, J = 1,...,n. (7)

Recall that, in the beginning of this paper, we assumed that all
of elements of the input and output vectors of DMUj
g =1, -, n) are positive. Furthermore, we assume that

Yro

min < —="— " will happen in index I'", that is:

max = ' ®)

Also, we assume that max h will happen in index k:

J i
maxm:M asaresult Vj Yoy o Yne )
PooXy o Xy Xi o X

DMUo is strong efficiency so we have:

Vi Vj Xio < X;; Therefore h < Iro
i X
If we set j = 0 in (9) then we will have: Yro < Ire
Xio X
. ' X .Y,
So we have h < M asa result'k—yro < X;;
X Xik Yk
. . . Xik'yro <
According to (8): mn——— = Xjas a result
r yrk
max — 0 < X;
T Y/ Xic
. : er < X
According to (9): rnrm Y. = ANjj
max —%
Xij
i

According to (4): X, < X;

10 —
Inequality (6) is thus proved to be true.
For proving inequality (7), we assume that
{( yrj . .. = .
max —- X, } will happen in index I, that is:

max |max-1x, }=(macDx, o)
i X X

ij ]

Yo . -
Also, we assume that max =% will happen in index I:
i X
i

Yy Yy
max—”:h as a result vj—”sﬁ

Xy Xy X X

(11

DMUo is strong efficiency so we have:
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V.V Y¥;j<YVY, Therefore Yi < Yo

Xij  Xio
If we set j =0 in (11) then we will have: Yo < In
Xio X
Y.
So we have —- < In asaresult Y, < h Xio
Xio X Xiy
Yr

By (10): Y, < miax—'.xio

.

1]

y.
By (11): Yy, Smiax mjaxx—” Xig

ij
By (5): ¥ < Yo,
Inequality (7) is hence proved true.

For ranking efficiency DMUs, we calculate efficiency their
ideal DMUs in ideal PPS with the following problem:

O (X, .Yo)=min (=3 ) /(-3 8,)
m i=1 S r=1

n - —
s.t. Z/Ijxij +Z A; Xij €60, X0 ict.m.
=]

jeE

Zn:ﬂj Yo + 2 /1}9”- >gy, r=l..s,
=

jeE
ﬂ,j >0 ,)=1...n
0<6 <1, ,i=L..,m
@, =1, ,r=1,...8

The performance of a DMU will be better if its O has lower

than others, because@)*(x;iYio) is efficiency of

DMU, =(X, Y,) in ideal PPS.The Performance of a

DMUo will be better if it's®" ideal point has a smaller

Because, if DMUo has further output then DMU, will have
more input and if DMUo has less input then DMUo will have
less output i.e. if DMUo have better performance then its ideal
point is closer to own DMU,as a result DMUo is far from
frontier Ideal PPS.To elaborate, we apply our proposed model
in the following example.Examplel: We consider 7 DMUs
with two inputs and two outputs. The data and the adjusting

Russell measure @ of the DMUs are shown in Table 1.

"
TABLE [ INPUTS , OUTPUTS AND ®  OF DMUS IN EXAMPLE 1

DM [A B C D E F G
U
o2 3 2 2 3 2 3
E 4 2 3 4 2 4
y, |4 5 4 5 4 4 5
Vv, |3 6 4 4 5 6 4
9" 0335 0648 0800 1 0530 1 0507
8 1 0 3 2

According to the results of the adjusting Russell measure
model, DMUD, and DMUF are evaluated as efficient. In order
to rank the two DMUs by the proposed method, first we
obtain their ideal point and ideal PPS then we calculate the
distance of ideal point to Ideal PPS . According to the method,
if DMU has a shorter distance, then it has better rank. The
ideal points, and the ranking of DMUs are shown in Table 2.

TABLE Il IDEAL POINTS AND RANKING OF EACH DMU

Ideal A B C D E F G

DMU

Input, - - - 1.33 - 1.6 -

Input, - - - 1.33 - 2 -

Output, - - - 6 - 5 -

Output, - - - 9 - 6 -
- - - - - 47368 - 2.6420 -

di(Xj,Y;) 4 5

RANK 4 5 3 2 6 1 7

The important property of this method is its ability to rank
extreme and non-extreme DMUs. We show this property with
the following example.

L/O

IL/0

Fig. 1: Farell frontier for three DMUS.

Example2: We consider the three DMUs with two inputs and
one output. The Farell frontier for These DMUs is shown in
Fig 1. As can be seen in Fig 1, DMU1 and DMU2 are extreme
efficient DMUs and DMUS3 is non-extreme. The data, ideal
points and ranking of DMUs, as well as their Efficiency
results by model (12) are shown in Table 3. It can be seen that
this method ranks all of DMUs.
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TABLE III DATA AND IDEAL POINTS AND RANKING

T DM,

¥

. D

D

DMU MU: DMUL DMUZ2  DMU3
Input, 1 3 2 1 1 1

Input, 4 1 25 1 1 1

O tput, 1 1 1 4 3 2.3

- - - 14 10.50 8.7
g(x: v,

Bank 3 2 1

III. EFFICIENCY INTERVAL UNDER VARIABLE RTS
TECHNOLOGY

Entani et al. [11] improved the efficiency intervals of a
DMU by adjusting its given inputs and outputs under constant
RTS technology. We want to develop their model under
variable RTS technology.

Lemma 1. For

a,b,c,d>a’,b’,c’,d">0,t,,t,,t; >0,(t, +t/ #0),(t, +t;, #0)
if
b

!

o

aI
-and <—

c

<

ol
o

Then:
ad _ (ta+ta))(t,d+tid")
bc  (t,b+tib')(t,c+t/c)

Proof. The proof of the theorem is provided in [10].

The upper and lower limits of interval efficiency for DMUo
under variable RTS technology

be defined as follows:

u'y, +u,
t
u'x
©p =max——2>—— (13)
uy u'y; +u,
max —————
iu'xj
st ux0, v>0.
u'y, +u,
t
. vix
Oc. =min——2—— (14)
uy u'y. +u
j 0
max —— ——
i Vv Xj
st u=0,v>0.

We can obtain the lower limit of efficiency directly by

yop +U,
. X
®F =min——>—— (15)
O pr Yip +Uo
max ———
i X

Jr

Which is proven in what follows

The optimal value in (15) can be said that the optimal weight
vectors U and V in (14) have the entry 1, respectively, and all
other entries are 0. This fact is proven by theorem 3.First, we
assume to have following inequality:

X

. X.
L2 < 22
()M

ol 02
(Bl): YO i+ uo < yo 2t u0
yj21+u0 yj22+u0

According to lemma 1, we must have following condition:

Xja LYl +Ug, X1, Yo 1+uy >0

Xj22, Y22+ U5, %2, Y2+ U, >0

So. We must have U, > —mi_n{yrj }or u, > max{— yrj}.
rj r.j

If u, > n},e}x{— Yii } Then we will have:

Therefore according to lemmal, we will have

()(j21XY()1"'uo)S (tlszl+t]’xj22)(t2(y01+u0)+t;(y02+u0))
(y121+u0)(x01) (tz(yj21+u0)+t;(yj22+u0))(t1x0]1+t]’x02)

Yol+U,
X,1 t, (Yo I +Uy )+t (Yo 2 +Uy )/t Xy 141X, 2
Y1+, tz(yj21+uo)+t;(yj22+u0)/t1xj21+t{xj22
X1
j2

Uy
Theorem 3: If U,=——— and u0>ma_x{— yrj} then
u, +u, r.]
the optimal value of (14) and (15) are equal (where

u; , u,* , u; are optimal answer of model 14).

Proof. In order to simplify the notation, we consider the case
of two-dimensional input and two-dimensional output data.

t t #t * *t

CNE (u y0+u0)/v X, (u y0+u0)/v X,

(14).@0*—nunvn min 7— x T T
VoY U VX Uty U VX,
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(yOp] +U, )/ Xort
(yjlpl +u0 )/ lerl

(yOp ""uo)/ Xor _

15):0F = min min
(15) 0 j yjp+u0)/xjr

proj
Where j2 and j1 denote the optimal values of j, respectively.
(15) is the special case of (14) where V' has I th entry is 1,

U’ has P, th entry is 1 and all other entries are 0. Thus the
following holds.

The variable space of (14) D that of (15).Then, we have the
following relation:

(yOpl +U0)/ Xor1
jipl + 0 Xj]rl
(u™ty, +ug ) /v,

(15) =7 Pa—
(U, +uy ) /v,

The optimal of (14) =

< the optimal of

(16)

Here we have the following two cases with respect to inputs
and outputs:

X X

(A): 22t T2
XOI X02
X X

() e <X
X02 XOI

(51)3 Yor +Up < Yoo TUo
YintUy  Yjm +Ug
(82)3 Yoo tUo < Yor TUo
Yin tUy  Yju +Ug

Thus, we consider the following four cases:
(A1, B1), (A1, B2), (A2, B1), (A2, B2)

*

u
We havel, =% and U, >max{— yrj} so, one of
u, +u, rj

them holds by lemma 1,
(14): (ut Yo +u2)/v*tx0
(u Yiz +u0)/v Xj,

a7)
(y()l +u() /X()l fOr (A“Bl)
Y +Uo )/ X,
" X " ( 02+u0 /XOI fOf(A,BQ
(14)= (tjtl Yo +'~iﬂ‘yoz +U(*))/V1*‘Xm +V;ilxoz > yjf +Uy /ij'
Up Y Uy Y e UG VX VG X e (Yor + Yo )/ X for (A,,B,)
yJZ. +U, /szz
(y01 +u0 /XO?. fOr (A”Bz)
yJZZ +U, /szz -

= min (yop +u0)/ Xor > min min (yop +U0)/ Xor _ (y()pl ‘H"o)/ Xori
pr (yJZp +u(l)/ ijr pr ! (pr +U(,)/ XJr (yjlpl +U(l)/ lerl

From (16), (17), the following equation holds:

=(15)

YV (o )

(Uy U ) VX (Vi +Y ) X

Employing inductive inference, Theorem 3 for general case
can be proven.

S
Therefore,by assumptionU, = U, /Z u.,u, > rrﬂx {— Y }
r=1 ’
DMUs are improved in variable RTS technology so that their
lower bounds become so large as to attain the maximum value
one. The ith input element and the rth output element of the
ideal point for DMUo by variable RTS technology are denoted
as follows:

— . +U .
X,, = min D [T I Gy L...m.  (18)
r yrj +U,
max
X
_ Y, +u
Vi = max  max ”x ®x,t r=1,...s. (19)

Therefore, for obtaining ideal DMUs in PPS with variable
RTS technology, we should do following process:

1) First, we calculate efficiency DMUs by adjusting Russell
measure in the PPS with variable RTS
technology, then we obtain strong efficiency DMUs (E).
2) If DMUo is strong efficient then we calculate following LP:
min U,
S m
SLOD U Y, — D VX +Uy <0, j=1..,n,
r=1 i
S m
zuryro _Zvixio +Uy, = 0’
r=1 i

v.>2¢g, 1=1

(20)

S
3) We calculate U, = u; /Zu: that (U;,U Y, *) is optimal
r=1

answer of model (20). If U, >max{— y,j} then we can
r.]
obtain ideal DMUo by (18), (19).

Note: In the PPS with non-decreasing RTS (BCC — CCR) we
can obtain ideal DMUo by (18),and (19),because uo is always
non-negative.
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IV. CONCLUSION

Our aim in this paper was to obtain a method for ranking
DMUs. For ranking efficiency DMUs, We calculate the ideal
points of efficiency DMUs and ideal PPS by Ideal of
efficiency DMUs, and already DMUs. The Performance of a

DMU will be better if it’s ideal point has a smaller & in
model (12). Because, if DMUo have better performance then
it’s ideal point is closer to own DMU, as a result DMUo is far

from frontier Ideal PPS. For DMUs that 0=1 we calculate the
distance of ideal point from frontier Ideal PPS, According to
the method, if DMU has a shorter distance, then it has better
rank.
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