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Abstract—One of the most important issues in multi-criteria  Next key factor in MCDA is specifying an index for
decision analysis (MCDA) is to determine the weights of criteria seomparison alternatives. Usually, one ideal alternative is
that all alternatives can be compared based on the collectivgeognized and alternatives closer to the ideal alternative are

performance of criteria. In this paper, one of popular methods in dag.to e |deal alternative is a hypothetical alternative which
envelopment analysis (DEA) known as common weights (CWSs) Js

used to determine the weights in MCDA. Two frontiers named idec AsS the most. desirable of all Criteria.. Against, thgre is a'_" anti-
and anti-ideal frontiers, instead of ideal and anti-ideal alternativd§leal alternative with the most undesirable value in all criteria.

are defined based on two new proposed CWs models. Ideal and altithis article, using ideal alternative and a CWs method we
ideal frontiers are more flexible than that of alternatives. Accordingresent a model known as ideal model and acquire a set of
to the optimal solutions of these two models, the distances of gsjghts to make an ideal frontier. A Similar procedure is
alter.natlve‘ from thg |d¢al and anti-ideal frontiers are derived. ThenB oposed to make anti-ideal frontier. All alternatives locate
relative distance is introduced to measure the value of ea . . .. .
alternative. The suggested models are linear and despite wei pder the ideal frontier and above the anti-ideal frontier. Then
restrictions are feasible. An example is presented for explaining tHe distances of each alternative from the ideal and anti-ideal
method and for comparing to the existing literature. frontiers are calculated and based on them a relative distance is
defined to rank the alternatives. The proposed method is
Keywords—Anti-ideal frontier, Common weights (CWs), Ideal compared with the recently published method in this area [5], a
frontier, Multi-criteria decision analysis (MCDA) method that also use the ideal and anti-ideal alternatives and
CWs method for ranking alternatives.
This article includes following sections: In the second
HUMAN always has to make decision for selecting agection, CWs method in DEA is introduced. The third section
alternative among a bundle of alternatives when there gsgesents our proposed method including ideal and anti-ideal
different criteria. For example, when choosing a job, differembodels. In the fourth section, we explain the method using a
criteria are considered including income, social statusumerical example. Final section includes conclusions.
creativity, innovation, etc, and decision maker has to evaluate
different alternatives based on the criteria. In practice, there II. COMMON WEIGHTS(CWS) IN DEA

are many states for calculating the collective performance of acparneset al. [6] proposed CCR model for calculating the

group of .altlernativ.es .ba.sed on a set of.criteria. Relatedative efficiency of DMUs, which uses several inputs for
literature is in multi-criteria decision analysis [1] (MCDA)'producing several outputs, as follows:

Some of widely used techniques for ranking alternatives are s
TOPSIS method [2] and analytic hierarchy process (AHP) max Z U Yo
method [3] and etc. -1

One other method for ranking alternatives is the use of data K
envelopment analysis (DEA) in which alternatives can be st z:\/i Xpi =1,
considered as decision making units (DMUs) with no input or i=1
with one input that has the same value of all DMUs. DEA S k .
without inputs or outputs was studied by Lovell and Pastor [4]. Zur Yir _ZVini <0, j=1..n,
Because each alternative uses the most desirable weights for "1 i=
calculating its performance, usually there are more than one u=z¢&,v,2¢ , i=1.k,r=1..5, 1)
efficient alternative by DEA. Therefore, it is not possible tqhere and  are respectively title output andth input of
rank alternatives. For removing the mentioned problem, WBMU
utilize common weights (CWs) method in DEA to gain two I

sets of weights for criteria by linear models and then raiRe weight of theth input and is a non-Archimedes value. In
alternatives. this model, each unit uses the most desirable weights for

calculating its performance. Usually, there is more than one

efficient unit. Because efficient units have the same efficiency

score one, it is not possible to rank them. One of the lucrative
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|. INTRODUCTION

in which is the weight of thi¢h output and  is
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TABLE |

s Kk
. ALTERNATIVES AND DESIRABLE AND UNDESIRABLE CRITERIA
st Z U Yj = ZVI Xii <0, J=L..n, Alterna Desirable criteria Undesirable criteria
=1 =1 tive (Outputs) (Inputs)
Ug<u <U. (1-¢), r=1..5s 1 . |s 1 K
Vigsv V. (1-¢), i=1..k, ) 1 Y | Vi X4 Xy
in which U, =1Ymax\vy.r (r =1...,5 and 2
] Y ]{y"} (r=1..9) Y2 Yas Xo1 Xox
V, =:I/maxj{xji} (i=1,...,m). After the optimal weights
(v ,..V, ,U; ,..,u;) are gained, the performance of theh 3
. ) Yia Yis Xy Xik
DMU is measured b)Z u, ypr/zvi Xoi -
r=1 i=1
N
ynl yns an Xnk
Ill. IDEAL AND ANTI-IDEAL FRONTIERS INMCDA " . _
max max min oo min
Consider a set afi alternatives wittm criteria, s desirable Yi Ys X X
andk undesirable criteria, as the following Table |.cAoding I~ min | ... min max | ... max
— - Y1 Ys X Xy
to Table I, y;, (r=1L..,8) and X; (i=1...Kk)are

respectively the values of tith desirable criterion and thh

undesirable criterion for thiéh (j =1,...,n) alternative. It @, U (r :l,...,S), Vi (I :]"""k) is the optimal
) N solution of model (3), the ideal frontier will bs follows:
Ideal alternative denoted by" has therth (r =1,...,)

s _ k
desirable criterion Y™ =max{y ,} and the ith Z;u’yr _Z;Vixi =0
r= i=

min
i

(i =1,...K) undesirable criterionx™" = min{x ;} . Anti- Theorem 2 All DMUs (alternatives) locate under the ideal

frontier.
ideal alternative denoted bly™ has therth desirable criterion  proof: At ideal alternative, we have the following for

yi" =min{y,;} and the ith undesirable criterion desirable criteria:

max _ ymax \7
X = max{x ;}. 1 i1

In the proposed method in this article, we consider y;“ax S yj2 .
alternatives as DMUs which desirable and underahteria : -0 J=1..n
are as outputs and inputs of them, respectivelforihcoming ’
part, an ideal frontier is defined which is a hypane passing y;“ax Yis
through the origin and ideal alternative and ashiail frontier _ ST .
which is a hyperplane that passhsough the origin and anti- Uz ylmax Ur Y

ideal alternative. For gaining an ideal frontiere wonsider
s k ) l] max L_Jz y. .

constraint M U Y™ =Y vx™<0 in model (2. = 2Y2 | > iz, j=L..,n
r=1 i=1 : .

Therefore, the transformed model is as follows:

max ¢, _l]s A Us Yis
s k - N
st Y uy™ - vx" <0, S max o N . _
; r Yr ; i = Zuryr ZZUryjr, ] —l---,n (4)
< max< _ — =1 r=1
p=Uuy, T 1=-9), r=l..s Similarly, for undesirable criteria, we have:
p<vx™<@l-¢), i=1.k ©) —lein- v
Theorem 1 Model (3) is always feasible. ) n
1 X | | Xi2
Proof: It is obvious when ¢=0, U =—— . </ ", J=1..n
SY,
1 . .
(r=1...8)v = o (i=1..k).m ESE
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— \_/l lein -\ le
. Mmin —7

= | TVeX 5| TV2 X221
v | | —ex,,

k , ) k _
N _Zvi Ximm > _Zvi in , J =1,...n 5)
i=1 i=1

Summing two inequalities (4) and (5), we have:
s k
DUy, — D ViX; <
r=1 i=1

s _ k )
DUy™=>vix™<0, j=1..n
r=1 i=1

Therefore all DMUs locate under

s _ k
Z:uryr —Zvi X =0 and the proof is completad.
r=1 i=1

To determine the ideal frontier, we used hourly OWéxlel
(2) based on ideal alternative. Similarly, for detiming anti-
ideal frontier, we use model (2) and only anti-idelgernative
and a model is presented as follows:

max ¢,
S . k
sty uy™ =Y vx"*<0,
r=1 i=1

p<uy™ <@l-@), r=1..5
PSvxX™ <(1l-¢), i=1..k

Theorem 3 Model (6) is always feasible.

(6)

Proof: It is obvious that ¢ =0, U, = 1min
SY,
_ 1 - , , ,
(r —l,...,s), Vv, = s (I = l...,k) is feasible solution
X

of model (6) and so the model is always feasible.
it @ u (r=1..s),v ([i=1..k) is

solution of model (6), anti-ideal frontier is as:

s k
LY~ 2 u% =0
r=1 i=1
Theorem 4 If @, U, (r =:L...,s), 4 (i =1,...,k) is the

optimal solution of model (6), then decision makinogits
(alternatives) locate on top of the anti-ideal fren
Proof: Proof is similar to Theorem &.

Definition 1. SupposeH :{x‘atx = b} is a hyperplane

optimal

in an n-dimensional space. The distance betweent pand
this hyperplane is calculated as follows:

the hyperplane

To calculate the distance ddMU i (j = 1...,n) from the

ideal frontier, we use the following formula:

s S
z UryJ'r - z Vini
r=1 i=1

)

6. = j=1..,n

We denote6’|,j (j :L...,n) as the distance oDMUj

from the anti-ideal frontier and is computed by:

S k
DU Y T 2 ViXg
r=1 i=1

6., = , j=1...n (8)
The index g - HI’J' is introduced for evaluating
e +6 .
17 [}
the performance dDMU (j =L...,n). We have

0< 6’]- < 1. The more the above ratio is close to 1, the bétte
alternative rank.

IV. NUMERICAL EXAMPLE
Consider10 cars. We want to rank them by six criteria out of
which three of them are desirable (maximum speed) (¥, , car
power (cv) Y,, area (mz) Y;) and the other three are

undesirable criteria (intercity gas consumptio;, gas
consumption at 120km/h  X,, price (francs) X;). The

information is presented in Table Il. This data wasviously
studied by Kao [5]. Ranking alternatives, in thisample, is
summarized in the following Table based on the pseg

method by Kao [5], in whichSj is the distance of thgh car

from the ideal car.The proposed models (3) and(igBal and
anti-ideal models), using the data in Table |, expressed as
follows:

max ¢,
st 182y, +13u, + 847u, - 7.2v, — 6.75v, — 248V, < 0,
p<l8a,<(1-9),
p<l, <(1-9),
@< 847u, < (1-9),
p<sT72v, < (1-9),
@< 675/, < (1-9),
@< 248v,< (1-9) 9)
and
max ¢,

st 117y, +3u, + 511, - 145y, — 1295v, — 757V, < 0,
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P<117u, < 1-9¢), The distances of the first car from the ideal ant-ideal
frontiers are calculated as follows:
p<3u,<(1-9), | J|
1206:
0 4+ = = 96293
TABLE Il e \[ (00027)2 + (00335)2 + (00590)2 + (00694)2 + (0074192 + (00202)
DATA FOR TEN CARS WITH SIX CRITERIA
Car Desirable Undesirable criteria
criteria(Outputs) (Inputs) | 20704
g - = = 103403
A Y, Ys X X, X5 P \[ (00043)2 + (01667)2 + (00978)2 + (00345)2 + (00386)2 + (oooee)2
1 7.88 | 10 173 49.5 10.01 11.4
2 796 | 11 176 46.7 10.48 12.3 Other results have been provided in Table V. Insieond,
3 565 | 5 142 | 321 7.30 8.2 third, fourth and fif_th column_s are respectivc_alyomm the
4 6.15 7 148 39.15 961 10.5 dlstancg of alternat_n{es from |_deal frontier, the_ta;hce of
alternative from anti-ideal frontier, assessmeulieiy and the
5 8.06 | 13 178 64.7 11.05 14.5 :
rank of alternatives.
6 8.47 | 13 180 75.7 10.40 13.6 TABLE IV
7 7.81 11 182 68.593 12.26 12.7 OPTIMAL SOLUTION OF MODELS(9) AND (10)
8 8.38 1 145 55 12.95 14.3 Weights Ideal model Anti-ideal model
9 511 | 7 161 35.2 8.42 8.6 U, 00027 00043
10 581 | 3 117 24.8 6.75 7.2 U, 0.0385 0.1667
it 8.47 | 13 182 24.8 6.75 7.2 Us 0.0590 0.0978
I~ 511 | 3 117 75.7 12.95 145 Vi 0.0694 0.0345
Va 0.0741 0.0386
\ 0.0202 0.0066
@< 51lu, < (1-9), °
@< 145v, < (1-9), In the following Table, car 3 is ranked as 4, whsr¢he
@< 1295v, < 1-9), rank is assigned tg car 7 using Kao’'s method. than('j,.car
9 ranked as 3 using both methods. If we compateriiof
TABLE Il , car 3 and 9 as well as car 7 and 9, we will haagtthe criteria
RANKING ALTERNATIVES BASED ONKAO'S METHOD of car 9 is closer to car 3 and so rank 4 is apjatpto car 3,
Car S Ranking no for car 7.
1 0.2615 2
2 0.2151 1 V.CONCLUSION
i 8'3223 3 In this article, a ranking method was proposed for
5 0.3123 5 alternatives in MCDA based on introducing ideal andi-
6 0.359¢ 6 ideal frontiers. The method does not need pre-oebed
; g-gggj ‘9‘ weights, so results are more convincible becausg #re a
9 0292 3 reflection of data. The proposed models are alseali and
10 0.6525 10 they are feasible despite weight restrictions & tiodels. In

comparison with using ideal and anti-ideal altekmatfor
@< 757v; < (1-9), (10yranking alternatives, the proposed method is flexibnd
Optimal solution of models (9) and (10) are repnése in realistic. The reason is that in this method edighrative has
Table IV. a unique projection on the ideal frontier wherdesgrojection

Considering the optimal solution of the ideal mode?f all alternatives by the classic method is idekérnative.

presented in the second column of Table IV, idemitfer will There is similar explanation about utilizing ardéeal frontier
be gained as follows: ' and anti-ideal alternative. As regards differenteralatives

have different amounts of the corresponding cateri
(0'0027)Yl+ (0'0383\(2 + (0'0590)Y3 considering different projections for alternativés more

- (0.0694) X, - (0.074) X, — (0.02029 X, =0 reasonable than same projection for them. In futesearch,
. . . . we try to extend the proposed method in this pémegroup
Also by the weights in the third column of Tablg kanti-

. L decision making.
ideal frontier is as:

(0.0043Y, + (0.1667)Y, + (0.0978Y, REFERENCES
~(0.0345X, - (00389 X, ~ (00069 X3 =0 B 4 I ottt sves Sprnger 2008,
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