(R, S)-Modules and $(1, k)$-Jointly Prime (R, S)-Submodules

Thawatchai Khumprapussorn

Abstract

We introduced the notions of $(1, k)$-prime ideal and $(1, k)$-jointly prime (R, S)-submodule as a generalization of prime ideal and jointly prime (R, S)-submodule, respectively. We provide a relationship between $(1, k)$-prime ideal and $(1, k)$-jointly prime (R, S)-submodule. Characterizations of $(1, k)$-jointly prime (R, S) submodules are also given.

Keywords- (R, S)-module, $\quad(1, k)$-prime ideal, $\quad(1, k)$-jointly prime (R, S)-submodule.

I. Introduction

THROUGHOUT this paper, let R and S be rings and M an abelian group.
Definition 1.1: [1] Let R and S be rings and M an abelian group under addition. We say that M is an (R, S) module if there is a function _.__ : $R \times M \times S \rightarrow M$ satisfying the following properties: for all $r, r_{1}, r_{2} \in R$, $m, n \in M$ and $s, s_{1}, s_{2} \in S$,
(i) $r \cdot(m+n) \cdot s=r \cdot m \cdot s+r \cdot n \cdot s$
(ii) $\left(r_{1}+r_{2}\right) \cdot m \cdot s=r_{1} \cdot m \cdot s+r_{2} \cdot m \cdot s$
(iii) $r \cdot m \cdot\left(s_{1}+s_{2}\right)=r \cdot m \cdot s_{1}+r \cdot m \cdot s_{2}$
(iv) $r_{1} \cdot\left(r_{2} \cdot m \cdot s_{1}\right) \cdot s_{2}=\left(r_{1} r_{2}\right) \cdot m \cdot\left(s_{1} s_{2}\right)$.

We usually abbreviate $r \cdot m \cdot s$ by $r m s$. We may also say that M is an (R, S)-module under + and \ldots.

An (R, S)-submodule of an (R, S)-module M is a subgroup N of M such that $r n s \in N$ for all $r \in R, n \in N$ and $s \in S$.

Definition 1.2: [1] Let M be an (R, S)-module. A proper (R, S)-submodule P of M is called jointly prime if for each left ideal I of R, right ideal J of S and (R, S)-submodule N of M,

$$
I N J \subseteq P \text { implies } I M J \subseteq P \text { or } N \subseteq P
$$

The structure of an (R, S)-module was created as a generalization of a module structure. The basic results of an (R, S) module structure have been given by [1] and [2]. Almost all of those results was studied analoguous to a module structure such as the primalities of (R, S)-submodules of (R, S)-modules and left multiplication (R, S)-modules; see [1] and [2].
In this paper, we introduce the notions of $(1,2)$-prime ideal, $(1, k)$-prime ideal, $(1,2)$-jointly prime (R, S)-submodule and $(1, k)$-jointly prime (R, S)-submodule and obtain equivalent conditions for an (R, S)-submodule to be $(1, k)$-jointly prime (R, S)-submodule.
T. Khumprapussorn is with the Department of Mathematics, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Thailand, email: khthawat@kmitl.ac.th).

II. (1, 2)-Jointly Prime (R, S)-Submodules

In this research, we modify the structure of a jointly prime (R, S)-submodules for more general. Now, we start this section by giving the definition of $(1,2)$-jointly prime (R, S) submodules.

Definition 2.1: A proper (R, S)-submodule P of M is called (1,2)-jointly prime if for each left ideal I of R, right ideal J of S and (R, S)-submodule N of M,

$$
I N J^{2} \subseteq P \text { implies } I M J^{2} \subseteq P \text { or } N \subseteq P
$$

By the dual of (1,2)-jointly prime, we define $(2,1)$-jointly prime as follow.
A proper (R, S)-submodule P of M is called $(2,1)$-jointly prime if for each left ideal I of R, right ideal J of S and (R, S)-submodule N of M,

$$
I^{2} N J \subseteq P \text { implies } I^{2} M J \subseteq P \text { or } N \subseteq P
$$

It is clear that a jointly prime (R, S)-submodule is $(1,2)$ jointly prime and (2,1)-jointly prime. Next, we give a characterization of (1,2)-jointly prime and (2,1)-jointly prime $(r \mathbb{Z}, s \mathbb{Z})$-submodule of \mathbb{Z} where $r, s \in \mathbb{Z}^{+}$.

Proposition 2.2: Let $r, s \in \mathbb{Z}^{+}$and $p \in \mathbb{Z}_{0}^{+} \backslash\{1\}$. Then
(i) $p \mathbb{Z}$ is an (1,2)-jointly prime $(r \mathbb{Z}, s \mathbb{Z})$-module of \mathbb{Z} if and only if $p=0, p$ is a prime integer or $p \mid r s^{2}$.
(ii) $p \mathbb{Z}$ is a (2, 1)-jointly prime $(r \mathbb{Z}, s \mathbb{Z})$-module of \mathbb{Z} if and only if $p=0, p$ is a prime integer or $p \mid r^{2} s$.
Proof: (i) (\Rightarrow) Assume that $p \mathbb{Z}$ is a $(1,2)$-jointly prime $(r \mathbb{Z}, s \mathbb{Z})$-module of \mathbb{Z}. Suppose that $p \neq 0$ and p is not a prime integer. Then $p=m n$ for some integer $m, n>1$. It implies that $(r m \mathbb{Z})(n \mathbb{Z})\left(s^{2} \mathbb{Z}\right)=\left(r m n s^{2}\right) \mathbb{Z} \subseteq p \mathbb{Z}$. Since $p \mathbb{Z}$ is (1,2)-jointly prime and $p \nmid n,(r m \mathbb{Z}) \mathbb{Z}\left(s^{2} \mathbb{Z}\right) \subseteq p \mathbb{Z}$. Note that $(r \mathbb{Z})(m \mathbb{Z})\left(s^{2} \mathbb{Z}\right)=(r m \mathbb{Z}) \mathbb{Z}\left(s^{2} \mathbb{Z}\right) \subseteq p \mathbb{Z}$. Since $p \mathbb{Z}$ is $(1,2)$-jointly prime and $p \nmid m,(r \mathbb{Z}) \mathbb{Z}\left(s^{2} \mathbb{Z}\right) \subseteq p \mathbb{Z}$. Hence $p \mid r s^{2}$.
(\Leftarrow) If $p=0$ or p is a prime integer or $p \mid r s^{2}$, then it is clear that $p \mathbb{Z}$ is $(1,2)$-jointly prime.
Now, we already have an example of $(1,2)$-jointly prime but is not jointly prime.

Example 2.3: It is clear that \mathbb{Z} is a $(2 \mathbb{Z}, 3 \mathbb{Z})$-module. Then $9 \mathbb{Z}$ is a (1,2)-jointly prime $(2 \mathbb{Z}, 3 \mathbb{Z})$-submodule of \mathbb{Z} but $9 \mathbb{Z}$ is not a jointly prime $(2 \mathbb{Z}, 3 \mathbb{Z})$-submodule of \mathbb{Z}.
The following is an example showing that (1,2)-jointly prime and $(2,1)$-jointly prime are exactly different.

Example 2.4: Recall that \mathbb{Z} is a $(2 \mathbb{Z}, 3 \mathbb{Z})$-module. Then $4 \mathbb{Z}$ is a $(2,1)$-jointly prime $(2 \mathbb{Z}, 3 \mathbb{Z})$-submodule of \mathbb{Z} but $4 \mathbb{Z}$ is not a $(1,2)$-jointly prime $(2 \mathbb{Z}, 3 \mathbb{Z})$-submodule of \mathbb{Z} and $9 \mathbb{Z}$
is a $(1,2)$-jointly prime $(2 \mathbb{Z}, 3 \mathbb{Z})$-submodule of \mathbb{Z} but $9 \mathbb{Z}$ is not a $(2,1)$-jointly prime $(2 \mathbb{Z}, 3 \mathbb{Z})$-submodule of \mathbb{Z}.

Moreover, $p \mathbb{Z}$ is both a $(1,2)$-jointly prime and $(2,1)$-jointly prime $(2 \mathbb{Z}, 3 \mathbb{Z})$-submodule of \mathbb{Z} if and only if $p \mathbb{Z}$ is a jointly prime $(2 \mathbb{Z}, 3 \mathbb{Z})$-submodule of \mathbb{Z}.

Note that $(1,2)$-jointly prime and $(2,1)$-jointly prime may be different even if ring R and S are commutative.

We have a question from Example 2.4 that for general, if P is $(1,2)$-jointly prime and $(2,1)$-jointly prime, then can P be a jointly prime (R, S)-submodule? The following is an answers.

Example 2.5: It easy to see that \mathbb{Z} is a $(2 \mathbb{Z}, 4 \mathbb{Z})$-module. Then $16 \mathbb{Z}$ is both a $(1,2)$-jointly prime and $(2,1)$-jointly prime $(2 \mathbb{Z}, 4 \mathbb{Z})$-submodule of \mathbb{Z} but $16 \mathbb{Z}$ is not a jointly prime $(2 \mathbb{Z}, 4 \mathbb{Z})$-submodule of \mathbb{Z}.

Example 2.6: Let \mathbb{Z} be a ring of integer and let

$$
\begin{gathered}
R=\left\{\left.\left[\begin{array}{lll}
0 & 0 & x \\
0 & 0 & y \\
0 & 0 & 0
\end{array}\right] \right\rvert\, x, y \in \mathbb{Z}\right\}, \\
S=\left\{\left.\left[\begin{array}{lll}
0 & 0 & 0 \\
x & 0 & 0 \\
y & 0 & 0
\end{array}\right] \right\rvert\, x, y \in \mathbb{Z}\right\} \quad \text { and }
\end{gathered}
$$

M is the set of all 3×3 matrices on integer. Then M is an (R, S)-module. Since $R^{2}=0=S^{2}$, all proper (R, S) submodules of M are both $(1,2)$-jointly prime and $(2,1)$ jointly prime (R, S)-submodule of M. However, 0 is not a jointly prime (R, S)-submodule of M.

For each (R, S)-submodule P of M and $k \in \mathbb{Z}^{+}$, let

$$
(P: M)_{R ; S^{k}}=\left\{r \in R \mid r M S^{k} \subseteq P\right\}
$$

Proposition 2.7: Let P be an (R, S)-submodule of an (R, S)-module M and $k \in \mathbb{Z}^{+}$. The followings hold.
(i) $(P: M)_{R ; S^{k}}$ is a subgroup of R under addition.
(ii) $(P: M)_{R ; S^{k}} \subseteq(P: M)_{R ; S^{k+1}}$.
(iii) If $S^{2}=S$, then $(P: M)_{R ; S^{k}}$ is an ideal of R.

Proof: The proof is straightforward.
Next, we introduced a particular nonempty subset of R which play a role in this research.

Let R be a ring and T a proper ideal of R. Then T is said to be a $(1,2)$-prime ideal of R if for each ideal A and B of R, if $A B^{2} \subseteq T$, then $A \subseteq T$ or $B^{2} \subseteq T$. A prime ideal of R is a $(1,2)$-prime ideal of R but the converse is not true. We show by observing the following example.

Example 2.8: Let p be an integer. If $p=0$ or p is a prime integer or $p=q^{2}$ where q is a prime integer, then $p \mathbb{Z}$ is a $(1,2)$-prime ideal of \mathbb{Z}.

It clear that $4 \mathbb{Z}$ is a $(1,2)$-prime ideal of \mathbb{Z} but is not a prime ideal of \mathbb{Z}.

Proposition 2.9: Let P be an (R, S)-submodule of an (R, S)-module M such that $(P: M)_{R ; S^{2}}$ is a proper ideal of R. If P is a $(1,2)$-jointly prime (R, S)-submodule of M, then $(P: M)_{R ; S^{2}}$ is a $(1,2)$-prime ideal of R.

Proof: Assume that P is a $(1,2)$-jointly prime (R, S) submodule of M. Let A and B be ideals of R such that $A B^{2} \subseteq$ $(P: M)_{R ; S^{2}}$. Hence $\left(A B^{2}\right) M S^{2} S^{2} \subseteq\left(A B^{2}\right) M S^{2} \subseteq P$. Thus $A\left(B^{2} M S^{2}\right) S^{2} \subseteq P$. Since P is $(1,2)$-jointly prime, $A M S^{2} \subseteq P$ or $B^{2} M S^{2} \subseteq P$. Therefore $A \subseteq(P: M)_{R ; S^{2}}$
or $B^{2} \subseteq(P: M)_{R ; S^{2}}$. This means that $(P: M)_{R ; S^{2}}$ is a (1,2)-prime ideal of R.

The converse of Proposition 2.9 is invalid. For example, $6 \mathbb{Z}$ is a $(\mathbb{Z}, 2 \mathbb{Z})$-submodule of \mathbb{Z}. We see that $(6 \mathbb{Z}: \mathbb{Z})_{\mathbb{Z} ;(2 \mathbb{Z})^{2}}=3 \mathbb{Z}$ is a prime ideal of \mathbb{Z}, of course, $3 \mathbb{Z}$ is a $(1,2)$-prime ideal of \mathbb{Z} but $6 \mathbb{Z}$ is not a $(1,2)$-jointly prime $(\mathbb{Z}, 2 \mathbb{Z})$-submodule of \mathbb{Z}.

III. $(1, k)$-Jointly Prime (R, S)-SUBMODULES

In this section, we extend the notion of $(1,2)$-jointly prime to $(1, k)$-jointly prime where $k \in \mathbb{Z}^{+}$. Similarly, we also extend the notion of $(2,1)$-jointly prime to $(k, 1)$-jointly prime where $k \in \mathbb{Z}^{+}$.

Definition 3.1: Let $k \in \mathbb{Z}^{+}$and M be an (R, S)-module. A proper (R, S)-submodule P of M is called $(1, k)$-jointly prime if for each left ideal I of R, right ideal J of S and (R, S)-submodule N of M,

$$
I N J^{k} \subseteq P \text { implies } I M J^{k} \subseteq P \text { or } N \subseteq P
$$

Dually, a proper (R, S)-submodule P of M is called $(k, 1)$ jointly prime if for each left ideal I of R, right ideal J of S and (R, S)-submodule N of M,

$$
I^{k} N J \subseteq P \text { implies } I^{k} M J \subseteq P \text { or } N \subseteq P
$$

Note here that jointly prime and (1,1)-jointly prime are identical.

Proposition 3.2: Let $r, s, k \in \mathbb{Z}^{+}$and $p \in \mathbb{Z}_{0}^{+} \backslash\{1\}$. Then
(i) $p \mathbb{Z}$ is a $(1, k)$-jointly prime $(r \mathbb{Z}, s \mathbb{Z})$-module of \mathbb{Z} if and only if $p=0, p$ is a prime integer or $p \mid r s^{k}$.
(ii) $p \mathbb{Z}$ is a $(k, 1)$-jointly prime $(r \mathbb{Z}, s \mathbb{Z})$-module of \mathbb{Z} if and only if $p=0, p$ is a prime integer or $p \mid r^{k} s$.
Proof: (\Rightarrow) Assume that $p \mathbb{Z}$ is a $(1, k)$-jointly prime $(r \mathbb{Z}, s \mathbb{Z})$-module of \mathbb{Z}. Suppose that $p \neq 0$ and p is not a prime integer. Then $p=m n$ for some integer $m, n>1$. It implies that $(r m \mathbb{Z})(n \mathbb{Z})\left(s^{k} \mathbb{Z}\right)=\left(r m n s^{k}\right) \mathbb{Z} \subseteq p \mathbb{Z}$. Since $p \mathbb{Z}$ is $(1, k)$-jointly prime and $p \nmid n,(r m \mathbb{Z}) \mathbb{Z}\left(s^{k} \mathbb{Z}\right) \subseteq p \mathbb{Z}$. Note that $(r \mathbb{Z})(m \mathbb{Z})\left(s^{k} \mathbb{Z}\right)=(r m \mathbb{Z}) \mathbb{Z}\left(s^{k} \mathbb{Z}\right) \subseteq p \mathbb{Z}$. Since $p \mathbb{Z}$ is $(1, k)$-jointly prime and $p \nmid m,(r \mathbb{Z}) \mathbb{Z}\left(s^{k} \mathbb{Z}\right) \subseteq p \mathbb{Z}$. Hence $p \mid r s^{k}$.
(\Leftarrow) If $p=0$ or p is a prime integer or $p \mid r s^{k}$, then it is clear that $p \mathbb{Z}$ is $(1, k)$-jointly prime.

Proposition 3.3: Let $k \in \mathbb{Z}^{+}$and M be an (R, S) module. Then
(i) If P is $(1, k)$-jointly prime, then P is $(1, k+1)$-jointly prime.
(ii) If P is $(k, 1)$-jointly prime, then P is $(k+1,1)$-jointly prime.
Proof: Assume that P is a $(1, k)$-jointly prime (R, S) submodule of M. Let I be a left ideal of R, N an (R, S) submodule of M and J be a right ideal of S such that $I N J^{k+1} \subseteq P$. Note that $I(I N J) J^{k} \subseteq I^{2} N J^{k+1} \subseteq$ $I N J^{k+1} \subseteq P$. Since P is $(1, k)$-jointly prime, $I M J^{k} \subseteq P \overline{\text { or }}$ $I N J \subseteq P$. Note that $J^{k+1} \subseteq J^{k} \subseteq J$. If $I M J^{k} \subseteq \bar{P}$, then $I M J^{k+1} \subseteq P$. Assume that $I N J \subseteq P$. Then $I N J^{k} \subseteq P$. Since P is $(1, k)$-jointly prime, $I M \bar{J}^{k} \subseteq P$ or $N \subseteq P$.

The following example shows that the converse of Proposition 3.3 is false in general.

Example 3.4: Recall that \mathbb{Z} is a $(2 \mathbb{Z}, 3 \mathbb{Z})$-module. Then $27 \mathbb{Z}$ and $54 \mathbb{Z}$ are $(1,3)$-jointly prime $(2 \mathbb{Z}, 3 \mathbb{Z})$-submodule of \mathbb{Z} but $27 \mathbb{Z}$ and $54 \mathbb{Z}$ are not $(1,2)$-jointly prime $(2 \mathbb{Z}, 3 \mathbb{Z})$ submodule of \mathbb{Z}.

We obtain the following diagram from Proposition 3.3. Note that the order pair (m, n) means P is a (m, n)-jointly prime (R, S)-submodule of M.

In this point, we present a generalization of a (1,2)-prime ideal of R which is called $(1, k)$-prime ideal of R where $k \in$ \mathbb{Z}^{+}. Let R be a ring and T a proper ideal of R and $k \in \mathbb{Z}^{+}$. Then T is said to be a $(1, k)$-prime ideal of R if for each ideal A and B of R, if $A B^{k} \subseteq T$, then $A \subseteq T$ or $B^{k} \subseteq T$.

Proposition 3.5: Let $k \in \mathbb{Z}^{+}$and P be an (R, S) submodule of an (R, S)-module M such that $(P: M)_{R ; S^{k}}$ is a proper ideal of R. If P is a $(1, k)$-jointly prime (R, S) submodule of M, then $(P: M)_{R ; S^{k}}$ is a $(1, k)$-prime ideal of R.

Note that $(X)_{l}$ and $(X)_{r}$ is the left ideal generated by X and the right ideal generated by X, respectively, for any subset X of a ring $R .\langle Y\rangle$ is the (R, S)-submodule generated by Y for any (R, S)-submodule Y of an (R, S)-module M Next result needs the following lemma.

Lemma 3.6: Let M be an (R, S)-module and $k \in \mathbb{Z}^{+}$. The following statments hold:
(i) For all left ideal I of R, left ideal J of S and (R, S) submodule N and P of M,

$$
I N J^{k} \subseteq P \text { implies } I^{2} N(J)_{r}^{k} \subseteq P
$$

(ii) For all right ideal I of R, left ideal J of S and (R, S) submodule N and P of M,

$$
I N J^{k} \subseteq P \text { implies }(I)_{l} N\left(J^{2}\right)^{k} \subseteq P
$$

(iii) For all right ideal I of R, left ideal J of S and (R, S) submodule P of M,

$$
(I)_{l} M\left(J^{2}\right)^{k} \subseteq P \text { implies }(I)_{l}\left\langle I M J^{k}\right\rangle J^{k} \subseteq P
$$

(iv) For all right ideal I of R, right ideal J of S and (R, S) submodule N and P of M,

$$
I N J^{k} \subseteq P \text { implies } I^{2} N(J)_{l}^{k} \subseteq P
$$

(v) For all right ideal I of R, right ideal J of S and (R, S) submodule P of M,

$$
I^{2} M(J)_{l}^{k} \subseteq P \text { implies } I\left\langle I M J^{k}\right\rangle(J)_{l}^{k} \subseteq P
$$

(vi) For all left ideal I of R, right ideal J of S and (R, S) submodule N and P of M,

$$
I N J^{k} \subseteq P \text { implies }(I)_{r} N\left(J^{2}\right)^{k} \subseteq P
$$

(vii) For all left ideal I of R, right ideal J of S and (R, S) submodule P of M,

$$
(I)_{r} M\left(J^{2}\right)^{k} \subseteq P \text { implies }(I)_{r}\left\langle I M J^{k}\right\rangle J^{k} \subseteq P
$$

Proof: (i) Let I be a left ideal of R, J a left ideal of S, N and P be (R, S)-submodules of M. Assume that $I N J^{k} \subseteq P$. Then

$$
\begin{aligned}
I^{2} N(J)_{r}^{k} & =I^{2} N(J+J S)^{k} \\
& \subseteq I^{2} N\left(J^{k}+J^{k} S\right) \\
& \subseteq I N J^{k}+I\left(I N J^{k}\right) S \\
& \subseteq P
\end{aligned}
$$

(ii) Let I be a right ideal of R, J a left ideal of S, N and P be (R, S)-submodules of M. Assume that $I N J^{k} \subseteq P$. Then

$$
\begin{aligned}
(I)_{l} N\left(J^{2}\right)^{k} & =(I+R I) N\left(J^{k}\right)^{2} \\
& =(I+R I) N J^{k} J^{k} \\
& \subseteq I N J^{k} J^{k}+R I N J^{k} J^{k} \\
& \subseteq I N J^{k}+R\left(I N J^{k}\right) J^{k} \\
& \subseteq P
\end{aligned}
$$

(iii) Let I be a right ideal of R, J a left ideal of S, N and P be (R, S)-submodules of M. Assume that $(I)_{l} M\left(J^{2}\right)^{k} \subseteq P$. Then

$$
\begin{aligned}
(I)_{l}\left\langle I M J^{k}\right\rangle J^{k} & =(I)_{l}\left(\mathbb{Z}\left(I M J^{k}\right)+R\left(I M J^{k}\right) S\right) J^{k} \\
& \subseteq(I)_{l}\left(\mathbb{Z}\left(I M J^{k}\right)\right) J^{k}+(I)_{l}\left(R\left(I M J^{k}\right) S\right) J^{k} \\
& \subseteq \mathbb{Z}(I)_{l} I M\left(J^{k}\right)^{2}+(I)_{l} R I M J^{k} S J^{k} \\
& \subseteq \mathbb{Z}(I)_{l} M\left(J^{2}\right)^{k}+(I)_{l} M\left(J^{2}\right)^{k} \\
& \subseteq P
\end{aligned}
$$

(iv) Let I be a right ideal of R, J a right ideal of S, N and P be (R, S)-submodules of M. Assume that $I N J^{k} \subseteq P$. Then

$$
\begin{aligned}
I^{2} N(J)_{l}^{k} & =I^{2} N(J+S J)^{k} \\
& \subseteq I^{2} N\left(J^{k}+S J^{k}\right) \\
& \subseteq I N J^{k}+I(I N S) J^{k} \\
& \subseteq I N J^{k}+I N J^{k} \\
& \subseteq P+P \\
& \subseteq P
\end{aligned}
$$

(v) Let I be a right ideal of R, J a right ideal of S, N and P be (R, S)-submodules of M. Assume that $I^{2} M(J)_{l}^{k} \subseteq P$. Then

$$
\begin{aligned}
I\left\langle I M J^{k}\right\rangle(J)_{l}^{k} & =I\left(\mathbb{Z}\left(I M J^{k}\right)+R\left(I M J^{k}\right) S\right)(J)_{l}^{k} \\
& \subseteq \mathbb{Z}\left(I^{2} M J^{k}(J)_{l}^{k}\right)+I R I M J^{k} S(J)_{l}^{k} \\
& \subseteq \mathbb{Z}\left(I^{2} M(J)_{l}^{k}\right)+I^{2} M(J)_{l}^{k} \\
& \subseteq P .
\end{aligned}
$$

(vi) Let I be a left ideal of R, J a right ideal of S, N and P be (R, S)-submodules of M. Assume that $I N J^{k} \subseteq P$. Then

$$
\begin{aligned}
(I)_{r} N\left(J^{2}\right)^{k} & =(I+I R) N J^{k} J^{k} \\
& \subseteq I N J^{k} J^{k}+(I R) N J^{k} J^{k} \\
& \subseteq I N J^{k}+I\left(R N J^{k}\right) J^{k} \\
& \subseteq I N J^{k} \\
& \subseteq P
\end{aligned}
$$

(vii) Let I be a left ideal of R, J a right ideal of S, N and P be (R, S)-submodules of M. Assume that $(I)_{r} M\left(J^{2}\right)^{k} \subseteq P$. Then

$$
\begin{aligned}
(I)_{r}\left\langle I M J^{k}\right\rangle J^{k} & =(I)_{r}\left(\mathbb{Z}\left(I M J^{k}\right)+R\left(I M J^{k}\right) S\right) J^{k} \\
& \subseteq \mathbb{Z}\left((I)_{r} I M J^{k} J^{k}\right)+(I)_{r} R I M J^{k} S J^{k} \\
& \subseteq \mathbb{Z}(I)_{r} M\left(J^{2}\right)^{k}+(I)_{r} M\left(J^{2}\right)^{k} \\
& \subseteq P+P . \\
& \subseteq P .
\end{aligned}
$$

Next, we obtain equivalent conditions for an (R, S) submodule to be $(1, k)$-jointly prime (R, S)-submodules.

Theorem 3.7: Let M be an (R, S)-module and P a $\operatorname{proper}(R, S)$-submodule of M and $k \in \mathbb{Z}^{+}$. The following statments are equivalent:
(i) P is an $(1, k)$-jointly prime (R, S)-submodule of M.
(ii) For all left ideal I of R, left ideal J of S and (R, S) submodule N of M,

$$
I N J^{k} \subseteq P \text { implies } I M J^{k} \subseteq P \text { or } N \subseteq P
$$

(iii) For all right ideal I of R, left ideal J of S and (R, S) submodule N of M,

$$
I N J^{k} \subseteq P \text { implies } I M J^{k} \subseteq P \text { or } N \subseteq P
$$

(iv) For all right ideal I of R, right ideal J of S and (R, S) submodule N of M,

$$
I N J^{k} \subseteq P \text { implies } I M J^{k} \subseteq P \text { or } N \subseteq P
$$

(v) For all left ideal I of R, right ideal J of S and $m \in M$,

$$
I\langle m\rangle J^{k} \subseteq P \text { implies } I M J^{k} \subseteq P \text { or } m \in P
$$

(vi) For all left ideal I of R, left ideal J of S and $m \in M$,

$$
I\langle m\rangle J^{k} \subseteq P \text { implies } I M J^{k} \subseteq P \text { or } m \in P
$$

(vii) For all right ideal I of R, left ideal J of S and $m \in M$,

$$
I\langle m\rangle J^{k} \subseteq P \text { implies } I M J^{k} \subseteq P \text { or } m \in P
$$

(viii) For all right ideal I of R, right ideal J of S and $m \in M$,

$$
I\langle m\rangle J^{k} \subseteq P \text { implies } I M J^{k} \subseteq P \text { or } m \in P
$$

Proof: This follows from Lemma 3.6.

References

[1] T. Khumprapussorn, S. Pianskool and M. Hall, (R, S)-modules and Their Fully prime and Jointly prime Submodules, IMF, 7 (2012), 1631-1643.
[2] T. Khumprapussorn, Left R-prime (R, S)-submodules, IMF, 8 (2013), 619 - 626.

