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Quasilinearization–Barycentric approach for
numerical investigation of the boundary value Fin

problem
Alireza Rezaei, Fatemeh Baharifard, Kourosh Parand

Abstract—In this paper we improve the quasilinearization method
by barycentric Lagrange interpolation because of its numerical stabil-
ity and computation speed to achieve a stable semi analytical solution.
Then we applied the improved method for solving the Fin problem
which is a nonlinear equation that occurs in the heat transferring. In
the quasilinearization approach the nonlinear differential equation is
treated by approximating the nonlinear terms by a sequence of linear
expressions. The modified QLM is iterative but not perturbative and
gives stable semi analytical solutions to nonlinear problems without
depending on the existence of a smallness parameter. Comparison
with some numerical solutions shows that the present solution is
applicable.

Keywords—Quasilinearization method, Barycentric Lagrange in-
terpolation, Nonlinear ODE, Fin problem, Heat transfer

I. INTRODUCTION

THE convective heat transfer from a surface to the am-
bient fluid can be significantly improved by extending

the surface and then increasing the heat transfer area. Such
extensions into the surrounding fluid are called fins.

In a variety of engineering applications, fins are frequently
used to facilitate the dissipation of the heat from a heated wall
to the surrounding environment. The heat conducted through a
fin body is removed via convective and/or radiative processes.
An analysis of this conduction convection/radiation system has
been a matter of interest in the heat transfer area due to its
practical importance and numerous studies on the fin analysis
have been performed for a long time [1], [2], [3].

In cases of constant thermal conductivity and constant
heat transfer coefficient, the analytical solution of temperature
distribution as well as heat transfer rate can be easily obtained.
In general, however, the heat transfer coefficient may be no
longer uniform and varies along the fin with the temperature
difference between the surface and the adjacent fluid in a
nonlinear manner. The former is a typical problem for fins with
a forced convection heat transfer, while the latter is common in
other heat transfer modes such as natural convection, radiation,
boiling and condensation heat transfer. If a large temperature
difference exists within the fin, the thermal conductivity may
not be constant and its dependence on the temperature should
be considered. A considerable amount of research has been
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conducted to obtain solutions to the nonlinear fin problem
with a temperature-dependent thermal conductivity and/or heat
transfer coefficient. Due to the nonlinearity of the problem
exact solutions are not easy to obtain.

The quasilinearization method (QLM) is a generalization of
the Newton-Raphson method [4], [5] for nonlinear differential
equations. It was developed originally in the theory of linear
programming by Bellman and Kalaba [6], [7], [8]. Quasilin-
earization techniques are based on the linearization of the high
order ordinary differential equation and require the solution
of a linear ordinary differential equation at each iteration.
Mandelzweig and Tabakin [9] have determined general con-
ditions for the quadratic, monotonic and uniform convergence
of the quasilinearization method for solving both initial- and
boundary-value problems in nonlinear ordinary differential
equations. In particular, they have applied with great success
quasilinearization methods to the two-point Thomas-Fermi and
Blasius equations and to singular initial-value problems gov-
erned by the Lane-Emden equation [10]. Moreover, Recently
the quasilinearization method was suggested for solving the
Schrödinger equation after conversion to the Riccati equation
[9], [11], [12].

The quasilinearization method may be interpreted as a
perturbation technique which treats the nonlinear terms as
a perturbation about the linear ones, but, unlike perturbation
methods, is not based on the existence of a small parameter
[10].

Occasionally the linear ordinary differential equation that
get from quasilinearization method at each iteration does not
solve analytically. Hence we can use barycentric Lagrange
interpolation to approximate the solution.

Interpolation [13], [14] is the approximation of function
values using evaluations of that function at other points in
the domain.

The Lagrange polynomial interpolation formula is widely
regarded as being of mainly theoretical interest, as reference
to almost any numerical analysis textbook reveals. Yet several
authors, including [15], [16], [17], [18], [19], have noted that
certain variants of the Lagrange formula are indeed of practical
use. [20], have recently collected and explained the attractive
features of two modified Lagrange formulas. They argue con-
vincingly that interpolation via a barycentric Lagrange formula
ought to be the standard method of polynomial interpolation
[21].

Barycentric interpolation is a variant of Lagrange polyno-
mial interpolation. we prefer barycentric Lagrange polynomial
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interpolation [20], [21], over other methods for its numerical
stability, more significantly and its speed. Using n nodes,
evaluations of the interpolant require O(n) operations, and
all other operations requiring more than O(n) operations
(excluding function evaluations at the nodes) are function
independent and hence precomputable [22].

The primary criterion for polynomial interpolation schemes
is that the nodes have the asymptotic density 1/

√
(1 − x2) as

n → ∞. Node schemes satisfying this density are typically
the roots of orthogonal polynomials, such as two well-known
sets of the Legendre and Chebyshev polynomials [14], [22],
[23].

This work is arranged as follows: In Section II we explain
the formulation of the Fin problem which is a nonlinear
equation that occurs in the heat transferring. In Section III
we describe how to use barycentric Lagrange interpolation
to improve the quasilinearization method. In the next Section
the proposed method is applied to solve the Fin equation and
then a comparison is made between the obtained results and
the exist exact solutions in some cases. The conclusions are
described in the final Section.

II. PROBLEM FORMULATION

Consider a straight fin of length L with a constant cross-
sectional area A, and perimeter P . The fin surface is exposed
to a convective environment at temperature Ta and the local
heat transfer h along the fin surface is assumed to exhibit a
power–law–type dependence on the local temperature differ-
ence between the fin and the ambient fluid as

h = C(T − Ta)m, (1)

where C is a constant derived from natural convection theory,
T is the local temperature on the fin surface and the exponent
m depends on the heat transfer mode. The value of m can
vary in a wide range [24], [25]. For example, the exponent
m may take the values −4, −0.25, 0, 2 and 3, indicating the
fin subject to transition boiling, laminar film boiling or con-
densation, convection, nucleate boiling and thermal radiation,
respectively.

The Fourier heat–conduction equation, combined with the
condition that the state is steady, leads to the following
differential equation:

Ak
d2T

dX2
= pC(T − Ta)m+1, (2)

where k is the thermal conductivity.
For one-dimensional steady state heat conduction, the equa-

tion in terms of dimensionless variables

θ =
T − Ta

Tb − Ta
, x =

X

L
, (3)

N2 =
hbPL2

Ak
=

PCL2

Ak
(Tb − Ta)m, (4)

can be written as:
d2θ

dx2
− N2θm+1 = 0, (5)

where hb and Tb are the heat transfer coefficient and temper-
ature at fin base, the axial distance x is measured from the fin

tip and N is the convective–conductive parameter of the fin.
For simplicity, assume the fin tip is insulated and the boundary
conditions to Eq. (5) can be expressed as:

θ′(0) = 0, (6)

θ(1) = 1. (7)

III. MODIFY THE QUASILINEARIZATION METHOD

A. The Quasilinearization Method(QLM)

The aim of the quasilinearization method (QLM) of Bellman
and Kalaba [6], [7], [26] based on the Newton-Raphson
method [4], [5] is to solve a nonlinear nth order ordinary
or partial differential equation in N dimensions as a limit
of a sequence of linear differential equations. This goal is
easily understandable since there is no useful technique for
obtaining the general solution of a nonlinear equation in
terms of a finite set of particular solutions, in contrast to
a linear equation which can often be solved analytically or
numerically in a convenient fashion using superposition. In
addition, the QL sequence should be constructed to assure
quadratic convergence and, if possible, monotonicity [9].

In this section, we present the main features of the quasi-
linearization approach [27]. Consider the nonlinear ordinary
differential equations (NODE)

L(n)y(x) =
dny(x)
dxn

= (8)

f

(
x, y(x),

dy

dx
(x), . . . ,

dn−1y

dxn−1
(x)

)
x ∈ [0, b] (9)

with boundary conditions

gk

(
y(0),

dy

dx
(0), . . . ,

dn−1y

dxn−1
(0)

)
= 0 k = 1, . . . , l,(10)

gk

(
y(b),

dy

dx
(b), . . . ,

dn−1y

dxn−1
(b)

)
= 0 k = l+1, . . . , n.(11)

Here L(n) is a linear nth order ordinary differential operator,
f and g1, g2, . . . , gn are nonlinear functions of y(x) and (n−1)
derivatives dsy

dxs (x), s = 1, . . . , n − 1.
The QLM prescription [9] determines the (r+1)th iterative

approximation y(r+1)(x) to the solution of problem (8) - (11)
as the solution of the linear equation

L(n)y(r+1)(x) = f

(
x, y(r)(x),

dy(r)

dx
(x), . . . ,

dn−1y(r)

dxn−1
(x)

)

+
n−1∑
s=0

(
dsy(r+1)

dxs
(x) − dsy(r)

dxs
(x)

)

× fys

(
x, y(r)(x),

dy(r)

dx
(x), . . . ,

dn−1y(r)

dxn−1
(x)

)
(12)

with linearized two-point boundary conditions for k =
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1, . . . , l

n−1∑
s=0

(
dsy(r+1)

dxs
(0) − dsy(r)

dxs
(0)

)

× gkys

(
0, y(r)(0),

dy(r)

dx
(0), . . . ,

dn−1y(r)

dxn−1
(0)

)
, (13)

and for k = l + 1, . . . , n

n−1∑
s=0

(
dsy(r+1)

dxs
(b) − dsy(r)

dxs
(b)

)

× gkys

(
b, y(r)(b),

dy(r)

dx
(b), . . . ,

dn−1y(r)

dxn−1
(b)

)
. (14)

Here fys = ∂sf/∂ys and gkys = ∂sgk/∂ys,
s = 0, 1, . . . , n − 1 are partial derivatives of
the functions f(x, y(x), dy

dx (x), . . . , dn−1y
dxn−1 (x)) and

gk(x, y(x), dy
dx (x), . . . , dn−1y

dxn−1 (x)), respectively.
The initial guess y(0)(x) is chosen from mathematical or

physical concepts. Let

δy(r+1)(x) ≡ y(r+1)(x) − y(r)(x), r = 0, 1, . . . (15)

be the difference between two subsequent iterations.
Under some assumptions on the input data of problem (8)

- (11) in [9] the following estimate is established

‖δy(r+1)‖ ≤ k‖δy(r)‖, (16)

where k is a constant independent of r. It is also shown that
the difference between exact solution and the rth iteration

�y(r)(x) = y(r)(x) − y(x), (17)

is quadratically decreasing as well as:

‖�y(r+1)‖ ≤ ‖�y(r)‖2. (18)

A simple induction of (16) shows that ‖δy(r+1)(x)‖ for an
arbitrary l < 2 satisfies the inequality

‖δy(r+1)‖ ≤ 1
k

(k‖δy(l+1)‖)2r−1
, (19)

or, for l = 0 [27], they related the (r+1)th order result to the
1st iterate by

‖δy(r+1)‖ ≤ 1
k

(k‖δy1‖)2r

. (20)

Therefore the convergence depends on the quantity k ‖
y(1) − y(0)‖ where as it has been mentioned above, the
initial guess y(0)(x) should be chosen from physical and
mathematical concepts. Usually, it is advantageous that y(0)(x)
would satisfy at least one of the boundary conditions [9], [27].

B. Barycentric Lagrange Interpolation

In this section we first introduce Lagrange polynomial and
then present barycentric interpolation [20].

Let n + 1 distinct interpolation points (nodes) xj , j =
0, . . . , n, be given, together with corresponding numbers fj ,
which may or may not be samples of a function f . Unless
stated otherwise, we assume that the nodes are real, although
most of our results and comments generalize to the complex

plane. Let
∏

n denote the vector space of all polynomials of
degree at most n. The classical problem addressed here is that
of finding the polynomial p ∈ ∏

n that interpolates f at the
points xj , i.e.,

p(xj) = fj , j = 0, . . . , n
The problem is well-posed; i.e., it has a unique solution

that depends continuously on the data. Moreover, as explained
in virtually every introductory numerical analysis text, the
solution can be written in Lagrange form [20], [28]:

p(x) =
n∑

j=0

fj lj(x),

lj(x) =

∏n
k=0,k �=j(x − xk)∏n
k=0,k �=j(xj − xk)

. (21)

The Lagrange polynomial lj corresponding to the node xj

has the property

lj(xk) =

{
1, j = k

0, otherwise
(22)

for j, k = 0, . . . , n.
Now if we have l(x) = (x − x0)(x − x1) . . . (x − xn), we

can rewrite the Lagrange basis polynomial as

lj(x) =
l(x)

x − xj

1∏n
k=0,k �=j(xj − xk)

. (23)

If define the barycentric weights by

wj =
1∏

k �=j(xj − xk)
j = 0, . . . , n, (24)

so we can simply write

lj(x) = l(x)
wj

x − xj
, (25)

which is commonly referred to as the first form of the
barycentric interpolation formula.

The advantages of this representation is that the interpola-
tion polynomial may now be evaluated as

p(x) = l(x)
n∑

j=0

wj

x − xj
fj . (26)

Suppose we interpolate, besides the data fj , the constant
function f(x) = 1, whose interpolant is of course itself.
Inserting into (26), we get

1 =
n∑

j=0

lj(x) = l(x)
n∑

j=0

wj

x − xj
. (27)

Dividing (26) by this expression and cancelling the common
factor l(x), we obtain the barycentric formula for p [20]:

p(x) =

∑n
j=0

wj

x−xj
fj∑n

j=0
wj

x−xj

(28)

where wj is still defined by (24). Rutishauser [16] called
(28) the second (true) form of the barycentric formula.

For certain special sets of nodes xj , one can give explicit
formulas for the barycentric weights wj .

The simplest examples of clustered point sets are the
families of Chebyshev points, obtained by projecting equally
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spaced points on the unit circle down to the unit interval
[−1, 1].

The Chebyshev points of the first kind are given by

xj = cos
(2j + 1)π
2n + 2

, j = 0, . . . , n. (29)

In this case after cancelling factors independent of j we find
[15]

wj = (−1)j sin
(2j + 1)π
2n + 2

. (30)

Note that these numbers vary by factors O(n), not expo-
nentially, reflecting the good distribution of the points.

For this set of Chebyshev points, if the interval [−1, 1] is
linearly transformed to [a, b], the weights as defined by (24)
all get multiplied by 2n(b − a)−n. However, as this factor
cancels out in the barycentric formula, there is again no need
to include it [20].

C. Quasilinearization – Barycenric Lagrange Interpolation
Method

In fact the linearized equations (12) - (14) (i.e. the QLM)
for some nonlinear problems such as Fin problem does not
solve analytically in practice the problem (8) - (11). So we can
follow the below steps while get the semi analytical solution
of our problem:

Initialize: Linearize the nonlinear ordinary differential
equation and its boundary conditions with QLM (12) - (14).

In rth iteration do this (r begins from 0 and y(0)(x) is initial
guess):

Step 1: Subsitute y(r)(x) and its derivations in the linear
equations that obtained from initialization, to get new ordinary
differential equation (ODE).

Step 2: Solve numerically the ODE by using ODE boundary
value problem solver package (bvp4c) in MATLAB software.

Step 3: Apply barycentric Lagrange interpolation (28) via
Chebyshev points to approximate y(r+1)(x) in linear equation.

Step 4: If gain the sightly results, stop; else go to step 1.

IV. SOLUTION OF FIN PROBLEM

In this section we apply the present method for solving
the Fin problem and compare the results with the exist exact
solutions in some cases.

It is enough to follow the steps mentioned in previous
section:

Initialize: The quasilinearized form of Fin equation(5) is:

d2θ(n+1)

dx2
= N2(θ(n))m+1 + (θ(n+1) − θ(n))

×
[
N2(m + 1)(θ(n))m

]
,

θ′(0) = 0,

θ(1) = 1. (31)

The simplest initial guess satisfying at least one of the
boundary conditions so can be set θ(0)(x) = x for m ≥ 0
and θ(0)(x) = x + 1 for m < 0.

0 0.2 0.4 0.6 0.8 1
0.5
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0.7
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x)
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N=0.2
N=0.3
N=0.4
N=0.5

Since the Fin problem is defined on [0, 1] we use the
Chebyshev points in barycentric interpolation by the map
function φ(x) = (x + 1)/2.

Now, Executing the algorithm yields the approximate solu-
tions.

In Figures 1, 2, 3, 4, 5, the plot of θ(x) for m = −4,
−0.25, 0, 2 and 3 and various N is shown respectively.

The temperature at the fin tip (θ0), as a function of N
has been plotted in Figures 6, 7 for m = −4 and −0.25
respectively. Figure 8 shows the fin tip (θ0), as a function of
N for m = 0, 2 and 3. These graphs are symmetric with
respect to the origin. Note that this problem does not admit
any solution for some values of N [1].

Figures 9, 10 show the logarithmic graphs of absolute
difference between two subsequent iterations in modified QLM
as δθ(r+1)(0) and δdθ(r+1)(1) for m = 2, N = 5 and
m = 3, N = 5 respectively. Note that the average number
of QLM iterations in this problem is 5, They shows that the
convergence to the exact solutions is very fast.

For m = 0, the exact solution is [1]

θ(x) =
cosh Nx

cosh N
. (32)

A comparison of the quasilinear solutions corresponding
to the first iteration with the numerically computed exact
solutions for m = 0 and N = 1, 3 and 5 are given in Table
I.

Tables II and III shows the comparison of the two principal
quantities of engineering interest, namely, θ(0) and θ′(1) for
various m and N , from the method proposed in this paper and
exact solutions obtained by Abbasbandy et. al. [1]. It is found
from these Table that the parameter θ′(1) increases with N
for all the values of m. However, for fixed N , θ′(1) decreases
as m increases.

Fig. 1 Plot of θ(x) for m = −4
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Fig. 2. Plot of θ(x) for m = −0.25.
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Fig. 5. Plot of θ(x) for m = 3.
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Fig. 4 Plot of θ(x) for m = 2

Fig. 3 Plot of θ(x) for m = 0

Fig 6 Temperature at the fin tip (θ ), as a function of N for m = −4

Fig. 7 Temperature at the fin tip (θ ), as a function of N for m = −0.25
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Fig. 8 Temperature at the fin tip (θ ), as a function of N for m = 0, 2, 3

Fig. 9 Logarithmic graph of absolute δθ (0) for m = 2, N = 5 and

m = 3, N = 5

and m = 3, N = 5
Fig. 10 Logarithmic graph of absolute δdθ (1) for m = 2, N = 5
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TABLE I
COMPARISON BETWEEN THE NUMERICAL RESULTS OF θ(x) FOR m = 0

N = 1 N = 3 N = 5
x Numerical Exact Numerical Exact Numerical Exact
0.0 0.64805427 0.64805427 0.09932793 0.09932793 0.01347528 0.01347528
0.1 0.65129725 0.65129725 0.10383131 0.10383131 0.01519508 0.01519508
0.2 0.66105862 0.66105862 0.11774980 0.11774980 0.02079345 0.02079345
0.3 0.67743609 0.67743609 0.14234550 0.14234550 0.03169938 0.03169938
0.4 0.70059357 0.70059357 0.17984866 0.17984866 0.05069665 0.05069665
0.5 0.73076283 0.73076283 0.23365997 0.23365997 0.08263433 0.08263433
0.6 0.76824580 0.76824580 0.30865887 0.30865887 0.13566459 0.13566459
0.7 0.81341764 0.81341764 0.41164604 0.41164604 0.22332349 0.22332349
0.8 0.86673043 0.86673043 0.55196004 0.55196004 0.36798614 0.36798614
0.9 0.92871776 0.92871776 0.74232415 0.74232415 0.60657797 0.60657797
1.0 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000

TABLE II
COMPARISON OF θ(0) FOR VARIOUS m AND N BETWEEN PROPOSED

m N QLM Exact N QLM Exact N QLM Exact
−4 0.1 0.99493615 0.99493615 0.2 0.97890632 0.97890631 0.4 0.89442778 0.89442719
−0.25 1 0.62416849 0.62416888 1.75 0.27079441 0.27080076 2 0.19307678 0.19307750
0 1 0.64805427 0.64805427 3 0.09932793 0.09932793 5 0.01347528 0.01347528
2 1 0.75162414 0.75162201 3 0.41962917 0.41960158 5 0.28901585 0.28901262
3 1 0.77914785 0.77914516 3 0.50128429 0.50128247 5 0.38389490 0.38389178

TABLE III
COMPARISON OF θ (1) FOR VARIOUS m AND N BETWEEN PROPOSED

m N QLM Exact N QLM Exact N QLM Exact
−4 0.1 0.01010205 0.01010206 0.2 0.04174243 0.04174243 0.4 0.19999919 0.20000000
−0.25 1 0.80120868 0.80120816 1.75 1.77319515 1.77318936 2 2.07710091 2.07710000
0 1 0.76159416 0.76159416 3 2.98516426 2.98516426 5 4.99954602 4.99954602
2 1 0.58345481 0.58345853 3 2.08816267 2.08818205 5 3.52311162 3.52317865
3 1 0.53398401 0.53398921 3 1.86707228 1.86709663 5 3.14898258 3.14906707

AND EXACT VALUES

METHOD AND EXACT VALUES GIVEN BY ABBASBANDY [1]

METHOD AND EXACT VALUES GIVEN BY ABBASBANDY [1]
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V. CONCLUSION

The quasilinearization method(QLM) is very applicable
and it treats nonlinear terms by a series of nonperturbative
iterations and is not based on the existence of some kind
of small parameter. At every iterative stage, the differential
operator changes significantly to account for the nonlinearity,
which is the major way that the QLM differs from other
approximative techniques.

In this paper we improved the quasilinearization method
by barycentric Lagrange interpolation for solving Fin problem
as a nonlinear equation that occurs in the heat transferring.
In every iterative stage, we solve y(r)(x) numerically by
using ODE boundary value problem solver package (bvp4c)
in MATLAB software and then appleid the barycentric La-
grange via Chebyshev points to approximate y(r+1)(x). This
interpolation is very stabile, accurate and easy to compute. In
the end, we compared this method with the other methods and
showed the solutions are accurate, numerically stable and fast
convergence. So it is applicable for such problems.
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