ISSN: 2517-9934

Vol:1, No:9, 2007

Quasi-Permutation Representations for the Group SL(2,q) when Extended by a certain Group of order Two

M. Ghorbany

Abstract—A square matrix over the complex field with nonnegative integral trace is called a quasi-permutation matrix. For a finite group G the minimal degree of a faithful representation of G by quasi-permutation matrices over the rationals and the complex numbers are denoted by q(G) and c(G) respectively. Finally r(G) denotes the minimal degree of a faithful rational valued complex character of G. The purpose of this paper is to calculate q(G), c(G) and r(G) for the group SL(2,q) when extended by a certain group of order two.

AMS Subject Classification: 20C15.

Keywords and phrases: General linear group, Quasi-permutation.

In [10] Wong defined a quasi-permutation group of degree n to be a finite group G of automorphisms of an n-dimensional complex vector space such that every element of G has nonnegative integral trace. Also Wong studied the extent to which some facts about permutation groups generalize to the quasi-permutation group situation. In [3] the authors investigated further the analogy between permutation groups and quasi-permutation groups. They also worked over the rational field and found some interesting results.

By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. For a given finite group G, let q(G) denote the minimal degree of a faithful representation of G by quasi-permutation matrices over the rational field Q and let c(G) be the minimal degree of a faithful representation of G by complex quasi-permutation matrices and finally let r(G) denote the minimal degree of a faithful rational valued character of G. In this paper we will apply the algorithms in [1] to the group $K_2^2(2^n)$, where

$$K_n^2(q) = \langle SL(n,q), \theta | \theta^2 = 1, \theta^{-1} A \theta = (A^t)^{-1} \rangle$$
.

We will prove

Theorem 1: A) Let $G=K_2^2(2)$ then r(G)=2, c(G)=q(G)=4

- **B)** Let $K_2^2(q)$, where $q=2^n$. Then
- 1) If $q \equiv -1 \mod 3$ then r(G) = q 1, c(G) = q(G) = 2(q 1)
- **2)** Otherwise : r(G) = q , c(G) = q(G) = 2q

Let SL(n,q) denote the special general linear group of a vector space of dimension n over a field with q elements . Let

Department of Mathematics, Iran University of Science and Technology, Emam, Behshahr, Mazandaran, Iran. (E-mail: $m_ghorbani@iust.ac.ir$)

 $\theta: SL(n,q) \longrightarrow SL(n,q)$ be the automorphism of SL(n,q) given by $\theta(A) = (A^t)^{-1}$, where A^t denotes the transpose of the matrix $A \in SL(n,q)$. In this case one can define the split extension $SL(n,q). < \theta >$ that following the notations used in [6] is denoted by $K_n^2(q)$. Therefore we have $K_n^2(q) = < SL(n,q), \theta | \theta^2 = 1, \theta^{-1}A\theta = (A^t)^{-1} >$, see[4].

Now let G denote the group SL(n,q) and let the split extension of G by the cyclic group $<\theta>$ of order 2 be denoted by G^+ . Since $[G^+:G]=2$, we have $G^+=G\cup\theta G$, and elements of G^+ which lie in G are called positive and those outside G are called negative elements . A conjugacy class in G^+ is called positive if it lies in G otherwise it is called negative . We may assume that using [7] one can obtain information about conjugacy classes and complex irreducible characters of G, therefore so far as conjugacy classes of G^+ are concerned one must pay attention to negative conjugacy classes of G^+ .

One can show that there is a one-to-one correspondence between the set of negative conjugacy classes of G^+ and the set of equivalence classes of invertible matrices in G .

Now we begin with a summary of facts relevant to the irreducible complex characters of $K_2^2(q)$.

Complex irreducible characters of G^+ are divided into two kinds . The group $<\theta>$ acts on the set of complex irreducible characters of G as follows . If $\chi\in Irr(G)$, then $\chi^\theta(A):=\chi(\theta^{-1}A\theta)$. If $\chi^\theta=\chi$, then we say that χ is invariant under $<\theta>$ and in this case χ forms an orbit of G^+ acting on Irr(G). Now by standard results that can be found in [8] there exists an irreducible character φ of G^+ such that $\varphi\downarrow_{G}=\chi$. Since $G^+/G\cong Z_2$ has two linear characters , therefore multiplication of φ with the non-trivial character of G^+/G gives another irreducible character φ' of G^+ such that $\varphi\downarrow_{G}=\chi$. In this case we say that χ extends to φ and φ' and it is enough to calculate one of them on the negative conjugacy classes of G^+ .

As we mentioned earlier we have $K_2^2(q) = SL(2,q)$. $<\theta>=< SL(2,q), \theta|\theta^2=1, \theta^{-1}A\theta=(A^t)^{-1}, \forall A\in SL(2,q)>$. In the following Lemma we give the structure of $K_2^2(q)$.

Lemma 1: Let $G=K_2^2(q)$. If q is even , then $K_2^2(q)\cong SL(2,q)\times <\theta>$ and if q is odd , then $K_2^2(q)\cong SL(2,q)\circ 4$ a central product of SL(2,q) with the cyclic group of order 4.

Proof. The automorphism θ : $SL(2,q) \rightarrow SL(2,q)$ is

ISSN: 2517-9934

given by $\theta(A)=(A^{-1})^t$ for all $A\in SL(2,q)$ Vol:1f No:9, we set $J=\begin{pmatrix} 0&1\\-1&0 \end{pmatrix}$, then it is easy to verify that for $A\in SL(2,q)$ we have $J^{-1}AJ=(A^{-1})^t$ and therefore θ is equal to an inner automorphism i_J of SL(2,q). We have $K_2^2(q)=< SL(2,q), \theta>=< SL(2,q), \theta J>= SL(2,q).$ $<\theta J>$ and since $\theta J\in Z(K_2^2(q))$ hence $K_2^2(q)\cong \frac{SL(2,q)\times eJ>}{\{(I,I),(-I,-I)\}}$. If the characteristic of GF(q) is even , then we get $K_2^2(q)=SL(2,q)\times eJ>$ and if the characteristic of GF(q) is odd we obtain $K_2^2(q)\cong SL(2,q)\circ eJ>$ the central product of SL(2,q) its its it with a cyclic group of order J.

By [5] we have two important lemmas as follows

Lemma 2: a) Let $V_i(i=1,2)$ be KG-modules . Then the tensor product $V_1\otimes_K V_2$ over K obviously becomes a $K[G_1\times G_2]$ module by

$$(v_1 \otimes v_2)(g_1, g_2) = v_1 g_1 \otimes v_2 g_2$$

For $v_i \in V_i, g_i \in G$.

If χ_i is the character of G_i on V_i , then the character τ of $G_1 \times G_2$ on $V_1 \otimes V_2$ is given by

$$\tau((g_1, g_2)) = \chi_1(g_1)\chi_2(g_2)$$

For $g_i \in G_i$.

b) Let $\chi_1,...,\chi_h$ be the irreducible characters of G_i over C and $\psi_1,...,\psi_k$ the irreducible characters of G_2 over C. Then the t_{ij} defined by $t_{ij}((g_1,g_2))=\chi_i(g_1)\psi_j(g_2)$ where i=1,...,h and j=1,...,k are all the irreducible characters of $G_1\times G_2$.

Lemma 3: Let F be the finite field of $q=2^n$ elements , and let ν be a generator of the cyclic group $F^*=F-0$. Denote

$$1 = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right), c = \left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array}\right), a = \left(\begin{array}{cc} \nu & 0 \\ 0 & \nu^{-1} \end{array}\right)$$

in G=SL(2,F). G contains an element b of order q+1. For any $x\in G$, let (x) denote the conjugacy class of G containing x. Then G has exactly q+1 conjugacy classes $(1),(c),(a),(a^2),...,(a^{(q-2)/2}),(b),...,(b^{q/2})$, where

Table (1) Conjugacy Classes of $SL(2, 2^n)$

	onju	gacy Clas	sses of $SL($	2,2'')
\boldsymbol{x}	1	c	a^l	b^m
(x)	1	$q^2 - 1$	q(q+1)	q(q-1)

for $1 \le l \le (q-2)/2, 1 \le m \le q/2$.

let $\rho \in C$ be a primitive (q-1)-th root of 1 , table of G over C is

Table (2) Character Table of $SL(2, 2^n)$

2007					
4	2007	1	c	a^l	b^m
	1_G	1	1	1	1
	ψ	q	0	l	-1
	χ_i	q+1	1	$ ho^{il} + ho^{-il}$	0
	θ_j	q-1	-1	0	$-(\sigma^{jm}+\sigma^{-jm})$

for $1 \le i \le (q-2)/2, 1 \le j \le q/2, 1 \le l \le (q-2)/2, 1 \le m \le q/2$.

Remark 1: In the case of q even $<\theta J>$ has order 2 and its irreducible characters are denoted by μ_0 and μ_1 where μ_0 is the identity character . Regarding the structure of $K_2^2(q)$ and Lemmas 2,3 the irreducible characters of $K_2^2(q)$ in the case of q even are $\mu_k 1_G, \mu_k \psi, \mu_k \chi_i$ and $\mu_k \theta_j$ where k=0,1 and $1 \le i \le \frac{q-2}{2}, 1 \le j \le \frac{q}{2}$.

Lemma 4: Let G=SL(2,q), if q is a power of 2 then the Schur index of any irreducible character of G over the rational numbers Q is 1.

Proof. See [9].

By [9] it is easy to see that:

Lemma 5: Let $G=H\times K$ and $\psi\in Irr(H)$ and $\theta\in Irr(K)$. Let $\chi=\psi\times\theta$ and let $F\subseteq C$.

a) $m_F(\chi)$ divides $m_F(\psi)m_F(\theta)$.

b) Equality occurs in (a) provided $(m_F(\psi), \theta(1)|F(\theta):F|)=1$ and

$$(m_F(\theta), \psi(1)|F(\psi):F|) = 1$$

Lemma 6: Let G be a finite group . If the Schur index of each non-principal irreducible character is equal to m , then q(G)=mc(G) .

Proof. See [1], Corollary 3.15.

We can see all the following statements in [1],[2].

Definition 1: Let χ be a complex charater of G, such that, $\ker \chi = 1$. Then define

1)
$$d(\chi) = |\Gamma(\chi)|\chi(1)$$

2) $m(\chi) = \begin{cases} 0 & \chi = 1_G \\ |\min\{\sum_{\alpha \in \Gamma(\chi)} \chi^{\alpha}(g) : g \in G\}| & otherwise \end{cases}$
3) $c(\chi) = \sum_{\alpha \in \Gamma(\chi)} \chi^{\alpha} + m(\chi)1_G$.

Now according to Corollary 3.11 of [1] and above statements the following lemma is useful for calculation of r(G), c(G) and q(G).

Lemma 7: Let G be a finite group with a unique minimal normal subgroup. Then

1) $r(G) = \min\{d(\chi) : \chi \text{ is a faithful irreducible complex character of } G\}$

2) $c(G) = \min\{c(\chi)(1) : \chi \text{ is a faithful irreducible complex character of } G\}$

ISSN: 2517-9934

complex character of G }.

By [2] we have the following lemmas.

Lemma 8: Let ε be a primitive n-th root of unity in C. Then $\varepsilon + \varepsilon^{-1}$ is rational if and only if n = 1, 2, 3, 4, 6. The values which occur are as follows:

Table (3)					
n	1	2	3	4	6
$+^{-1}$	2	-2	-1	0	1

Lemma 9: Let ε be a primitive n-th root of unity in C and $m \in Z$. If $\varepsilon + \varepsilon^{-1}$ is rational , then so $\varepsilon^m + \varepsilon^{-m}$.

Lemma 10: Let ε be a primitive n-th root of unity. Then $\varepsilon^j+\varepsilon^{-j}, 1\leq j\leq n$ is rational if and only if $n=j,2j,3j,4j,6j,\frac{3}{2}j,\frac{4}{3}j,\frac{6}{5}j.$

Lemma 11: Let $\chi \in Irr(G), \chi \neq 1_G$. Then $c(\chi)(1) \geq$ $d(\chi) + 1 \ge \chi(1) + 1$.

Proof. From Definition 1 it follows that $c(\chi)(1)$ is a nonnegative rational valued character of G so by [1], Lemma 3.2 , $m(\chi) > 1$. Now the result follows from Definition 1 .

Lemma 12: Let $\chi \in Irr(G)$. Then

- (1) $c(\chi)(1) \ge d(\chi) \ge \chi(1)$;
- (2) $c(\chi)(1) \leq 2d(\chi)$. Equality occurs if and only if $Z(\chi)/ker\chi$ is of even order.

Proof. (1) follows from the definition of $c(\chi)(1)$ and $d(\chi).(2)$ follows from [1] Lemma 3.13.

Lemma 13: Let G = SL(2,q) where $q = 2^n$ and $n \ge 2$. Then for each j, $1 \le j \le q/2$,

- (1) θ_j is rational if and only if $q \equiv -1 \mod 3$ and $j = \frac{q+1}{3}$;
- (2) $d(\theta_j) \ge q 1$ and equality holds if θ_j is rational;
- (3) $c(\theta_j) \geq q+1$ and equality holds if θ_j is rational . Proof . As $1 \leq j \leq \frac{q}{2} < \frac{q+1}{2}$ and as σ is a primitive (q+1)-th root of unity , Lemmas 9 and 10 implies that θ_j is rational if and only if $j = \frac{q+1}{6}, \frac{q+1}{4}, \frac{q+1}{4}$. Since q+1 is odd , $\frac{q+1}{6}$ and $\frac{q+1}{4}$ are not integers . Thus , $\sigma^j + \sigma^{-j} \in Q$ if and only if 3|q+1 and $j = \frac{q+1}{3}$. This proves (1) . If θ_j is not rational, then $|\Gamma| \geq 2$ where $\Gamma = \Gamma(Q(\theta_j) : Q)$ so that not rational , then $|\Gamma| \geq 2$ where $\Gamma = \Gamma(Q(\theta_j):Q)$ so that the rational , then $|1| \le 2$ where 1 = 1 ($\mathbb{Q}(q_j)$). \mathbb{Q}) so that $c(\theta_j)(1) \ge d(\theta_j) \ge 2(q-1) > q+1$ by Lemma 12 . On the other hand if 3|q+1, then $8 \le q$, so that $3 \le \frac{q}{2}$; but $\theta_{\frac{q+1}{3}}(b_3) = -2 \le \theta_{\frac{q+1}{3}}(g)$ for all $g \in G$ so that $m(\theta_{\frac{q+1}{3}}) = 2$. Thus $d(\theta_{\frac{q+1}{3}}) = q-1$ and $c(\theta_{\frac{q+1}{3}})(1) = q+1$. This completes the proofs of (2) and (3).

Theorem 2: Let
$$G=K_2^2(2)$$
 then $r(G)=2, c(G)=q(G)=4$

Proof. By Lemmas 4,5 Schur index of each irreducible characters is 1 and so by Lemma 6 we have c(G) = q(G). Since the only faithful irreducible character of G is $\mu_1\psi$ so by the character table of the group $K_2^2(2)$ the result follows.

1) If $q \equiv -1 \mod 3$ then r(G) = q - 1, c(G) = q(G) = 2(q-1)2) Otherwise r(G) = q, c(G) = q(G) = 2q.

> *Proof.* By Lemmas 4,5 Schur index of each irreducible characters is 1 and so by Lemma 6 we have c(G) = q(G)

> By Lemma 3 we have the irreducible characters of SL(2,q)and by Remark 1 we have the irreducible characters of $K_2^2(2^n)$, now by definition of $d(\chi)$, $c(\chi)$ and character table of $K_2^2(q)$ we obtain the Table (4) as follows

Table (4)					
χ (faithful)	$d(\chi)$	$c(\chi)(1)$			
$\mu_1\psi$	q	2q			
$\mu_1 \chi_i$	$\geq q+1$	$\geq 2(q+1)$			
$\mu_1 heta_j$	$\geq (q-1)$	$\geq 2(q-1)$			

Now by Lemma 7, Lemma 13 and Table (4) when $q \equiv -1$ mod3 we have

min $\{d(\chi): \chi \text{ is a faithful irreducible complex character}\}$ of G} = q - 1 and

min $\{c(\chi)(1): \chi \text{ is a faithful irreducible complex character}\}$ of G} = 2(q - 1).

Otherwise $d(\mu_1 \theta_j) > q-1$ and so in this case min $d(\chi) = q$ and min $c(\chi) = 2q$.

- [1] H. Behravesh, "Quasi-permutation representations of p-groups of class ", J.London Math. Soc. (2)55(1997) 251-26
- [2] H. Behravesh, "The rational character table of special linear groups", J. Sci. I.R.I. Vol. 9. No. 2(1998) 173-180.
- [3] J.M. Burns, B. Goldsmith, B. Hartley and R. Sandling, "on quasipermutation representations of finite groups", Glasgow Math, J. 36(1994)
- [4] M. Darafsheh, F. Nowroozi Larki, "Equivalence Classes of Matrices in GL(2,q) and SL(2,q) and related topics "Korean J. Comput. Appl. Math. 6(1999), no.2, 331-344.
- L.Dornhoff, "Group Representation Theory", Part A, Marcel Dekker, New York, 1971
- W.Fiet, "Extension of Cuspidal Characters of GL(m,q)", Publications Mathematicae, 34(1987), 273 - 297
- [7] J.A.Green, "The Characters of the Finite General Linear Groups", Trans. Amer. Math. Soc. 80 (1955) 405-447
- I.M. Isaacs, "Character theory of finite groups", Academic Press, Newyork ,1976.
- [9] M.A.Shahabi Shojaei , "Schur indices of irreducible characters of SL(2,q)", $Arch.Math.\ 221-131$, 1983 .
- [10] W.J. Wong, Linear groups analogous to permutation groups , J. Austral. Math. Soc (Sec. A) 3, 180-184, 1963.