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Abstract—In this paper, we develop quartic nonpolynomial 

spline method for the numerical solution of third order two point 
boundary value problems. It is shown that the new method gives 
approximations, which are better than those produced by other spline 
methods. Convergence analysis of the method is discussed through 
standard procedures. Two numerical examples are given to illustrate 
the applicability and efficiency of the novel method. 

 
Keywords—Quartic nonpolynomial spline, Two-point boundary 

value problem. 

I. INTRODUCTION 
E consider the following third order two point boundary 
value problems  

               (3) ( ) ( ),y f x y g x+ =     ],[ bax ∈ ,               (1) 
subject to the boundary conditions:  

             (1) (1)
1 2 3( ) ( ) ( ) 0y a A y a A y b A− = − = − = ,                (2) 

where 3,2,1, =iAi  are finite real constants. The functions 

)(xf and )(xg are continuous on the interval [a, b].  
The analytical solution of the problem (1-2) can not be 

obtained for arbitrary choices of )(xf and )(xg . 
The numerical analysis literature contains a few other 

methods developed to find an approximate solution of this 
problem. Al Said et al. [1] have solved a system of third order 
two point boundary value problems using cubic splines. Noor 
et al. [4] generated second order method based on quartic 
splines. Other authors [2,3] generated finite difference using 
fourth degree B-spline and quintic polynomial spline for this 
problem subject to other boundary conditions. 

The aim of this paper is to construct a new spline method 
based on a nonpolynomial spline function that has a 
polynomial part and a trigonometric part to develop numerical 
methods for obtaining smooth approximations for the solution 
of the problem (1) subject to the boundary conditions (2). 
Recently, new methods based on a nonpolynomial spline 
function that has a polynomial part and a trigonometric part is 
used to develop numerical methods for obtaining numerical 
approximation for some partial differential equations, see for 
example [6,7].  An extension of the work of Ramadan et al 
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[5], we propose in this paper quartic nonpolynomial spline 
method for the numerical solution of third order two point 
boundary value problem (1-2). 

The paper is organized as follows: In section II, we derive 
our method. The method is formulated in a matrix form in 
section III. Convergence analysis for our order methods is 
established in section IV.  Numerical results are presented to 
illustrate the applicability and accuracy in section V.  Finally, 
in section VI, we concluded the numerical results of the 
proposed methods. 

II. DERIVATION OF THE METHOD 

We introduce a finite set of grid points ix  by dividing the 
interval ],[ ba into (n+1) equal parts where:  

  
n

abhbxaxniihax ni
−

====+= ,,,,...,2,1,0, 0
.             (3) 

Let ( )u x  be the exact solution of the system (1-2) and iS  be 
an approximation to ( )i iu u x=  obtained by the segment )(xQi  

passing through the points ),( ii Sx  and ),( 11 ++ ii Sx .  Each 
nonpolynomial spline segment )(xQi   has the form: 

2( ) cos ( ) sin ( ) ( ) ( )i i i i i i i i i iQ x a k x x b k x x c x x d x x e= − + − + − + − +  

       ni ,...,2,1,0=                                  (4) 

where iiii dcba ,,,  and ie  are constants and k  is the frequency 
of the trigonometric functions which will be used to raise the 
accuracy of the method and Eq. (4) reduces to quartic 
polynomial spline function in [ , ]a b  when 0k → .  
    First, we develop expressions for the six coefficients of (4) 
in terms of iiiii FDDSS ,,,, 11 ++ , and 1+iF  where  

         (i)    iii SxQ =)( ,                   11)( ++ = iii SxQ , 

(ii)   (1) ( )i i iQ x D= ,             (1)
1 1( )i i iQ x D+ += ,               (5)                

        (iii)  (3) ( )i i iQ x F= ,              (3)
1 1( )i i iQ x F+ += . 

We obtain via a straightforward calculation the following 
expressions: 

3

13 ( cos( ))
sin( )i i i
ha F F θ

θ θ += −       3
3
i

i
Fb h
θ

= − , 

1 12 3 2

1 (cos( ) 1)( ) ( )
sin( )

i
i i i i i i

Dh hc S S F F F
h h

θ
θ θ θ+ +

−
= − − + − − , 
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2

2i i i
hd D F
θ

= + , 
3

13 ( cos( ) )
sin( )i i i i
he S F Fθ

θ θ += − −       (6)                                         

 where  kh=θ and 1,...,1,0 −= ni .   
Using the continuity conditions of the first and second 

derivatives at the point ),( ii Sx , that is ( ) ( )
1 ( ) ( )m m

i i i iQ x Q x− = , 

m=1,2,  we get the following relations for ni ,...,1,0=  
2 2

1 1 1 12 3

2 2( ) ( ) ( )(cos( ) 1)
sin( )i i i i i i i i

h hD D S S F F F F
h

θ
θ θ θ− − + ++ = − − + − + −                                              

                                                                                        (7) 
2 2

2
1 1 1 1 13

tan( ) cos( ) 1( )( ) ( )
sin( ) 2 sin( )i i i i i i i

h hD D F h F F F Fθ θ
θ θ θ θ θ− − + − +

−
− = − − − +                        

             
2

1 1 12 2

1( ) ( 2 )i i i i i
h F F S S S

hθ − − +− − + − +                     (8) 

Adding Eqs. (7) and (8), we get 
2

1 1 1 13

1 ( ) ( 2 )(cos( ) 1)
2 2 sin( )i i i i i i

hD S S F F F
h

θ
θ θ+ − − += − − + + −  

        
2

2
1 1 2

cot( ) 1( ) ( )
4 sin( ) 2i i i

h F F h Fθ
θ θ θ θ− +− + + − , 

                   ni ,...,1,0=                                          (9) 
Similarly, we get 1iD −  by reducing the indices of Eq. (9) by 
one, we get: 

2

1 1 2 2 13

1 ( ) ( 2 )(cos( ) 1)
2 2 sin( )i i i i i i

hD S S F F F
h

θ
θ θ− − − − −= − − + + −

 

         
2

2
2 12

cot( ) 1( ) ( )
4 sin( ) 2i i i

h F F h Fθ
θ θ θ θ− −− + + − , 

                     ni ,...,1,0=                                     (10) 
Now from Eqs. (9-10) into Eq. (7), we get 

3
2 1 1 2 1 13 3 ( )i i i i i i i iS S S S h F F F Fα β β α− − + − − +− + − + = + + +  

               1,...,1,0 −= ni                                     (11) 
where

iiii gSfF +−= , with )( ii xff =  and )( ii xgg = , and 

3

1 cos( ) 1( )
2 sin( ) sin( )

θα
θ θ θ θ

−
= + , 

3

(cos( ) 1) (1 2 cos( )( )
sin( ) 2 sin( )
θ θβ

θ θ θ θ
− −

= − +  

Eq. (11) gives (n-2) linear algebraic equations in the (n) 
unknowns iS , ni ,...,1,0= .  We need two more equations for 

the direct computation of iS . These two equations are 
developed by Taylor series and the method of undetermined 
coefficients, which are found in [1,4]. 

3
0 1 2 0 0 0 1 1 2 23 4 2 ( )S S S hD h F F Fρ ρ ρ− + = − + + + , i=1 

                                                                                      (12) 
and 
 3

2 1 2 2 1 13 8 5 ( )n n n n n n n n nS S S h F F Fσ σ σ− − − − − −− − = + + ,  i=n 
                                                                                      (13) 

where the constants ),,( 12
1

3
1

4
1=iρ and ),1,( 2

5
6
1 −−−=iσ . 

The local truncation errors it , i=1,2,…,n. associated with the 
scheme (11 - 13) can be obtained as follows:   

5 (5) 6

3 (3) 4 (4) 5 (5)

6 (6) 7 (7) 8

5 (5) 6

1 ( ), 1
10

1 1 5 1 (1- 2 2 ) ( ) ( )
2 4 2 2

1 7 1 1 17 1( ) ( ) ( ),  2,3,..., 1
12 6 6 40 24 24
1 ( ), .

60
   

i

i i i

i

i i

i

h y O h i

h y h y h y
t

h y h y O h i n

h y O h i n

α β α β α β

α β α β

−⎧ + =⎪
⎪
⎪ − + − + + + − −⎪

=⎨ −⎪+ + + + − − + = −
⎪
⎪−⎪ + =
⎩

 

                                                                                      (14)  

Remarks 
The scheme (11-13) gives rise to a family of methods of 

different orders as follows: 
(1) As 0k →  the scheme (11-13) reduces to Noor [4] 

scheme based on quartic polynomial spline.  

(2) For 1
12

α = and 5
12

β =  then our scheme reduces to 

Al-Said [1] scheme based on cubic polynomial spline. 

III. SPLINE SOLUTION 
The spline solution of (1.1) with the boundary condition 

(1.2) is based on the linear equations given by (11-13). 
Let ( ),    ( ),   ( ),    ( ),    ( )i i i i iu S C t eU S C T E Y S= = = = = = −  be n-

dimensional column vectors. Where U , S , T and E  are 
Exact, approximate, truncation error and error n-column 
vectors respectively. Then we can write the standard matrix 
equations in the form 

(i)  M U C T= + , 
(ii) M S C= ,                                  (15)  

(iii) M E T= . 
We also have  

4
0M M h GF= + , )( ifdiagF = ,                 (16) 

where 
0M  and G  are four-band matrices. The four-band 

matrix 0M  has the form  

0

4 1
3 3 1
1 3 3 1

1 3 3 1
3 8 5

M

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟− −
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟

−⎜ ⎟
⎜ ⎟−⎝ ⎠

              (17) 

and the four-band matrix B  has the form 
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1 / 3 1 / 12

1 / 8 1 15 / 6

B

β β α
α β β α

α β β α

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟− − −⎝ ⎠

       (18) 

For the vector C , we have 

( )
( )

( )

3
1 2 0 0 1 1 2

3
1 0 0 1 3 1 2

3
2 1 1

3
3 1 2

3 2 1/4( ) /3 /12 , 1

( ) ( ) , 2

( ( ) ( )), 3,4,..., 1

2 /6 15 /6 ,

i
i i i i

n n n

A hA h g f A g g i

A h g f A g g g i
C

h g g g g i n

hA h g g g i n

α β

α β− + −

− −

⎧− − + − + + =
⎪

+ − + + + =⎪
=⎨

+ + + = −⎪
⎪− + + + =⎩

  

                                                                                        (19) 

IV. CONVERGENCE ANALYSIS 
Our main purpose now is to derive a bound on 

∞E . We 

now turn back to the error equation (iii) in (15) and rewrite it 
in the form 

1 3 1
0( )E M T M h GF T− −= = +  

                       
0 0

3 1 1 1( )I h M GF M T− − −= +  
it follows from [5] that: 

 
1

0

3 1
01

M T
E

h M G F

−
∞∞

∞ −
∞ ∞∞

≤
−

      (20) 

Provided that 3 1
0h M G F−

∞ ∞∞
,  

From equation (6) we have: 

5
5

1 5 1( )
4 2 2

T h Mα β
∞

= − −  ,  (5)
5 max ( )

a x b
M y x

≤ ≤
= .                                                                         

From [4], we get that: 

            1 3
0N Lh− −

∞
≤                             (21) 

where L  is constant independent h . Then from Eq. (20) we 

have 

 
251 1

25 4 2 2( ) ( )
1

L M hE O h
L f G

α β
∞

∞

− −
= ≤

−
 (22)  

We summarize the above results in the next theorem. 

Theorem 4.1 Let ( )u x  be the exact solution of the 

continuous boundary value problem (1-2) and let iu , 

ni ,...,2,1= , satisfy the discrete boundary value problem (ii) 

in  (15). Further, if iii Sye −= , then )( 2hOE ≅
∞

is a 

second order method, which is given by (22), neglecting all 
errors due to round off. 

V. NUMERICAL EXAMPLES AND CONCLUDING REMARKS 
     We now consider two numerical examples illustrating the 
comparative performance of our method (ii) in (15) over other 
existing methods. All calculations are implemented by 
MATLAB 6. 

Example 1 

Consider the following BVPs 

      
(3) 2 2

(1) (1)

(7 )cos ( 6 1)sin
(0) (0) 1 (1) 2sin1 0

y y x x x x x
y y y

+ = − + − −

= + = + =
             (23) 

whose analytical solution of (23) is 

               2( ) ( 1)siny x x x= −                               (24) 
Example 2 

The following boundary value problem is considered in [3] 

                  
(3) 3 2

(1) (1) 1

( 2 5 3) ,
(0) (0) 1 (1) 0,

xy xy x x x e
y y y e

− = − − −

= − = + =
               (25) 

 

 

TABLE I 
THE OBSERVED MAXIMUM  ERRORS  FOR EXAMPLE 1 

h Our Method 1
2

β α= −  

 0=α  30
1=α  48

1=α  50
13−=α  

2-3 1.6501-4* 1.3253-3 8.9018-4 8.8839-3 
2-4 9.8380-6 3.3831-4 2.1513-4 2.5523-3 
2-5 5.8773-7 8.4874-5 5.3267-5 6.5685-4 
2-6 3.5687-8 2.1231-5 1.3283-5 1.6529-4 
2-7 2.1968-9 5.3085-6 3.3186-6 4.1387-5 

* 1.6501-4=1.6501x10-4 
  

TABLE II  
THE OBSERVED MAXIMUM ERRORS  FOR EXAMPLE 2 

h Our Method 1
2

β α= −  

 0=α  30
1=α  48

1=α  50
13−=α  

2-3 7.7161-5 2.1938-3 1.4001-3 1.6457-2 
2-4 6.4065-6 6.7210-4 4.2247-4 5.1879-3 
2-5 4.8121-7 1.7788-4 1.1135-4 1.3833-3 
2-6 3.3201-8 4.5160-5 2.8237-5 3.5196-4 
2-7 2.1839-9 1.1336-5 7.0855-6 8.8398-5 

 
TABLE III    

THE OBSERVED MAXIMUM ERRORS FOR EXAMPLE 2 AND THE METHODS IN 
[4] 

h 0=α  30
1=α

 
48

1=α  50
13−=α

 

Quartic 
spline [4] 

2-3 7.7161-5 2.1938-3 1.4001-3 1.6457-2 2.6783-3 
2-4 6.4065-6 6.7210-4 4.2247-4 5.1879-3 8.3597-4 
2-5 4.8121-7 1.7788-4 1.1135-4 1.3833-3 2.2207-4 
2-6 3.3201-8 4.5160-5 2.8237-5 3.5196-4 5.6432-5 
2-7 2.1839-9 1.1336-5 7.0855-6 8.8398-5 1.4168-5 
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The analytical solution of (25) is: 

                xexxxy )1()( −=  .                             (26) 
The numerical results for our methods are summarized in 

Tables I-II and compared with other existing polynomial 
spline methods in Table III. 

Tables I-II show the numerical results for a class of 
methods based on quartic nonpolynomial spline. These tables 
reveal that our methods have accurate results. While in Table 
III our methods are better than (in terms of accuracy) other 
methods (cubic and quartic spline methods). 

VI. CONCLUSION  
A class of methods is presented for solving third order two-

point boundary value problem using quartic nonpolynomial 
spline. These methods are shown to be optimal second order, 
which are better than other methods. The obtained numerical 
results show that the proposed methods maintain a very 
remarkable high accuracy which make them are very 
encouraging for dealing with the solution of two-point 
boundary value problems. 
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