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Abstract—Recently, cavity-optomechanics becomes an extensive 
research field that has manipulated the mechanical effects of light for 
coupling of the optical field with other physical objects specifically 
with regards to dynamical localization. We investigate the dynamical 
localization (both in momentum and position space) for a vibrational 
mirror in a Fabry-Pérot cavity driven by a single mode optical field 
and a transverse probe field. The weak probe field phenomenon 
results in classical chaos in phase space and spatio temporal 
dynamics in position |ψ(x)²| and momentum space |ψ(p)²| versus time 
show quantum localization in both momentum and position space. 
Also, we discuss the parametric dependencies of dynamical 
localization for a designated set of parameters to be experimentally 
feasible. Our work opens an avenue to manipulate the other optical 
phenomena and applicability of proposed work can be prolonged to 
turn-able laser sources in the future. 
 

Keywords—Dynamical localization, cavity optomechanics, 
hamiltonian chaos, probe field. 

I. INTRODUCTION 

AVITY optomechanics deals with the interaction of 
confining mirror with an optical field in a resonator [1]. 

Current experimental advances result in the coupling of 
nanospheres, cold atoms, mechanical membranes, and BEC 
with the optomechanical system [2]. Therefore, the 
development of various devices and sensors in quantum 
meteorology is made possible due to the playground provided 
by hybrid optomechanical systems. A central paradigm of 
field is the cooling of one or several modes of the vibrational 
mirror in an optical cavity to their quantum mechanical ground 
state [3], [4]. Rapid progress has made towards this goal using 
micro and nanofabricated mirrors [5], membranes [6], zippers 
[7], and optomechanical crystals [8] to develop gravitational 
wave detectors [9], and measurement of displacement with 
high precision [10]. Recent studies that associate the 
theoretical simulation and discussions on high fidelity state 
transfer, dynamical localization of moving end mirror [11], 
cavity electro optics [12], bistable behavior of BEC 
optomechanical system [13], steady-state entanglement of 
BEC and moving end mirror [14], [15] as well as macroscopic 
tunneling of an optomechanical membrane [16] lead to open 
novel avenues in cavity optomechanics. 

The dynamical localization appears as an open phenomenon 
in the time-dependent system. In the intracavity field, atoms 
are excited to momentum side modes by single mode laser 
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field that act as vibrational mirror formally [17]. The mirror 
experiences radiation pressure modulation because of induced 
phase modulation by side modes to the field [18]. It refers to a 
wave packet dynamically being localized in the angular 
momentum initially in the same state while propagating inside 
cavity [19] and exists in a system as a signature of quantum 
chaos [20], [21]. DL phenomenon has signified through 
atomic dynamics in periodically driven systems as the 
hydrogen atom in the microwave field, a motion of Paul trap 
in the presence of standing wave, and an atom in modulated 
standing wave field [22]. 

Many significant work have carried out in the field of 
optomechanics as relating to dynamical localization since the 
last decade. Several researchers have focused on dynamical 
localization of various systems and cavity modes. Blumel et 
al. [23] reviewed the noise influence of DL in the microwave 
interaction of Rydberg atoms. They discussed four dynamical 
regimes which passed as a function of irradiation time in a 
sequence and temporally separated from each other. Moore et 
al. [24] provided an insight for a novel testing ground in 
quantum chaos to observe the DL in atomic momentum 
transfer. Borgonovi et al. [25] studied dynamical localization 
(DL) and cantori in the bunimovich stadium and found 
different localization regimes namely quasi-integrable, ergodic 
and perturbative. Saif et al. [26] demonstrated the dynamical 
localization and signatures of classical phase space in their 
works. A study on control of DL in chaotic kicked rotor 
systems were carried out by Gong et al. [27] that resulted the 
enhancement of DL length to explore the quantum fluctuations 
and correlations in quantum chaos. Aforementioned extensive 
research provides a review on various aspects of dynamical 
localization other than optomechanical interaction. Very 
recently, the researchers have started the novel avenues in the 
current field that enlights the dynamical localization of cavity 
optomechanics targeting various aspects specifically quantum 
chaos. In this regard, Ayub et al. [28] focused on the 
dynamical localization of Bose-Einstein condensate (BEC) in 
a Fabry-Perot cavity optomechanical system. Yasir et al. [29] 
illustrated the exponential localization of moving end mirror 
in optomechanics both in momentum and position space. 
Another study by Liu et al. [30] explained the energy-
localization-enhanced ground-state cooling of a mechanical 
resonator from room temperature in optomechanics using a 
gain cavity. Fu et al. [31], [32] have demonstrated classical 
dynamical localization in a strongly driven two-mode 
mechanical system and also claimed the coherent 
optomechanical switch for motion transduction based on 
dynamically localized mechanical modes. Further exploration 
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on many-body localization theory provides an ideal platform 
for experimental developments. Following the trend, Major et 
al. [33] and Wan et al. [34] analyzed single-particle 
localization in dynamical potentials alongwith controlable 
photon and phonon localization in optomechanical Lieb 
lattices respectively. Moreover, this enormous research in the 
area continues to date. The previous studies merely focused on 
deduction of DL for the complex systems but restricted 
themselves to use other physical phenomena than weak probe 
field for inducing modulation. The applicability of this weak 
probe field extends to provide experimental feasibility. 

Therefore, our study reports the quantum and classical 
dynamics in momentums as well as position space. Hence, it 
has shown dispersion suppressed in quantum domain and 
increased in classical counterpart with time. The rest of the 
paper is organized as follows: Section II provides an overview 
of the model of the system, while Section III outlines the 
derivation of Langevin equations that offers a supportive 
background for our schematic model. Moreover, this work 
highlights the central phenomenon of dynamical localization 
of mirror for momentum and position space in Section IV. 
Lastly, Section V provides a discussion and conclusion to ease 
readers and in-spirants for a better understanding of overall 
work. 

II. THE MODEL 

We consider a Fabry-Pérot cavity of length L  has driven 
by a single mode optical field having a frequency E  while 

fixed mirror and moving-end mirror possess maximum 
amplitude of 0q  along with frequency m  

as shown in Fig. 1. 

The perturbance of moving end mirror within the system 
results in nonlinear dynamics that has been inter-generated by 
the probe field with intensity 0q  and frequency p . The 

Hamiltonian of the system comprised of four fragments, 
 

 
Fig. 1 Schematic model of Cavity-optomechanics. This model is the 

representative of the Cigar-shaped Fabry- Pérot cavity (length L ) 
optical system with one fixed mirror and one moving end mirror 

possess maximum amplitude of 0q  driven by an external pump with 

frequency E  and transverse probe field with frequency p  
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where Ĥm is related to the harmonic motion of vibrational 

mirror where 2 2ˆ ˆ( )
2
m p q





 holds the values for energies linked 

with the mobility of the end mirror. In this equation, q̂  and 

p̂  are representatives of dimensionless momentum and 

position operators respectively, defined by quantum 
mechanical commutation relation  ˆ ˆ,q p   , with scaled 

Planck’s constant 1 . Ĥ
c

 term denotes intra-cavity optical 

field energy, while 
c

  is effective detuning of intra-cavity 

and external pump field. †ˆ ˆ[ , ]c c  describe the total number of 

the photon within the cavity having a frequency c . The 

coupling of the intra-cavity field with a vibrational mirror has 
made by radiation pressure, and its energy is denoted by ˆ

int
H . 

In the intra-cavity optical field mode, the coupling strength 

has defined by   0
2 /g L x

m c c
  where  L  and c  

indicate length as well as frequency respectively. The formula 

0
/ 2 ,x m

m
   is the zero-point motion of the mechanical 

mirror having frequency m   and mass m . The annihilation 

(creation) operators for the intra-cavity field are †ˆ ˆ[ , ]c c which 

interact with a mirror possessing a commutation relation
†ˆ ˆ[ , ] 1c c  . The Ĥ

lp
has described the intracavity field and its 

relationship with the input pump and probe field under 

quantum rotation-wave approximation. The term †ˆ ˆ( )i c cl 

defines the association of intra-cavity along with external 
pump field power / ,Pl E

    having  associated 

intra-cavity field decay rate. It also depicts the pump power 
where the value of  depends on the external pump field 

intensity. Similarly, the second term associated with external 
probe field power /E P

p p p
    where E p  denotes the 

intensity of the external probe field that is directly 
proportional to the probe field frequency and p  is far-off 

detuning of probe field frequency. The total Hamiltonian of 
the system has been illustrated by: 
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where 

c c E     and 
p p E

   
 
are the effective 

detuning of intra-cavity and probe field frequency p  with 

external pump field frequency E . 

III. LANGEVIN EQUATIONS 

The quantum interaction picture has been used to integrate 
time dependence and to understand their mutual coupling. 
Quantum Langevin equations are the most suitable tool for it. 
We use quantum Langevin formula to incorporate the 
dissipation effect caused by damping as well as noises 
correlated to the system (intra-cavity field and vibrational 
mirror) which can be represented by 
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In the above equation, the term m  has illustrated a 

mechanical decay rate for the motion of the end mirror. To 
represent the classical dynamics for finding solutions of 
steady-state Langevin equations, we have treated the 
momentum along with positions of the mirror as traditional 
variables. By fixing the time derivate zero in (7)-(9), we 
achieve a steady state solution of Langevin equations. The 
optical field decay is supposed to be at the fastest rate. The 
steady–state values of operators have been denoted as, 
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where , ,c q p

s s s
 represent steady-state values of the 

intracavity field, mirror displacement, and position 
respectively. As supposed, the adiabatic approximation of 
motion of side-mode mirror and moving end mirror where 
detainment effects of optical damping have been ignored. 

Also, by considering the position and momentum as classical 
variables and setting the time derivative zero in (7)-(9), and 
plug these equations in the second derivative of (9), the 
coupled equation of motion can be demonstrated by their 
nonlinear dynamics via utilizing the Langevin equations, i.e. 
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Now, we describe the corresponding effective Hamiltonian 

as Ĥ K Veff   where K is kinetic energy and V shows 

potential energy being found using (13). It has been supposed 
that weak coupling for the vibrational mirror with frequency 

m  and cosq q to m , transforms into harmonic oscillation, 

where 
0q represents the mean position for maximum 

displacement; while l



 , 

E



 , 

g
mcG


  and c



   

are dimensionless parameters. In future, we suppose external 

field power 0.0164P mW , frequency 143.8 2 10 zE     , 

and wavelength 780nmp   . Coupling of the pump and the 

intra-cavity field is 18.4 2 MHzl    , intra-cavity field 

frequency taken as 1415.3 2 10 Hz
c

     and decay rate 

1.3 2 kHz    with cavity length 41.25 10L m  . The 
vibrational end mirror of the cavity that oscillates with a 
frequency 1.02 2 M Hz

m
    along damping 

1.1 2 kHzm    should be a perfect reflector. From these, 

we observe that the system is found to be at good cavity limit 
because of the condition, i.e. 

m
  .  

IV. DYNAMICAL LOCALIZATION 

We check the classical behaviour of the effective 
Hamiltonian by solving the equation of motion. Poincare 
surfaces study the classical dynamics of the mirror's position 
and momentum. Fig. 2 shows the classical phase space for 
different modulation. Poincare surfaces are showing the series 
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of chaotic regions and stable islands. To discuss the dynamical 
localization, we solve time-dependent Schrodinger equation 
for an initially localized mirror whose wave function has been 

defined as a Gaussian wave packet, ( )x  at 0  . 
 

2
1 0. / 2

( ) exp( exp 2 ,
22

x L p x
x

L




         
   

  (18) 

 
Here, the initial dispersion in momentum along with 

position has been set to be definite in a way which in turn 
satisfies the minimum condition for uncertainty. We use the 
Runge-Kutta integration method for the numerical solution of 
ODEs. We assume that the system starts from its non-stable 
maximum where 

0 max
q q  and 0p  .  

Fig. 2 shows the phase-space representation of vibrational 
mirror for 1, 2   in Figs. 2 (a) and (b) respectively, where 

0.8,    2G   and 0.4  . The Poincare surfaces have 

determined the classical dynamics of position and momentum 
for the mirror. Fig. 2 shows the phase space region for the 
sample size of 100 points in random distribution, on each 
sample by taking the width of 0.001 over time interval t=0 to 
1600. In Figs. 2 (a) and (b), beautiful butterfly wings pattern 
can be seen as a result of the external probe field (i.e. 0). 
The marginal distributions behave as probability distributions 
for phase space. The accuracy of modulation results in mixed 
phase space that possess regular and chaotic regions. The 
change in modulation results in the increase of chaotic regions 
as well as shrinking resonant areas simultaneously — a small 
difference in the modulation effects the position and 
momentum of the vibrational mirror. The exact coordinates for 

a position and momentum cannot be determined by the same 
location for the second time. 

Fig. 3 (a) demonstrates dispersion in momentum space, 
while (b) shows dispersion in real space. The probability 
distributions in position and momentum space have calculated 
for an evolution time. In the Poincar section, nonlinear 
resonances relate to the peak points both in position and 
momentum coordinates. The quantum dispersion shows that, 
compared to the classical one, it experiences a more stable 
position around its equilibrium. The quantum dispersion 
oscillates around the origin for larger time and has an 
indicated localization in real and momentum space. Figs. 3 (c) 
and (d) describe the real and imaginary part of the mirror wave 
function for a different time. Blue, red, and yellow colour 
describe time-dependent behaviour of wave function at 

0 0t  , 

1 2t   and 
2 4t  , respectively. The wave function is written as 

     , , ,r Ix t x t x t     where  ,r x t  and  ,I x t  show 

the real and imaginary part of the wave function, respectively. 
The plots display that wave function oscillates between  4,4  

with time around x=0 where dispersion in position is being 
found dynamically localized at this time-some states are 
localized, whereas other remain extended. The simulation 
shows a straight picture of the mirror’s dynamical localization 
process in momentum and position space. Both plots exhibit 
that the mirror has fairly localized around its equilibrium point. 
The remaining parameters are the same. Furthermore, analysis 
of spatiotemporal behaviour of vibrational mirror reveals 
apparent dynamical localization in momentum and position 
space. We demonstrate changing aspects of space-time for 
both in position and momentum space. 

 

 

(a)                                                                                                 (b) 

Fig. 2 Phase space of vibrational mirror for 1, 2   in (a) and (b) respectively, where 0.8,   2G   and 0.4   
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(a)                                                                                                             (b) 

 

(c)                                                                     (d) 

Fig. 3 (a) Dispersion in momentum space and (b) dispersion in real space against time with comparison classical and quantum mechanical 
behaviour. Furthermore (c) and (d) show the Imaginary and real part of the mirror’s wave function at a different time 

 

  

(a)                                                                                               (b) 

Fig. 4 Spatiotemporal behaviour of the mirror 
 

Fig. 4 has illustrated the spatio-temporal dynamics of the 
mirror in position 2

( )x  and momentum space 2
( )p  

versus time. The localization effects both in position and 
momentum have shown through the time evolution of 
probability distribution of quantum wave packet. The 
maximum value for quantum mechanical probability 

distribution in momentum and position space has experienced 
between  1,1  besides small fluctuations in position along 

with momentum space, the quantum probability distribution in 
position and momentum space remains localized. We also 
conclude that localization of the mirror’s wave function has 
settled around the origin for larger time. Starting with a 
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Gaussian wave function as an initial condition, one may 
expect to see dispersion in space. To obtain spatiotemporal 
behaviour of the intra-cavity system, we can solve Langevin 
equation. We are permitted to ignore quantum noise effects 
related to the optomechanical system by considering position 
operator of the vibrational mirror as classical variable. A 
completely localized wave function results, whenever a 
charged particle has to experience an external field (time-
harmonic). 

V. CONCLUSION AND DISCUSSION 

The optomechanical system consists of a cigar-shaped high-
finesse cavity having a single vibrational mirror that can run 
through the single-mode optical field along with cavity axis 
and a transverse probe field. This field has length 

41.25 10L m  , with a vibrational mirror that has driven via 
single mode external field of power 0.0164P mW , frequency 

3.8 2 1014p Hz    and wavelength 780p nm  . The 

vibrational mirror must act as perfect reflector performing 
oscillations due to intra-cavity field radiation pressure having 
a frequency 1.02 2 M Hz

m
    with coupling field 

3.8MHz  . While the intracavity field possesses frequency 

as 1415.3 2 10 Hz
c

    having a cavity decay rate

1.3 2 kHz   . 
This work concludes dynamical localization in position and 

momentum space in the above-mentioned cavity 
optomechanical system. The existing dynamical localization 
within the system has been designated as a signature of chaos. 

In addition, spatiotemporal behaviour of 2
( )p  and 2

( )x
for momentum space and position space respectively also 
authenticate our results. Perhaps in a hybrid optomechanical 
system, Dynamical localization is the best-known 
phenomenon in quantum chaos. Such a phenomenon somehow 
behaves differently from the dynamical localization exhibited 
by ultra-cold atoms present within the modulated optical field 
momentum space only [22]. The exploitation of current 
parameters has determined the phenomenon of dynamical 
localization being reliable in momentum and position space. 
This research can be limited in terms of experimental 
feasibility, as one should be well informed about the external 
heat reservoir hazed associated with the quantum domain of 
nanomechanical systems. This hazed is capable of limiting the 
application of any laser-induced mechanical system. 
Additionally to maintain quality factor the detuning of the 
system to a particular range of frequencies is required to 
experiment precisely. In future, the applicability of this work 
will extend to turn-able laser sources. 
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