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Abstract—The hydrologic time series data display periodic 
structure and periodic autoregressive process receives considerable 
attention in modeling of such series.  In this communication long 
term record of monthly waste flow of Lyari river is utilized to 
quantify by using PAR modeling technique.  The parameters of 
model are estimated by using Frances & Paap methodology.  This 
study shows that periodic autoregressive model of order 2 is the most 
parsimonious model for assessing periodicity in waste flow of the 
river. A careful statistical analysis of residuals of PAR (2) model is 
used for establishing goodness of fit.  The forecast by using proposed 
model confirms significance and effectiveness of the model.

Keywords—Diagnostic checks, Lyari river, Model selection, 
Monthly waste flow, Periodicity, Periodic autoregressive model. 

I. INTRODUCTION

HE exact mathematical models of hydrologic time series 
are never known. The inferred population models are only 

approximation. Estimation of models and their parameters 
from available data are often referred to in literature as time 
series modeling or stochastic modeling of hydrologic series. 
Now a day’s development of time series modeling in 
hydrology has reached some degree of sophistication. It is an 
important tool for building models to determine the likelihood 
of extreme events, to forecast hydrologic events, to detect 
trends and shifts in stream flow records, and to fill in missing 
data and extend records. [1-2].  In hydrologic process it has 
been observe that these processes usually have seasonal mean, 
variance, skewness and serial dependence structure. Such 
seasonal streamflow series can be deseasonalized by 
subtracting the seasonal mean and then by dividing the 
seasonal standard deviation. By such procedures seasonality is 
only removes from mean and variance but it remains in serial 
dependence structure. To model such events, there are various 
approaches in the literature. The first approach is that of Box 
and Jenkins [3] which relies on moving average models for 
double differenced time series; so called seasonal ARIMA 
(SARIMA). Another approach is that of Harvey [4] which 
assumes that a seasonal time series can be decomposed into 
trend, cycle, seasonal and irregular 
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components. Reduced forms of the resultant models are not 
much different from SARIMA models. The third approach is 
based on Hylleberg et al [5] that questions the adequacy of the 
double differencing filter in SARIMA models and mainly 
addresses the issue of how many unit roots should be imposed 
in autoregressive models. Finally, a fourth approach assumes 
the seasonal variation is best described by allowing the 
parameters in an autoregression to vary with the seasons that 
are called periodic autoregression (PAR) modeling. A periodic 
autoregression extends a non-periodic autoregressive model 
by allowing the autoregressive parameters to vary with 
seasons. A PAR model assumes that the observations in each 
of the season might be described by a different model. 
Periodic models are ideal for modeling hydrological time 
series since they are often periodically stationary and are now 
very much used in other disciplines like environmetric, 
Macroeconomics etc [6]. In this communication historical 
waste flow data from period January 1974 to December 2006 
is fitted using periodic autoregressive approach. The 
parameters of most parsimonious model have been estimated 
and diagnostic checks have also been applied to examine the 
goodness of fit. The study established that the waste flow of 
the Lyari river follows PAR model of order 2. Forecasting 
using these estimates will be of use to managerial authorities 
for taking remedial measure to control the pollution caused by 
the river to the coastal water which have adverse effect on 
marine organisms such as phytoplankton, zooplankton and 
fish.

II. MATHEMATICAL FORMULATION OF PAR (P) MODEL

Consider a stochastic process, tx  having periodic 
structure observed monthly for N years so that  
t = 1,2,3,…,n (=N / 12). A periodic autoregressive model of 
order p for the process can be represented as 

tptpstsst xxIx ...11                                  (1) 

with t ~ iid(0, 2 ), where s = 1, 2, 3,……,12 represents 

seasons and sI  is a seasonally–varying intercept terms. The 

is are periodic autoregressive parameter for seasons s at lag i
in the model, where i = 1,2,3,…, p which varies with the 
seasons for each lag. 
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  In general, the PAR (p) process described by (1) can be 
written as an AR (p) model, for the twelve dimensional vector 
process (i.e. for each season). The model given by (1) can be 
rewritten as vector of monthly representation as  

TPTPTT XXIX .......110                (2) 

where /
12321 ),....,,,( TTTTT XXXXX , T=1,2,3…,N, where

sTX  is observation in season s in year T,
/

124321 ),....,,,,( IIIIII , /
12321 ),....,,,( TTTTT  and P

= 1+[(p-1)/12]. The P,.......,, 10  are (12x12) 
parameters matrices with elements 

ijif
ijif
jiif

ji

iji ,

0 0
1

),(                              (3) 

),(),( ,12 jiji ijkik                                       (4) 

for i, j = 1,2,3,4,……, 12 and k =1,2,3…,P. The lower 
triangular of 0 shows that (2) is in fact a recursive set of 
equation. For example, periodic autoregressive model of order 
2 can be written as: 

ttstst xxx 2211                                     (5) 

whose multivariate representation is 

TTT XX 110                                       (6) 

with

1
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1

000
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                    (8) 

III. SELECTION OF ORDER

 There exist many approaches in literature for model 
identification i.e. Box and Jenkins employed autocorrelation 
and partial autocorrelation in selecting order of model. Hurd 
and Gerr [7] and Bloomfield et al. [8] used graphical approach 
in deciding the order. Bentarzi and Hallins [9] proposed 

methods based on rank statistics for deciding order of model 
based on time series. All these approaches use different 
criteria for the selection of order of model. In the present 
study, Akiake’s [10] and Schwarz [11] criterias are used for 
the selection of PAR (p) model. Akiake’s information criteria 
is computed by utilizing (9) 

AIC (p) = pn 24log 2                                (9) 

whereas Schwarz’s criteria is by (10)

BIC (p) = npn log12log 2                            (10) 

where 2  is the residual sum of square divided by the 
effective sample size n.

IV. DIAGNOSTICS FOR THE FITTED PAR (P) MODEL
Since residuals are unobservable that why is used to 

check model assumptions or adequacy of the model. The 
residuals t  for PAR (p) model are computed through 
equation

ttt xx                                         (11) 

V. APPLICATION OF PAR (P) MODEL

Karachi, the provisional capital of sindh is located at the 
extreme west end of the Indus delta between north latitude 24o

51/ and east longitude 67o 4/. Lyari is one of the three rivers, 
along with the Malir and Hub rivers which flow through the 
greater metropolitan area of Karachi. The rivers watershed 
area has approximately 700 km2 drainage area. It has 
approximately 200 km2 within Karachi. Orangi and Gujar 
Nullahs are its main tributaries. These tributaries contribute 
two-third of the runoff within Karachi from the northwest to 
river. It carries the water that is purely combination of 
domestic sewage and industrial effluents. These effluents have 
very high load of pollutants which discharges into Arabian 
Sea.

The data are obtained from daily discharge measurements 
at the mouth of Arabian Sea, in cubic meter per second 
averaged over each of the respective months to obtain the 
monthly series. A partial time plot of the series is given in Fig. 
1 which shows the nonstationarity in waste flow of river. 

Fig. 1 Partial plot of monthly Lyari river flow
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Now, first of all identify the order of the periodic 
autoregressive model which needs to obtain for estimation of 
parameters. For this purpose, Akaike Information Criterion 
(AIC) and Schwarz Criterion (SC) are computed by using 
equations (9) and (10) and  
F-statistics with their probabilities is calculated for the sets of 
the parameters of order p+1 equal to zero. By using AIC & 
BIC information criteria and F-statistics, order of the suitable 
PAR model is selected. The Table I below provides the details 
of computed statistics, Akaike Information Criterion (AIC) 
and Schwarz Criterion (SC) with their probabilities values for 
the periodic autoregressive model of the order ranging 
between one and twelve. 

The output of the test reported in Table I suggest that 

periodic autoregressive parameter of order two are significant 
for the waste flow of the Lyari river. Therefore, the parameter 
of PAR (2) model will be worked out.  

Once the order of periodic autoregressive model is 
identified, then periodic variation in the parameters of 
autoregressive model will be measured. To verify periodic 
variation an F-test on the residual sum of squares with the null 
hypothesis of non-periodicity is performed. The test is based 
on the model given by equation (1). In case of the presence of 
null hypothesis an autoregressive parameter of order 2 is 
estimated, whereas in the alternating a periodic autoregressive 
model of order 2 is computed.  

The result of the test is summarized in Table II. The test 
output of periodic variation in AR parameters projected in 
Table II rejects the non-periodicity at the 1% significance 
level. The test confirms that periodic autoregressive model is 
adequate to the Lyari waste flow data rather then an 
autoregressive model. 

The univariate representation of PAR (2) for river 
monthly waste flow time series tFlow  is: 

tt
s

st
s

st FlowFlowFlow 2

12

1
21

12

1
1

              (12) 

and values of estimated coefficients are given in Table III. 

The test statistics of the equation (12) are 

Residual standard error  = 0.0451 on 358 degrees of 

freedom 

Multiple R-squared  = 0.9994 

Adjusted R-squared = 0.9994  

F-statistic  = 1.71e+04 on 36 and 358 degree of freedom 

Prob.-value  <  2.2e-16 

The representation of PAR (2) process given by (12) can 
be rewritten as vector autoregressive model as  

TTT FLOWFLOW 110                        (13) 

where FLOWT represents the observation of waste flow time 
series in season s of year T,
with

1768.1703.0000000000
01972.0007.000000000
001777.0360.10000000
0001075.0051.1000000
00001137.1199.000000
000001555.0447.00000
0000001999.00000
00000001985.0131.000
000000001161.1120.10
0000000001142.1138.0
00000000001986.0
000000000001

0

   (14) 

TABLE 1 
PERIODIC VARIATION TEST OUTPUT 

PAR
Order AIC BIC F( )0,1 sp

Prob. 
Value

1 -1138.6 -1139.5 3.5514814 .00000 

2 -1192.7 -1193.2 0.2867891 .46912 

3 -1109.3 -1110.6 1.3479240 .18987 

4 -1052.0 -1053.8 0.9785696 .99107 

5 -990.1 -992.3 4.7103478 .00000 

6 -981.8 -984.7 0.6122296 .83158 

7 -914.9 -918.5 1.9495727 .02887 

8 -870.5 -874.7 1.6837787 .06844 

9 -798.7 -803.7 1.1602795 .31235 

10 -743.3 -749.2 1.4433013 .14698 

11 -694.2 -701.0 0.5349320 .89067 

12 -628.4 -636.1 1.0644146 .39167 

TABLE II 
 TEST OUTPUT FOR PERIODIC VARIATION IN AR PARAMETERS. 

Null
Hyp

Alt.
Hyp

Model 
Parameters F-stat Prob.

Value
Flow,   SI 7.08 0.00 ***AR(2

)
PAR(2

)
Flow, SI,ST 6.72 1.1e-16***

SI=Seasonal Intercept,  
ST= seasonal trend, 
 DF=Degree of freedom 
*** = Significance level at 1% 

TABLE III 
SEASONAL ESTIMATED COEFFICIENTS 

 FOR PAR(2) MODELS 

Season (s) s1 s2
1 0.04 0.63 
2 0.99 0.01 
3 1.14 -0.14 
4 1.16 -1.12 
5 0.98 0.13 
6 1 0 
7 0.55 0.45 
8 1.14 -0.20 
9 -0.08 1.05 

10 -0.78 1.36 
11 0.97 0.01 

12 1.77 -0.70 
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and

000000000000
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000
007.000000000000
041.0628.00000000000

1

                         (15) 

The eigen values i.e. 1
1

0  is calculated for acquiring the 

information of possible unit root in the tFlow . The estimated 
eigen values matrix for the Layri flow data set is 

0000000000006.01
1

0
          (16) 

The eigen value matrix rejects the presence of long run unit 
root.

The time-varying impact of accumulation of shocks for 
each season is calculated by utilizing 1

01
1

0
  whose output 

is projected in Table IV. 

.
The impact estimate envisages that season eight has long 

run impact. i.e. month of August has long run time varying. 
impact; hence, it is more sensitive to change in stochastic 
trend

VI. ADEQUACY OF PAR (P) MODEL

The analysis of residual analysis is performed to verify 
goodness of fit of proposed model. 

(i) An F-statistics based test is perform for checking seasonal 
heteroskedasticiy in the residual of the PAR (2) estimate. This 
test is asymptotically F distributed with (11, n-k) degree of 
freedom in which n and k denotes, number of observation and 
number of parameters respectively. The output of the test is 

F-statistic      = 9.7 on 11 and 393 DF 

Prob- value   = 1.44329e-15 

This test rejects the seasonal heteroskedasticiy at 1% 
significance level. 

(ii)  The Ljung-Box test confirms the overall randomness in 
the residual of proposed model. The test statistics are 
computed by using (17) 

m

k
kknnnQ

1

21 ˆ)()2()(                     (17) 

in which
n = Size of the sample 

k
ˆ = Sample autocorrelation at lag k

m = Number of tested lags. 

The randomness is rejected if  

2
,1)( kQ                                                 (18) 

where 2
,1 k is critical region of rejection of the randomness 

hypothesis at signifivance level   with k degrees of freedom.  
The generated output for the Ljung-Box test is as follows: 

Ljung test statistic = 29.8498 

Degree of freedom = 25 

Prob. Value = 0.049 

The above computed values indicates that residuals are 
random at 5% level which signify the appropriateness of PAR 
(2) model. 

(iii) The sketch of the residual shows (see Fig 2) the 
randomness which implies competence of constructed model. 

TABLE IV 
IMPACT ESTIMATED VALUES FOR SEASON TO SEASON. 

Season
1 2 3 4 5 6 7 8 9 10 11 12 

0.059 0.121 0.436 0.337 0.342 0.107 0.525 0.925 -0.502 0.652 0.701 0.041 
0.059 0.120 0.435 0.336 0.341 0.107 0.523 0.922 -0.500 0.650 0.703 0.047 
0.059 0.121 0.436 0.337 0.342 0.107 0.525 0.925 -0.502 0.652 0.706 0.048 
0.003 0.005 0.019 0.015 0.015 0.005 0.023 0.041 -0.022 0.029 0.032 0.003 
0.010 0.021 0.077 0.059 0.060 0.019 0.092 0.162 -0.088 0.114 0.125 0.009 
0.010 0.021 0.076 0.059 0.060 0.019 0.092 0.162 -0.088 0.114 0.124 0.009 
0.010 0.021 0.077 0.059 0.060 0.019 0.092 0.162 -0.088 0.115 0.125 0.009 
0.010 0.020 0.072 0.056 0.056 0.018 0.087 0.153 -0.083 0.108 0.117 0.009 
0.010 0.021 0.075 0.058 0.059 0.018 0.090 0.159 -0.086 0.112 0.122 0.009 
0.005 0.011 0.040 0.031 0.031 0.010 0.048 0.084 -0.045 0.059 0.064 0.005 
0.005 0.011 0.039 0.030 0.031 0.010 0.047 0.083 -0.045 0.058 0.063 0.005 
0.006 0.011 0.041 0.032 0.032 0.010 0.049 0.087 -0.047 0.061 0.067 0.005 
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Fig. 2 Residual plot confirms adequacy of the model 

 (vi) The normality in residual is verified by applying 
Doornik-Hansen, Shapiro-Wilk, Lilliefors and Jarque-Bera 
tests. These estimates with their probabilities values in 
parenthesis yields  

Doornik-Hansen test = 120.188   (7.97097e-027) 
Shapiro-Wilk  test     = 0.805041 (1.89447e-021) 
Lilliefors test             = 0.228565 (~ = 0.00000) 
Jarque-Bera test         = 641.719   (4.49248e-140) 

The above estimated test statistic affirmed that residual series 
is normally distributed. 

(v) The CUSUM test is performed for checking stability in 
model parameters. The test confirms that PAR (2) parameter 
are stable as its cumulative sum goes inside the area between 
the two critical lines. The plot of standardized cumulative 
recursive residual is illustrated in Fig 3 

Fig. 3  The CUSUM test shows parameter stability 

 Moreover, CUSUMSQ (CUSUM of squares) statistic is 
also within the 5 percent critical lines which give confirmation 
of parameter/ variance stability exposed by Fig. 4 

Fig. 4  CUSUMSQ statistics verify parameter stability 

In view of the above carried test/ analysis periodic 
autoregressive model of order two PAR (2) appears to be the 
most adequate for Lyari waste flow data set. 

The out of sample forecast estimated values by using the 
proposed model are reported in Table V. 

TABLE V 
PREDICTABLE OUT OF SAMPLE RIVER WASTE FLOW FORECAST 
Forecast Forecast

Standard Error 
Upper Confidence 

Interval 
Lower Confidence 

Interval 
5.9771 0.0148 5.9169 5.9923 
6.0820 0.0176 6.2500 5.5700 
6.2134 0.0249 7.0000 5.7100 
6.0444 0.0275 6.8300 5.5700 
6.6974 0.0311 7.0400 5.8200 
6.7452 0.0362 7.4300 6.1500 
6.8112 0.0413 7.4300 6.0400 
6.8004 0.0558 7.4000 6.0300 
6.9757 0.0588 7.6800 6.0000 
6.1212 0.0614 7.1100 5.5000 
6.2262 0.0647 7.2000 5.6700 
6.6426 0.0684 7.5100 5.8000 

The graph of the forecasted waste flow along with upper and 
lower confidence limit is displayed in Fig. 5. 

Fig. 5 Time plot of river Lyari waste flow with forecast and 
95% confidence limit 
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The forecast statistics of PAR (2) model are 

Root Mean Square Error = 0.0370884  

Mean Absolute Error = 0.227902 

Mean Absolute Percentage Error = 3.733013 

Theil Inequality Coefficient =  0.030929 

Bias Proportion = 0.005160 

Variance Proportion = 0.116571 

Covariance Proportion = 0.878270 

The forecasted estimates under Table V, exhibited forecasted 
plot and test statistics also strengthen the adequacy of PAR (2) 
model for river Layri waste flow data set. 

VII. CONCLUSION

 In the present study PAR model of order 2 is presented for 
studying monthly waste flow of Lyari river for the available 
data from January 1974 to December 2006. The study 
established that proposed model is excellent in assessing 
periodicities in waste flow of Lyari river. The diagnostic tests 
confirm adequacy of the proposed model. Moreover, forecast 
estimate by utilizing the projected model also verified the 
validity of the model. This model could be of great help for 
the planning personal and administrative authorities to control 
the environmental condition of the river, coastal area and to 
save marine aquatic species. 
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