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Quadrilateral Decomposition by Two-Ear Property

Resulting in CAD Segmentation
Maharavo Randrianarivony

Abstract—The objective is to split a simply connected polygon
into a set of convex quadrilaterals without inserting new
boundary nodes. The presented approach consists in repeatedly
removing quadrilaterals from the polygon. Theoretical results
pertaining to quadrangulation of simply connected polygons are
derived from the usual 2-ear theorem. It produces a quadran-
gulation technique with O(n) number of quadrilaterals. The
theoretical methodology is supplemented by practical results
and CAD surface segmentation.

Keywords—Quadrangulation, simply connected, two-ear the-
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I. INTRODUCTION

QUADRILATERAL decomposition is an important

structure in computational geometry. It has several

important applications in computer graphics, numerics and

engineering [7], [6]. The main purpose of this paper is

to propose a methodology for splitting a simply connected

polygon into quadrilaterals. In fact, this is a completion of

a previous work with Brunnett as described in [8], [9], [10].

The main contribution in this paper can be summarized as

follows:

• Quadrilateral decomposition without prior triangulation,

• Introducing two operations for quadrilateral removal,

• Theoretical proofs supporting the algorithm,

• The number of quadrilaterals is O(n),
• Practical implementation and CAD application.

Related works are as follows, Ramaswami et al. [7] used the

percolation algorithm to transform a triangular mesh into a

quadrilateral one by using graph-based approach. Lee and Lo

[4] have used a method which needs the merging front that

is initialized to be the polygonal boundary of the domain.

It is also an indirect method which needs a background

triangular mesh. It recursively tries to merge a triangle which

is incident upon the merging front and an adjacent one. The

authors failed to give any theoretical proof of their merging

algorithm. The Q-Morph (or quad morphing) algorithm [6]

uses a similar approach as the above method where the author

uses an advancing front consisting of a set of edges that must

be updated every time new quadrilaterals are formed. In [1],

the authors first fill the domain with circles which are tangent

to one another. The gaps in the domain are then bounded by

a few circles. The circle packing method amounts to generate

edges whose endpoints are centers of those circles.
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The structure of this paper is as follows. First, it starts

by formulating the problem accurately and by introducing

several definitions. Section III introduces two operations with

which a single quadrilateral can be removed from a polygon.

In Section IV, those two operations are used to design an

algorithm for quadrangulation. The purpose of Section V is

twofold. First, it shows results from practical implementation

of the theoretical methods. Second, it briefly describes how

to apply the presented method to real CAD models.

II. PROBLEM SETTING AND DEFINITIONS

Let P be a simply connected polygon with an even number

of boundary vertices {xk} k = 1, ..., n. The objective is to

find a set of convex quadrilaterals {Qi} such that (see Fig.

1(a)):

(P0) P =
⋃m

i=1Qi.

(P1) For i, j = 1, ...,m (i 6= j) the intersection Qi ∩ Qj is

either empty or a single node or a complete edge.

(P2) Each vertex of a quadrilateral Qi is either an element

of {xk}
n
k=1 or it is strictly inside P . In other words,

boundary Steiner points are not allowed.

It was required that the number of boundary nodes be even

in order to guarantee [7] the solvability of this problem.

To simplify the description of the approach, the following

notations and definitions are introduced.

For two given points a and b in the plane, [a,b] and ]a,b[
will denote the closed and open line segments defined by

[a,b] := {λa + (1 − λ)b, λ ∈ [0, 1] ⊂ R}, (1)

]a,b[ := {λa + (1 − λ)b, λ ∈]0, 1[⊂ R}. (2)

The line which passes through a and b splits the plane into

two half planes:

(ab)+ := {z ∈ R
2 : det( ~az, ~ab) > 0}, (3)

(ab)− := {z ∈ R
2 : det( ~az, ~ab) < 0} (4)

As in most papers in computational geometry, the vertices

of a polygon is given in counter-clockwise orientation. Let

xi−1, xi, xi+1 be three consecutive vertices of a polygon P .

The next region is called the wedge of xi

W(xi) := (xi−1xi)
− ∩ (xi+1xi)

+. (5)

The vertex xi is called a reflex vertex if det(xi−xi−1,xi+1−
xi) < 0. A point a is visible from a vertex xk ∈ P if ]a,xk[
does not intersect any edge of P . The kernel ker(P ) of P is
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Fig. 1. (a) Quadrangulation (b) Chopping off a polygon from an initial
one.

the set of points inside P which are visible from all vertices

of P

A cut within P is a line segment [xp,xq] which is formed

by two non-consecutive vertices of P and which is inside P

such that ]xp,xq[ does not intersect any edge of P . Chopping

off a subpolygon P ′ from P means introducing a cut e that

splits P into P ′ and the remaining polygon P̃ , i.e.

P = P ′ ∪ P̃ , and P ′ ∩ P̃ = e. (6)

An ear T of a polygon P is a triangle formed by three

consecutive vertices of P such that one edge of T is a cut.

Since the presented method is based on the 2-ear theorem

[5], the next theorem is recalled.

Theorem 1 (Meister, 1975): Every simply connected

polygon having at least four vertices has two nonoverlapping

ears.

III. TWO OPERATIONS FOR QUADRILATERAL REMOVAL

The next theorem will be used to split a simply connected

polygon into quadrilaterals without additional boundary ver-

tices.

Theorem 2: Let P be a simply connected polygon having

at least five vertices. Then, one of the next two operations

can be applied:

(Op1) One can remove a quadrilateral which is not necessarily

convex by inserting a single cut as in Fig. 2(a).

(Op2) There exists a point ω in the interior of P such that one

can remove a convex quadrilateral by inserting two line

segments emanating from ω to two vertices of P (Fig.

2(b)).

Proof: It is proved by induction with respect to the

number n of vertices of P . For n = 5, use the theorem of

Meister to chop off one triangle from P and the remaining

four vertices form the quadrilateral which can be discarded

from P by using operation (Op1). Suppose that the claim

holds for every polygon having n vertices. Now, consider a

polygon P with n+ 1 vertices. A quadrilateral Q which can

be discarded from P is now sought.

First, apply the 2-ear theorem to chop off a triangle T :=
[xi−1,xi,xi+1] from P and denote by P̃ the remaining

polygon which must have n vertices. That is,

P̃ := [x0, · · · ,xi−1,xi+1, · · · ,xn]. (7)

(a)

ω

(b)

Fig. 2. (a) Chop off a quadrilateral with one cut (b) Remove a quadrilateral
with two cuts and one internal node.
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Fig. 3. The ear [xi−1,xi, xi+1] and the quadrilateral Q̃ are adjacent.

After applying the hypothesis of induction to the new poly-

gon P̃ , a quadrilateral Q̃ is obtained. Three different cases

have to be distinguished.

Case 1: If the quadrilateral Q̃ is not incident upon the edge

[xi−1,xi+1] of T , then one simply defines Q := Q̃.

Case 2: Suppose that [xi−1,xi+1] is an edge of Q̃ and all

vertices of Q̃ are elements of P̃ (Fig. 3 and Fig. 4). Three

subcases are investigated.

Case 2.a: Assume that Q̃ = [xi−2,xi−1,xi+1,xi+2] as in

Fig. 3. Observe that with respect to the quadrilateral Q̃, xi−1

is visible from xi+2 (Fig. 3(a)) or xi+1 is visible from xi−2

(Fig. 3(b)) (In fact, you can apply the 2-ear theorem to Q̃).

In the first situation, define Q := [xi,xi+1,xi+2,xi−1]. In

the other case, define Q := [xi+1,xi−2,xi−1,xi]. In other

words, operation (Op1) was just applied to P in case 2.a.

Case 2.b: Assume now that Q̃ = [xi−1,xi+1,xi+2,xi+3]
as in Fig. 4. If the quadrilateral Q̃ is convex, then (Op1) is

applied by defining

Q := [xi−1,xi,xi+1,xi+2]. (8)
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Fig. 4. (a)xi+2 is reflex in Q̃ (b)xi−1 is reflex in Q̃ (c)xi+1 is reflex

(d)xi+3 is the reflex vertex in Q̃.

In the situation that Q̃ is nonconvex, four configurations with

respect to the position of the reflex vertex within Q̃ are

distinguished:

(i) If the vertex xi+2 is the reflex vertex as depicted in Fig.

4(a), define Q := [xi−1,xi,xi+1,xi+2].
(ii) If xi−1 is reflex (Fig. 4(b)), define Q := [xi−1,

xi,xi+1,xi+2].
(iii) In the case that xi+1 is the reflex vertex of Q̃, take any

node ω on the open segment ]xi+3,xi−1[ in the wedge

of xi+2 as illustrated in Fig. 4(c) and apply (Op2) by

defining

Q := [xi+2,xi+3, ω,xi+1]. (9)

Observe that in this case Q is convex because ω is

visible from xi+1, xi+2, xi+3.

(iv) If xi+3 is the reflex vertex of Q̃, then Q is defined as

in (9) but the internal Steiner point ω is chosen within

the interior of the triangle (Fig. 4(d)) [xi−1,xi+1,xi+3]
and within the wedge of xi+2.

Case 2.c: If Q̃ = [xi−3,xi−2,xi−1,xi+1], then proceed

analogously to case 2.b.

Case 3: This case considers the situation that the segment

[xi−1,xi+1] is an edge of Q̃ which has a vertex ω̃ that is not

a vertex of P̃ (Fig. 5(a)). Then Q̃ is convex and any point ω

is chosen within the interior of Q̃ and within the wedge of

xi

xi+1 xi−1

T

Q̃

ω̃

ω

(a)

a

b

c

d

e
ω

(b)

Fig. 5. (a)Introducing a Steiner point ω in Q ∩ W(xi) (b) Case of a
pentagon.

xi. Due to the convexity of Q̃, both xi−1 and xi+1 must be

visible from the node ω. Therefore, define

Q := [xi,xi+1, ω,xi−1] (10)

as a quadrilateral which can be removed from P by using

operation (Op2).

IV. QUADRILATERAL DECOMPOSITION

After applying operation (Op1) to a polygon having n

vertices, the number of vertices of the remaining polygon

is reduced to (n− 2). However, applying operation (Op2) as

illustrated in Fig. 2(b) does not reduce the number of vertices.

Thus, it is not obvious that the recursive application of the

above theorem splits a polygon into a set of quadrilaterals.

Theorem 3: The internal node ω can be chosen in such a

way that if a quadrilateral Q1 has been removed from P via

operation (Op2), then there is a quadrilateral Q2 adjacent to

Q1 that can be removed from P \ Q1 via operation (Op1).

Thus, there are four cases which are illustrated in Fig. 6:

Q1 = [ω,xi−1,xi,xi+1] Q2 = [ω,xi−3,xi−2,xi−1],
(11)

Q1 = [ω,xi−1,xi,xi+1] Q2 = [ω,xi+1,xi+2,xi+3],
(12)

Q1 = [xi,xi+1, ω,xi−1] Q2 = [xi−1, ω,xi+1,xi+2],
(13)

Q1 = [xi+1,xi+2, ω,xi] Q2 = [xi, ω,xi+2,xi−1]. (14)

In cases (11) and (12), the union Q1∪Q2 is a hexagon, while

it is a quadrilateral in (13) and (14).

Proof: This is proved by using induction in a very

similar manner as in the preceding theorem where one ear

T is removed to obtain an auxiliary polygon with n vertices

from a polygon with (n + 1) vertices. For the case n = 5,

suppose that the vertices are [a, b, c, d, e] as Fig. 5(b). Dis-

card an ear which is supposedly [a, b, e]. For the remaining

quadrilateral, choose a point ω ∈ W(d) ∩ (ec)+. Therefore,

Q1 := [e, ω, c, d] and Q2 := [c, ω, e, b].
Suppose in the hypothesis of induction that there are two

quadrilaterals Q̃1 and Q̃2 and an internal node ω̃ fulfilling

relation (11) or (12) or (13) or (14). Let us prove that after

removing an ear T , two quadrilaterals Q1 and Q2 and a

point ω satisfying those relations can be found. The trivial

case consists of an ear which is neither incident upon Q̃1 nor
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Fig. 6. Q1 and Q2 which are discarded by using operations (Op1) and
(Op2) are adjacent.
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Fig. 7. (a)Ear T incident upon edge [a, b] of Q̃1, (b)Ear T incident upon

edge [b, c] of Q̃1.

upon Q̃2. In such a case, Q1 := Q̃1, Q2 := Q̃2 and ω := ω̃.

Two nontrivial cases are distinguished according to whether

Q̃1 ∪ Q̃2 is a hexagon or a quadrilateral.

Case A: Suppose Q̃1 ∪ Q̃2 is a (non-convex) hexagon.

Without loss of generality, it is assumed that Q̃1 and Q̃2

satisfy (11). Let the vertices of Q̃1 be denoted by [a, b, c, ω̃],

a
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e

ω̃
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T
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c

d
e

f

ω

ω̃
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Fig. 8. Case where an ear T is incident upon the edge [a, f ] of Q̃2.

and those of Q̃2 by [d, f, a, ω̃]. Let e be the vertex of T

which does not belong to Q̃1 ∪ Q̃2 as illustrated in Fig. 7.

Four subcases are considered with respect to the position of

the ear T .

Case A.1: If the ear T is incident upon the edge [a, b] of

Q̃1 as illustrated in Fig. 7(a), consider the diagonal [c, a]
which must be inside the quadrilateral Q̃1 because Q̃1 is

convex. Choose then a point ω ∈ Q̃1 which is in (ca)− and

which is visible from the vertex e. Define Q1 := [ω, a, e, b]
and Q2 := [c, a, ω, b] which are adjacent and which form a

quadrilateral union.

Case A.2: If the ear T is incident upon the edge [b, c] of

Q̃1 as in Fig. 7(b), proceed as in case A.1 but define now

Q1 := [e, c, ω, b] and Q2 := [b, ω, c, a] .

Case A.3: Suppose now that the ear T is incident upon the

edge [a, f ] as in Fig. 8. If ω̃ ∈ W(e) (see Fig. 8(a)), define

ω := ω̃, Q2 := Q̃1 and Q1 := [a, ω, f, e] which is a convex

quadrilateral. Else, choose w ∈ W(e) such that ω is visible

from c (see Fig. 8(b)). Define afterwards Q1 := [ω, f, e, a]
and Q2 := [b, c, ω, a].

Case A.4: Suppose that T is incident upon the edge [f, d].

(i) If c and f are mutually visible in Q̃1∪Q̃2 as in Fig.9(a),

choose ω ∈ Q̃1 such that ω ∈ (ca)+ ∩ (cf)− and define

Q1 := [ω, a, b, c] and Q2 := [f, a, ω, c].
(ii) Suppose that a and d are mutually visible in Q̃2

(Fig.9(b)). That means, f must be in (da)+. Choose ω ∈
Q̃2 such that ω ∈ W(e) and define Q1 := [e, f, ω, d]
and Q2 := [a, d, ω, f ].

(iii) Suppose that none of (i) and (ii) occurs (Fig.9(c)). Since

a is not visible from d in Q̃2, f must be in (da)−. Define

ω := ω̃, Q1 := [ω, f, a, b] and Q2 := [f, ω, d, e].

Case B: Suppose Q̃1 ∪ Q̃2 is a quadrilateral. Without loss

of generality, let Q̃1 and Q̃2 satisfy (13). Let [a, b, c, d]
denote that union as depicted in Fig. 10. Three subcases

are considered according to the incidence of the ear T on

[a, b, c, d]
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Fig. 9. Case where the ear T is incident upon the edge [f, d] of Q̃2.
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Fig. 10. Situation where the union Q̃1 ∪ Q̃2 forms a quadrilateral.

Case B.1: Suppose that the ear T is incident upon the edge

[b, c] as shown in Fig. 10(a). The diagonal [a, c] of the union

[a, b, c, d] is considered and ω ∈ Q̃1 is chosen such that ω ∈
(ac)+ ∩W(e). Then, Q1 := [b, e, c, ω] and Q2 := [a, b, ω, c]
are defined.

Case B.2: Suppose that the ear T is incident upon the edge

[a, b] as in Fig. 10(b). Generate ω ∈ Q̃1 such that ω ∈ (ac)+∩
W(e) and define Q1 := [e, b, ω, a] and Q2 := [a, ω, b, c].

Case B.3: If the ear T is incident upon the edge [c, d] like

in Fig. 10(c), proceed as in case B.1 but define now Q1 :=
[e, d, ω, c] and Q2 := [c, ω, d, b].

As a consequence of those statements, the next algorithm

terminates because in at most two iterations the number

of vertices decrements by two. The number of resulting

quadrilaterals is of order O(n) for a polygon having n

vertices.

Algorithm: Quadrangulation of P

1: While (the number of vertices of P > 4)

2: Use (Op1) to chop off a quad Q if possible.

3: Else use (Op2) to chop off a quad Q.

4: P := P \Q.

5: Output(Q).

6: End While

7: Output(P).

The conversion of a quadrangulation which has non-

convex quadrilaterals into another one which contains only

convex quadrilaterals is now described. Note that two adja-

cent quadrilaterals q and p form either a single quadrilateral

or a hexagon. In the first case, the quadrilaterals q and p

share two edges and it is possible that the union q ∪ p is

a nonconvex or a convex quadrilateral. In the second case,

only one edge is shared by q and p. Now, the following result

about hexagon quadrangulations is recalled.

Theorem 4 (Bremner, 2001): Every hexagon (which may

include reflex vertices) can be decomposed into a set of

convex quadrilaterals by using at most three internal Steiner

points.

Bremner [2] proved this theorem but he did not specify the

way of exactly choosing the internal Steiner points. That

specification is found in [8]. Based on those facts, the next

two steps perform the conversion into convex quadrangula-

tion:

Step1: For every nonconvex quadrilateral p having a neigh-

boring quadrilateral q such that p ∪ q is a quadrilateral,

replace p by p ∪ q and remove the quadrilateral q from

the quadrangulation. This step is repeated until such a union

does not exist any more. After this step, there can only exist

nonconvex quadrilaterals whose union with a neighboring

quadrilateral forms a hexagon.

Step2: A nonconvex quadrilateral q is merged with a neigh-

boring quadrilateral p in order to have a hexagon q∪p. If there

is a choice then a nonconvex neighbor p is selected. Then,

the resulting hexagon is re-quadrilated by using the hexagon

quadrangulation method from the above theorem in order to

obtain a local convex quadrangulation Qloc. Afterwards, the

union q ∪ p in the quadrangulation is substituted by Qloc.

V. PRACTICAL RESULTS AND APPLICATION TO CAD

In this section, practical applications of the former theory are

described. First, quadrangulations of simply connected poly-

gons are considered. Then, its application to CAD models is

briefly described. In fact, the former theory was implemented

in C/C++ in order to see its practical behavior. In Fig.

11(a)–11(e), some quadrangulations of a few polygons are

displayed. No new boundary nodes at all are used as already

forecast in the theory.
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Fig. 11. Decomposition of a few simply connected polygons.

There are many possible applications of the previous

quadrangulation technique but it is used here in CAD seg-

mentation. The goal is to split the surface boundary of a CAD

model into four-sided patches Γk (Fig. 12). The main steps

of the segmentation is summarized below and their details

are found in [8], [10]. The CAD surfaces are collection

of trimmed surfaces [3] which are images of Di ⊂ R
2

by bivariate parametrizations ψi. The first step consists in

approximating the parameter domains Di by polygons P (i).

Note that if too few vertices are taken in the polygonal

approximation, the resulting polygon may have imperfections

such as different edges which intersect. But if the polygonal

approximation is too fine, then it ends up with too many

four-sided patches. Adaptive method has been used to solve

that. Afterwards, each polygon P (i) is decomposed into con-

vex quadrilaterals qk,i. For simply connected polygons, the

quadrangulation of the previous sections is used. For multiply

connected ones, internal cuts are inserted and the previous

results are generalized to more complicated polygons [8].

Four-sided domains Qk,i are obtained from qk,i by replacing

each straight boundary edge of qk,i by the corresponding

curve portion of Di such as Di =
⋃

k Qk,i. The final four-

sided patches Γk are therefore the images by ψi of the 2D

domains Qk,i. Careful operations must be done to remove

boundary intersection caused by the curve replacement as

detailed in [8]. As a result, two CAD surface segmentations

can be observed in Fig. 12.

VI. CONCLUSION

Two operations were presented for discarding a quadri-

lateral from a simply connected polygon. It was proved that

one of those operations can always be applied. From that fact,

an algorithm was designed for generating a quadrangulation

from a polygon. The algorithm was then implemented in

order to obtain interesting practical results.
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Fig. 12. Practical segmentation of two CAD surfaces into four-sided
patches.
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