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Abstract—Economic Dispatch is one of the most important 

power system management tools. It is used to allocate an amount of 
power generation to the generating units to meet the load demand. 
The Economic Dispatch problem is a large scale nonlinear 
constrained optimization problem. In general, heuristic optimization 
techniques are used to solve non-convex Economic Dispatch 
problem. In this paper, ideas from Reinforcement Learning are 
proposed to solve the non-convex Economic Dispatch problem. Q-
Learning is a reinforcement learning techniques where each 
generating unit learn the optimal schedule of the generated power that 
minimizes the generation cost function. The eligibility traces are used 
to speed up the Q-Learning process. Q-Learning with eligibility 
traces is used to solve Economic Dispatch problems with valve point 
loading effect, multiple fuel options, and power transmission losses. 
 

Keywords—Economic Dispatch, Non-Convex Cost Functions, 
Valve Point Loading Effect, Q-Learning, Eligibility Traces. 

I. INTRODUCTION 
HE operation of the power system is tightly controlled to 
achieve the efficient use of its capabilities [1]. The 

operation cost of the generating units highly depends on the 
fuel cost. The Economic Dispatch (ED) is a modern power 
system energy management tool. It results in the best 
economical use of the generating units and fuel sources [2]. 

The high nonlinearity of the power system imposes 
mathematical complexities in formulating the generation cost 
models necessary to solve the Economic Dispatch problem 
[1]. The sources of the mathematical complexities are due to 
the design specifications and operation constraints of the 
generating units such as the spinning reserve, transmission 
losses, prohibited operation zones, ramp rate limit, valve point 
loading effect, and multiple fuel options [1]. The spinning 
reserve determines how the generating units are robust to the 
unexpected outages or incorrect load allocation among the 
generating units [3]. The Prohibited zones are caused by faults 
in the machines its self or the associated auxiliaries [4]. 
Restrictions in the power generation define the ramp rate 
limits constraints [3]. In addition, some turbines use multiple 
valves that are opened sequentially to satisfy the load 
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requirement, which adds more non-convexity to the generation 
cost function [3]. Some generating units use multiple fuel 
types for different operation regions [5]. 

The conventional methods used to solve Economic 
Dispatch problem include Newton Raphson, gradient 
techniques, lambda iteration method, the base point and 
participation factors method [1], interior point algorithm, 
linear programming, dynamic programming and dual 
quadratic programming [6]-[8] where the generation cost 
functions are assumed to be monotonically increasing piece-
wise linear functions. Heuristic optimization techniques are 
used to find the optimal solution for the non-convex Economic 
Dispatch problem. These techniques include Evolutionary 
programming (EP) [9], Genetic Algorithm (GA) [4], 
Differential Evolution [10], Particle Swarm Optimization 
(PSO) [11], Simulated annealing (SA) [12], Tabu Search [13], 
Gravitational Search Algorithm (GSA) [2], and Biogeography 
method [14]. These Heuristic algorithms don’t always 
guarantee the global best solution. 

In this paper, ideas from Reinforcement Learning (RL) are 
used to solve the non-convex Economic Dispatch problem. 
Reinforcement Learning is an area of machine learning, used 
to solve multi-stage decision making problems. It is concerned 
with how an agent will pick its actions in a dynamic 
environment to transit to new states in such a way that the 
optimization of the objective function can be achieved [15]-
[20].  

This paper is organized as follows. In Section II, the 
classical Economic Dispatch problem is introduced. In Section 
III, Q-Learning and eligibility traces are introduced. In Section 
IV, an algorithm based on Q-Learning with eligibility traces is 
developed to solve non-convex Economic Dispatch. In Section 
V, simulation is performed using the developed algorithm to 
solve the Economic Dispatch problem with valve point 
loading effect, multiple fuel options, and transmission losses. 

II. FORMULATION OF THE ECONOMIC DISPATCH PROBLEM 
In this section the classical Economic Dispatch problem is 

formulated using Lagrange dynamics [1]. The main operation 
constraints related to the generating units are mentioned. 
Furthermore, the different generation cost models are 
introduced. 

A. Economic Dispatch Problem 
Lagrange dynamics is used to formulate and solve the 

Economic Dispatch problem. The objective of the 
optimization problem is to minimize the fuel generation cost, 
so that 
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where TF  is the total fuel generation cost and it is given by 

1 2 3 .............
gT nF F F F F= + + + + , iF  is the fuel generation 

cost of each unit i, iP  is the power generated by each unit i, 
and ng is the number of generating units. 

The generation cost function iF  is approximated by the 
quadratic function [1], so that 

 
2( )i i i i i i iF P a b P c P= + +            (2) 

 
where ai, bi, and ci are the fuel cost coefficients of the 
generation unit i. 

Equation (2) states the basic generation cost model. The 
Lagrange operator is given so that  

 

1

cN

T i i
i

L F λ ϕ
=

= + ∑               (3) 

 
where cN is the number of constraints, iλ  is the Lagrange 
multiplier associated with each constraint iϕ . 

The Lagrange operator L is minimized with respect to the 
generated power, while the constraints ,i iϕ ∀  are satisfied [1]. 

B. Operation Constraints 
The generating units’ constraints are classified into two 

types. The first is related to the design and operation 
specifications of the generating units such as the generation 
capacity, line maximum power flow, generation ramp limits, 
prohibited operation zones constraints, and spinning reserve. 
The second is related to an upper level of operation control 
such as unit commitment and other operation plans like 
maintenance. Here, only constrains related to the work are 
considered. 

1) Generation-Demand Equality Constraints 
The Generation–Demand equality constraint, states that the 

sum of the generated power is equal to the total active load 
demand plus the transmission losses so that 

 

1
( ) ,

ng

i D Losses
i

P P P
=

= +∑             (4) 

 
where DP  is the total active load demand, LossesP  is the 
transmission losses. The transmission losses is given in terms 
of Kron’s loss formula [5] so that  
 

( ) ( )
1 1 1

g g gn n n

Losses i ij j oi i oo
i j i

P PB P B P B
= = =

= + +∑∑ ∑     (5) 

 
where ijB , oiB , and ooB  are the transmission network power 

losses coefficients. The B-loss coefficients represent the 
transmission line and the corona losses [5]. 

2) Generation Capacity  
Each generating unit has maximum and minimum 

generation capacities so that 
 

min max ,i i iP P P i≤ ≤ ∀           (6) 
 
where min

iP  and max
iP  are the designed minimum and 

maximum generated power capacities of each unit i. 

3) Spinning Reserve Constraints 
During the power system operation, the generating units are 

not working on the maximum designed capacity, instead those 
units keep about 5-10% of their capacity unused [21]. This 
operation enhances the security of the power system in the 
case of emergencies. Here, the spinning reserve constraints are 
given only for the generating units without prohibition zones 
[21] so that 

 

{ }(max) (max)min ( ), ,i ii iSR P P SR i without POZ= − ∀  (7) 
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=
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where iSR is the spinning reserve of unit i (MW), (max)iSR  is 
the maximum spinning reserve of unit i, SR is the total 
spinning reserve given by the generating units that do not have 
any Prohibited Operating Zones (POZ).  

C. Practical Generation Cost Functions 
The simplified generation cost function (2) does not include 

the valve point loading effect and the multiple fuel types’ 
effects. Accurate generation cost models are given as follows. 

1) Economic Dispatch with Valve Point Loading Effect 
The admission valves operate in a sequential manner in 

some turbines. This sequential operation causes ripples or non-
differentiable points in the generation cost models [22]. This 
effect is modeled by a sinusoidal function so that, the 
generation cost function is given by  

 
2

(min)( ) sin( sin( ))i i i i i i i i i i iF P a b P c P e f P P= + + + × × −   (9) 

 
where ia , ib , ic , ie , and if  are the fuel cost coefficients for 
each unit i and (min)iP is the minimum generated power by each 
unit i with valve point loading effect. 

2) Economic Dispatch with Multiple Fuel Options 
The generating units can use multiple fuel options for 

different regions in the operation range. This adds more non-
convexity to the generation cost function so that 
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where ika , ikb , and ikc are the generation cost coefficients of 
each unit i using fuel type k. 

3) Economic Dispatch with Valve Point Loading Effect and 
Multiple Fuel Options 

The generation cost function due to valve point loading 
effect and multiple fuel options is denoted as “Hybrid cost 
function” [22]. The hybrid cost function models result from 
combining the generation cost models (9) and (10) so that 
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where ika , ikb , ikc , ike , and ikf  are the fuel cost coefficients 
for each unit i and fuel type k. 

III. REINFORCEMENT LEARNING WITH ELIGIBILITY TRACES 
In this section, the Reinforcement Learning (RL) is used to 

solve the Economic Dispatch problem with valve point 
loading effect, multiple fuel options, and transmission losses. 
Ideas from Reinforcement Learning, Markov Decision 
process, Q-Learning, and eligibility traces are introduced [16]. 

The Reinforcement Learning (RL) algorithm developed 
herein learns the optimal power distribution for the Economic 
Dispatch problem by interacting with the environment i.e. 
choosing the proper generating values to minimize the 
generation cost objective functions [23]. 

A. Markov Decision Process 
Reinforcement Learning requires a mapping of the 

continuous Economic Dispatch problem structure to a discrete 
problem structure similar to the Markov Decision Process 
(MDP) [20]. 

The normal Markov Decision Process (MDP) is defined by 
the tuple , , ,M X U f ρ  where X is the discrete set of all 
possible states, U is the discrete set of all possible actions.

:f X U X× →  is the state transition function, and 
1: X P Rρ × →  is the penalty function. The actions are chosen 

based on a policy : X Uπ . This policy minimizes the sum 
of future costs, this sum is stored in a value function. 

B. Q-Learning 
Q-Learning is a reinforcement learning technique. The goal 

of each agent (generating unit) is to learn a policy (scheduling 
the generated power) that minimizes the penalty function 
(generation cost function) (1). One way to learn the optimal 
policy (optimal generation schedule) is by using Q-Learning 
with the sum of future costs to be defined by the Q-function 

1:Q X U R× → . The Q-function gives the expected cost for a 
given state-action pair under a given policy π so that 

 
( , ) ( , ) min ( ( , ), )

u
Q x u x u Q f x u uρ

′
′= +         (12) 

 
where ( , )x uρ  is the penalty function. 

The Q-function is iterated by correcting the old value with 
the penalty so that 

 
1

1

( , ) ( , )

( )( , ) min( ( , )) ( , )

q q
k k kk

q
k k kak A k

Q x a Q x a

x a Q x a Q x aα ρ γ

+

+∈

= +

+ −
    (13) 

 
where ( , )k kx aρ  is the penalty function (generation cost 
function),α  is the learning coefficient, q is the number of the 
iterations, k is the number of the state, γ  is the discount 
factor, and A is the set of all possible actions. 

The balance between the exploration and exploitation is 
important in the Q-Learning. Moreover, the proper selection 
of the action affects the performance of both the learning and 
evaluation of the agent’s policy [16]. The ε greedy (near-
greedy) method is an effective strategy of choosing the best 
actions during Q-Learning. It acts very well in environments 
with noisier cost functions. The ε -greedy Q-Learning selects 
the action with the lowest expected cost with probability 1 ε−  
and selects a random action from the feasible action set with 
probability [0,1]ε ∈  [16]. 

The ( )Q λ  learning with eligibility traces is used to speed 
up the Q-Learning process. As per Sutton and Barto, the 
eligibility trace λ  temporarily memorizes the parameters 
associated with an event to be eligible for learning changes in 
the Q-Learning process [16]. The state–action pairs are backed 
together and memorized as long as the greedy policy is 
followed. 

IV. ( )Q λ  LEARNING WITH ELIGIBILITY TRACES ALGORITHM 

In this section, an algorithm based on Q-Learning with 
eligibility traces is developed. Algorithm 1 explains how the 
Q-Learning algorithm with eligibility traces will learn the 
optimal generated powers for any applicable active load 
demand. Next, Algorithm 2 is used to extract the optimal 
actions (optimal generated power instances) for specified 
active load demands, taking into consideration the 
transmission losses. The Markov Decision Process implies 
that the different stages are seen as the different generation 
units. The state kx  is defined as the residual power demand 
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and k is the generator number. The power demand and the 
action spaces are discretized, whenever the generated power 
space is originally continuous. The discretization step will be 
an important factor that will impact the accuracy of the results. 
The action space U(xk) is the feasible generated power choices 
for the state xk. The penalty function is given in terms of the 
generation cost functions ((9)-(11)). The Q-Learning process 
Algorithm is given as follows 

Algorithm 1: Q-Learning with Elgibility Traces (Learning 
Process) 
- Identify the minimum and the maximum possible 

generated power for all the generation units gn . 
- Determine the power demand limits, the demand should 

not be greater than the summation of maximum generated 
power or not less than the summation of minimum 
generated power. 

Assume that every generating unit, generates at least its 
minimum power so the maximum amount of power that needs 
to be distributed over the generation units is given by  

 

max max min( )D
ng

P P P
∀

= −∑  

 
- Initialize the Q-function, the total number of trials 

(iterations), and the exploration rate ε. 
while ( )maxrt trial≤  Do { 

1. Generate random power demand instance ( )DP  picked 
from the uniform distribution over [0, PDmax]. 

2. Define the first state so that 1 (1, )Dx P= . 
3. Determine optimal action for the first generation unit by 
3.1. Identify the feasible discrete action space 1 1( )P U x∈  so 

that 
 

( )

1 max min 1 1
2 2

1 max 1 min 1

( ( ) ( ) ) ,

0 ( ) ( )

g gn n

j j
j j

x P P P x

P P P
= =

− + ≤ ≤

≤ ≤ −

∑ ∑

 
 

3.2. Retrieve the optimal action 
'

1 1

* '
1

)
1 1

(
arg min ( , )

P U x
P Q x P

∈
=  For the 

next states steps 
For 1,....., 2gk n= −  Do { 

4. Apply ε -greedy action  
If (1 )ε ε< −  do { *

k kP P=  
Otherwise { ( )}k kP rand U x=  

Storing the k index to be used for the eligibility trace 
:rk k= } 

5. The remaining load to be distributed to the next stages or 
states. State transfer: 1 1,k k kx x P+ = + − . 

6. Determine optimal action for (k+1)th generator by 
6.1. Identify the feasible action space 1 1( )k kP U x+ +∈  so that 

          

( )

1 max min 1 1
2 2

1 max 1 min 1

( ( ) ( ) ) ,

0 ( ) ( )

g gn n

k j j k k
j k j k

k k k

x P P P x

P P P

+ + +
= + = +

+ + +

− + ≤ ≤

≤ ≤ −

∑ ∑

 
 
6.2. Retrieve the optimal action *

1kP +  from the feasible 
space such that 

'
1 1,

* '
1 1 1arg min ( , )

k k feasible

k k k
P P

P Q x P
+ +

+ + +
∈

= . 

7. Update Q-function including trace information 
Define the error function ( kΔ ) so that 

*
1 1( ) ( , ) ( , )q q

k k k k k kF P Q x P Q x P+ +Δ = + −  
            For ( , )l lx p with ,...., ][ rl k k∈  
           1 1( , ) ( , ) [ ]q q k

l l l l kQ x p Q x p αλ+ −= + Δ  
   where max1 exp( / )rt trialλ = − −  

End 
End} 

8. Repeat steps (3) and (4) for 1gk n= −  
9. The feasible action space of last generator is given by 

 
1

1

gn

ng D k
k

P P P
−

=

= − ∑  

10. Update Q-function 
Calculate the error function for the last stage (generation 

unit). 

1 1 1( ) ( ) ( , )
g g g g

q
k n n n nF P F P Q x P− − −Δ = + −  

For ( ),l lx p with ,........... ][ ,rl k k∈  
1 1( , ) ( , ) [ ]q q k

l l l l kQ x p Q x p αλ+ −= + Δ  
End} 

Algorithm 2 extracts the optimal power distributions for a 
given active load demand, taking into consideration the 
transmission losses.  

Algorithm 2: Extracting the optimal power distribution 
considering the transmission losses. 
- Define the required tolerance μ  (Convergence error). 
- Identify possible state-action pairs for all stages (results 

from Algorithm 1 (learning process)). 
- Initialize the error coefficient δ , which describes the 

difference between the power losses for the successive 
iterations. 

- Initialize Expected LossesP  

For a given active load demand DP  do the following: 
while {Doδ μ>  

1. The modified load demand is D D Expected LossesP P P= + . 
2. Use the results from Algorithm 1 to obtain the optimal 

generated power vector ( )TP  knowing DP . 

3. Calculate the expected transmission losses ( )Losses TP P  
using (5). 

4. Update error δ  and the expected losses Expected LossesP  so that 

Expected Losses LossesP Pδ = − , Expected Losses LossesP P= }. 
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Initially the computational effort is done in the learning 
process. Once the learning process is done, it is easy to 
retrieve the optimal power distribution for the generating units 
for any active load demand [20]. To simplify the simulation of 
the Q learning with eligibility traces, the learning coefficient is 
picked so that 1α = , where it is multiplied by the 
exponentially decreasing trace kλ , and the discount factor is 
picked so that 1γ = . 

V. Q-LEARNING: CASE STUDIES AND NUMERICAL SIMULATION 
The advantages of the proposed algorithm to solve the 

Economic Dispatch problem are verified in this section. The 
Q-Learning with eligibility traces is compared to other 
Heuristic optimization techniques. Three study cases are 
considered for the simulation purposes. In case 1, the Q-
Learning with eligibility traces is used to solve Economic 
Dispatch problem for 6 generating units with valve point 
loading effect and transmission losses. In case 2, the Q-
Learning with eligibility traces is used to solve Economic 
Dispatch problem for 10 generating units with multiple fuel 
options. In case 3, Q-Learning with eligibility traces is used to 
solve Economic Dispatch for 15 generating units considering 
the transmission losses. 

A. Case Study 1:  
In this case, Q-Learning with eligibility traces algorithm 

results is compared to other published results for 6 generating 
units. The fuel cost coefficients and generation capacities of 
the 6 generating units with valve point loading effect are given 
in Table I. The simulation parameters (discrete step=7 MW, 

5
max 10trail = , 0.1ε = , and 0.01μ = ). 

 
TABLE I 

CASE STUDY 1: GENERATION CAPACITIES AND COST COEFFICIENTS OF SIX 
THERMAL GENERATION UNITS 

Unit a($) b($/MW) c($/MW2)   E    f Pmin Pmax 
1 240 7 0.007 300 0.031 100 500 
2 200 10 0.0095 200 0.042 50 200 
3 220 8.5 0.009 150 0.063 80 300 
4 200 11 0.009 150 0.063 50 150 
5 220 10.5 0.008 150 0.063 50 200 
6 190 12 0.0075 150 0.063 50 120 

 
The transmission power losses are expressed in terms of 

Kron’s loss formula. The losses coefficients ijB , oiB , and ooB
are given as follows 

 

ij

0.0017 0.0012 0.0007 0.0001 0.0005 0.0002
0.0012 0.0014 0.0009 0.0001 0.0006 0.0001
0.0007 0.0009 0.0031 0 0.001 0.0006

B
0.0001 0.0001 0 0.0024 0.0006 0.0008
0.0005 0.0006 0.001 0.0006 0.0129 0.0002
0.0002 0.000

− − −
− −
− −

=
− − −
− − − − −
− − 1 0.0006 0.0008 0.0002 0.015

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

− − −⎢ ⎥⎣ ⎦
Bo=0.001*[-0.3908 -0.1297 0.7047 0.0591 0.2161  -0.6635]. Boo=0.0056. 

 
The optimal generated power for different methods are 

given in Table II for active load demand (PD=1263 MW). The 
Q-Learning with eligibility traces achieved the lowest fuel 
generation cost (15452 $/h) compared to GA [24], RGA [25], 
and PSO [14] as shown in Table II. For active load demand 
(PD=1262 MW) Q-Learning with eligibility traces achieved 
the lowest fuel generation cost (15439 $/h) compared to BBO 
[26], and BGA [14] and it was the same as IWD [27] as shown 
in Table III. Moreover, results for Q-Learning with eligibility 
traces are given in Table IV for active load demands (1080 
MW, 1100 MW, 1220 MW, and 1240 MW). 

 
TABLE II 

COMPARISON BETWEEN Q-LEARNING WITH ELIGIBILITY TRACES AND OTHER 
METHODS WITH TRANSMISSION LOSSES FOR ACTIVE LOAD DEMAND 

(PD=1263 MW) (WITHOUT VALVE EFFECT LOADING POINT) 
Unit GA [24] RGA[25] PSO  [14] Q-Learning 
P1(MW) 474.807 420.2342 432.9639 448.9480 
P2(MW) 178.636 199.4412 170.5198 173.5954 
P3(MW) 262.209 263.7234 261.9009 266.2876 
P4(MW) 134.283 120.0030 116.9111 127.1212 
P5(MW) 151.904 167.2319 190.4102 174.3471 
P6(MW) 74.181 105.1250 103.4931 85.9702 

Losses 13.022 13.2627 13.142 13.274 
T. G. P. 1276.03 1275.8 1276.2 1276.3 
T. G. C.($/h) 15459 15461 15458.56 15452 

 
TABLE III 

COMPARISON BETWEEN Q-LEARNING WITH ELIGIBILITY TRACES AND OTHER 
METHODS WITH TRANSMISSION LOSSES FOR ACTIVE LOAD DEMAND 

(PD=1262 MW) (WITHOUT VALVE EFFECT LOADING POINT) 
Unit BBO [26] BGA[14] IWD[27] Q-Learning 
P1(MW) 447.3997 447.0877 450.13 448.9601 
P2(MW) 173.2392 173.1887 173.62 173.4225 
P3(MW) 263.3163 263.9242 260.61 266.0719 
P4(MW) 138.0006 138.0607 139.49 126.9164 
P5(MW) 165.4104 165.5524 159.7 174.1355 
P6(MW) 87.07979 86.6289 90.51 85.7446 

Losses 12.44 12.4465 12.05 13.2554 
T. G. P. 1274.44 1274.443 1274.05 1275.3 
T. G. C. ($/h) 15443 15443 15439 15439 

 
TABLE IV 

Q-LEARNING WITH ELIGIBILITY TRACES FOR DIFFERENT ACTIVE LOAD 
DEMANDS WITH VALVE POINT LOADING EFFECT AND TRANSMISSION LOSSES 

Unit 1080 1100 1220 1240 
P1 402.8731 405.0605 406.3627 404.3976 
P2 121.3979 125.5647 197.3124 125.0499 
P3 276.2484 281.8378 281.7767 279.2372 
P4 96.3890 99.1161 99.0728 147 
P5 97.7152 148 148.9676 198.4426 
P6 95.4898 51.1164 99.2119 98.8735 
Losses 10.1128 10.7016 12.6945 13.0051 
T. G. P. 1090.1 1110.7 1232.7 1253 
T. G. C. ($/h) 13239 13383 14991 15244 

B. Case Study 2 
In this case, Q-learning with eligibility traces algorithm 

results is compared to other published results for 10 generating 
units. The fuel cost coefficients and generation capacities of 
the 10 generating units with valve point loading effect and 
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multiple fuel options are given in Table V and Table VI. The 
simulation parameters (discrete step=7 MW, 5

max 3*10trail = , 
0.1ε = , and 0.01μ = ). 

 
TABLE V 

CASE STUDY 2: FUEL COST COEFFICIENTS, VALVE POINT LOADING EFFECT, 
AND FUEL TYPES FOR 10 GENERATING UNITS 

Unit Fuel    a     b    c     e  f 

1 
1 26.97 -0.3975 0.002176 0.027 -4 
2 21.13 -0.3059 0.001861 0.0211 -3.1 

2 
1 1.865 -0.03988 0.001138 0.0019 -0.4 
2 13.65 -0.198 0.00162 0.0137 -2 
3 118.4 -1.269 0.004194 0.1184 -13 

3 
1 39.79 -0.3116 0.001457 0.0398 -3.1 
2 -2.875 0.03389 0.0008035 -0.003 0.3 
3 -59.14 0.4864 0.00001176 -0.059 4.9 

4 
1 1.983 -0.03114 0.001049 0.002 -0.3 
2 52.85 -0.6348 0.002758 0.0529 -6.3 
3 266.8 -2.338 0.005935 0.2668 -23 

5 
1 13.92 -0.08733 0.001066 0.0139 -0.9 
2 99.76 -0.5206 0.001597 0.0998 -5.2 
3 -53.99 0.4462 0.0001498 -0.054 4.5 

6 
1 1.983 -0.03114 0.001049 0.002 -0.3 
2 52.85 -0.6348 0.002758 0.0529 -6.3 
3 266.8 -2.338 0.005935 0.2668 -23 

7 
1 18.93 -0.1325 0.001107 0.0189 -1.3 
2 43.77 -0.2267 0.001165 0.0438 -2.3 
3 -43.35 0.3559 0.0002454 -0.043 3.6 

8 
1 1.983 -0.03114 0.001049 0.002 -0.3 
2 52.85 -0.6348 0.002758 0.0529 -6.3 
3 266.8 -2.338 0.005935 0.2668 -23 

9 
1 14.23 -0.01817 0.0006121 0.0142 -0.2 
2 88.53 -0.5675 0.001554 0.0885 -5.7 
3 14.23 -0.01817 0.0006121 0.0142 -0.2 

10 
1 13.97 -0.09938 0.001102 0.014 -1 
2 46.71 -0.2024 0.001137 0.0467 -2 
3 -61.13 0.5084 0.00004164 -0.061 5.1 

 
TABLE VI 

CASE STUDY 2: FUEL OPTIONS AND GENERATION UNITS’ CAPACITIES 
Unit Pmin Fuel P1  P2 Fuel Pmax 

1 100 

Fuel 
1 

196 Fuel 2 250 
2 50 114 

Fuel 
2 

157 

Fuel 3 

230 
3 200 332 388 500 
4 99 138 200 265 
5 190 338 407 490 
6 85 138 200 265 
7 200 331 391 500 
8 99 138 200 265 
9 130 213 370 440 
10 200 362 407 490 

 
For active load demand (PD=2700 MW), the Q-Learning 

with eligibility traces algorithm achieved the lowest fuel 
generation cost (624.3116 $/h) compared to HM[28], 
HNN[29], AHNN[30], EP [31], CGA-MU[22], IGA-MU [22], 
DE[32], RGA[4], PSO [32], and GA [33] as shown in Table 
VII. The optimal generated powers and the respective fuel 

types for active load demand (PD=2700 MW) are given in 
Table VIII. 

 
TABLE VII 

COMPARISON BETWEEN Q-LEARNING WITH ELIGIBILITY TRACES AND OTHER 
METHODS FOR ACTIVE LOAD DEMAND (PD=2700 MW) 

Method Cost, $/h Method Cost, $/h 
HM [28] 625.18 DE [32] 624.5146 
HNN[29] 626.12 RGA [4] 624.5081 

AHNN [30] 626.24 PSO [32] 624.5074 
EP [31] 626.26 GA [33] 624.5050 

CGA-MU[22]  624.7193 
Q-Learning 624.3116

IGA-MU [22] 624.5178 
 

TABLE VIII 
OPTIMAL GENERATED POWER AND RESPECTIVE FUEL OPTIONS BY Q-

LEARNING WITH ELIGIBILITY TRACES FOR (PD=2700 MW) 
Unit P (MW) Fuel Unit P (MW) Fuel 
1 219.0810 2 6 240.2003 3 
2 211.4611 3 7 288.2319 1 
3 282.1781 1 8 239.3739 3 
4 239.8034 3 9 426.4890 3 
5 279.5825 1 10 273.5989 1 
Total Generation (MW) 2700 
Total Cost ($/h) 624.3116 

C. Case study 3: 
In this case, Q-learning with eligibility traces are compared 

to other published results for 15 generating thermal units, 
whose fuel cost characteristics and generation capacities are 
given in Table IX. Moreover, the power system transmission 
losses are considered. The B loss formula is used to express 
the transmission losses and the losses coefficients are given in 
the Appendix. The simulation parameters (discrete step=5 
MW, 5

max 10trail = , 0.1ε = , and 0.01μ = ). 
 

TABLE IX 
CASE STUDY 3: FUEL COST COEFFICIENTS AND GENERATION CAPACITIES FOR 

15 GENERATING UNITS 
Unit   a     b      c Pmin Pmax 

1 671 10.1000 0.000299 150.0000 455.0000 
2 574 10.2000 0.000183 150.0000 455.0000 
3 374 8.8000 0.001126 20.0000 130.0000 
4 374 8.8000 0.001126 20.0000 130.0000 
5 461 10.4000 0.000205 150.0000 470.0000 
6 630 10.1000 0.000301 135.0000 460.0000 
7 548 9.8000 0.000364 135.0000 465.0000 
8 227 11.2000 0.000338 60.0000 300.0000 
9 173 11.2000 0.000807 25.0000 162.0000 
10 175 10.7000 0.001203 25.0000 160.0000 
11 186 10.2000 0.003586 20.0000 80.0000 
12 230 9.9000 0.005513 20.0000 80.0000 
13 225 13.1000 0.000371 25.0000 85.0000 
14 309 12.1000 0.001929 15.0000 55.0000 
15 323 12.4000 0.004447 15.0000 55.0000 

 
Q-Learning algorithm achieved the lowest fuel generation 

cost (32676$/h) for active load demand (PD=2630 MW) 
compared to PSO [34], GA[34], SPSO [11], PC_PSO [11], 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:6, No:7, 2012

736

 

 

SOH-PSO [11], [34], MTS [33], SA [35], SCA [35], APSO 
[36], CPSO [34], BF [34], MDE [34], TSA [33], and DSPSO-
TSA [33] as shown in  

TABLE XI shows the optimal generated power calculated 
by Q-Learning with eligibility traces for active load demand 
(PD=2630 MW). 

 
TABLE X 

COMPARISON BETWEEN Q-LEARNING WITH ELIGIBILITY TRACES AND OTHER 
METHODS FOR ACTIVE LOAD DEMAND (PD= 2630 MW) 

Method Cost, $/h Method Cost, $/h 
PSO [34] 32858 SCA [35] 32867.025 
GA [34] 33063.54 APSO [36] 32742.77 
SPSO [11] 32798.69 CPSO [34] 32834 
PC_PSO [11] 32775.36 BF [34] 32784.5 
SOH-PSO[34][11]  32751.39 MDE [34] 32704.9 
MTS [33] 32796.13 TSA [33] 32917.87 
SA [35] 32786.4 DSPSO-TSA [33] 32715.06 
SCA [35] 32867.025 Q-Learning 32676

 

 
 
 
 
 
 
 

 
TABLE XI 

OPTIMAL GENERATED POWER AND LOSSES BY Q-LEARNING WITH 
ELIGIBILITY TRACES (PD=2630 MW) 

Unit P (MW) Unit P (MW) Unit P (MW) 
1 403.7229 6 427.4191 11 45.2892 
2 426.7635 7 459.4340 12 55 
3 124.6209 8 60 13 25 
4 121.7764 9 25 14 15 
5 434.7174 10 25 15 16.6673 

Total Genration (MW) 2665.4 Loses 
(MW) 35.4102 

Total cost ($/h) 32676 

VI. CONCLUSION 
Q-Learning is used to solve the Economic Dispatch 

problem with non-convex cost function. Eligibility traces are 
used to speed up the learning process. The study cases 
included Economic Dispatch problems with valve point 
loading effect, multiple fuel options, and transmission losses. 
Simulation results showed that Q-Learning with eligibility 
traces achieved the lowest fuel generation cost compared to 
some Heuristic optimization techniques. The importance of 
the developed algorithm is that once the learning process is 
complete, the optimal generated power distribution for any 
active load demand can be retrieved without any addition 
efforts unlike other optimization techniques. 

APPENDIX 
The B loss coefficients are given as follows 

[0.0014  0.0012  0.0007 -0.0001 -0.0003 
-
0.0001 -0.0001 -0.0001 -0.0003 -0.0005 -0.0003 -0.0002  0.0004  0.0003 -0.0001 

 0.0012  0.0015  0.0013  0.0000 -0.0005 
-
0.0002  0.0000  0.0001 -0.0002 -0.0004 -0.0004  0.0000  0.0004  0.0010 -0.0002 

 0.0007  0.0013  0.0076 -0.0001 -0.0013  0.0009 -0.0001  0.0000 -0.0008 -0.0012 -0.0017  0.0000 -0.0026  0.0111 -0.0028 

-0.0001  0.0000 -0.0001  0.0034 -0.0007 
-
0.0004  0.0011  0.0050  0.0029  0.0032 -0.0011  0.0000  0.0001  0.0001 -0.0026 

-0.0003 -0.0005 -0.0013 -0.0007  0.0090  0.0014 -0.0003 -0.0012 -0.0010 -0.0013  0.0007 -0.0002 -0.0002 -0.0024 -0.0003 

-0.0001 -0.0002 -0.0009 -0.0004  0.0014  0.0016  0.0000 -0.0006 -0.0005 -0.0008  0.0011 -0.0001 -0.0002 -0.0017 0.0003 

-0.0001  0.0000 -0.0001  0.0011 -0.0003  0.0000  0.0015  0.0017  0.0015  0.0009 -0.0005  0.0007  0.0000 -0.0002 -0.0008 

-0.0001  0.0001  0.0000  0.0050 -0.0012 
-
0.0006  0.0017  0.0168  0.0082  0.0079 -0.0023 -0.0036  0.0001  0.0005 -0.0078 

-0.0003 -0.0002 -0.0008  0.0029 -0.0010 
-
0.0005  0.0015  0.0082  0.0129  0.0116 -0.0021 -0.0025  0.0007 -0.0012 -0.0072 

-0.0005 -0.0004 -0.0012  0.0032 -0.0013 
-
0.0008  0.0009  0.0079  0.0116  0.0200 -0.0027 -0.0034  0.0009 -0.0011 -0.0088 

-0.0003 -0.0004 -0.0017 -0.0011  0.0007  0.0011 -0.0005 -0.0023 -0.0021 -0.0027  0.0140  0.0001  0.0004 -0.0038 0.0168 

-0.0002  0.0000  0.0000  0.0000 -0.0002 
-
0.0001  0.0007 -0.0036 -0.0025 -0.0034  0.0001  0.0054 -0.0001 -0.0004 0.0028 

 0.0004  0.0004 -0.0026  0.0001 -0.0002 
-
0.0002  0.0000  0.0001 0.0007  0.0009  0.0004 -0.0001  0.0103 -0.0101 0.0028 

 0.0003  0.0010  0.0111  0.0001 -0.0024 
-
0.0017 -0.0002  0.0005 -0.0012 -0.0011 -0.0038 -0.0004 -0.0101  0.0578 -0.0094 

-0.0001 -0.0002 -0.0028 -0.0026 -0.0003  0.0003 -0.0008 -0.0078 -0.0072 -0.0088  0.0168  0.0028  0.0028 -0.0094 0.1283] 
 
Bo=[-0.0001   -0.0002    0.0028   -0.0001    0.0001   -0.0003   -0.0002   -0.0002    0.0006    0.0039   -0.0017    0   -0.0032    0.0067   -0.0064], Boo=0.0055. 
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