
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:1, 2010

42

PZ: A Z-based Formalism for Modeling
Probabilistic Behavior

Hassan Haghighi
Faculty of Electrical and Computer Engineering,

Shahid Beheshti University,
Tehran, Iran

h haghighi@sbu.ac.ir

Abstract—Probabilistic techniques in computer programs are be-
coming more and more widely used. Therefore, there is a big
interest in the formal specification, verification, and development
of probabilistic programs. In our work-in-progress project, we are
attempting to make a constructive framework for developing prob-
abilistic programs formally. The main contribution of this paper
is to introduce an intermediate artifact of our work, a Z-based
formalism called PZ, by which one can build set theoretical models of
probabilistic programs. We propose to use a constructive set theory,
called CZ set theory, to interpret the specifications written in PZ.
Since CZ has an interpretation in Martin-Löf’s theory of types, this
idea enables us to derive probabilistic programs from correctness
proofs of their PZ specifications.

Keywords—formal specification, formal program development,
probabilistic programs, CZ set theory, type theory.

I. INTRODUCTION

METHODS for modelling probabilistic programs go back
to the early work in [3] introducing probabilistic

predicate transformers as a framework for reasoning about
imperative probabilistic programs. From that time on, a wide
variety of logics have been developed as possible bases for
verifying probabilistic systems (A survey of this work can
be found in [8]); the expectation transformer approach in
particular integrates traditional assertional-styles of program
verification with probability. An expectation is a generalized
predicate suitable for expressing quantitative properties such
as the probability of achieving a postcondition.

In [9], [11], and [12], Morgan et al. have replaced the pro-
gramming logic of weakest preconditions for Dijkstra’s GCL
(Guarded Command Language) by a new logic called greatest
pre-expectation. In this way, probabilistic nondeterminism is
introduced into GCL and thus a means is provided with
which probabilistic programs can be rigorously developed and
verified. Although the semantics has been designed to work at
the level of program code, it has an in-built notion of program
refinement which encourages a prover to move between vari-
ous levels of abstraction. Unlike many publications of Morgan
et al. that handle probabilistic choice in imperative settings,
there are several studies considering probabilistic choice in
functional languages; for example, see [1] and [14].

As far as we know, much of the work in the literature, such
as the above mentioned work, has focused on the verification
of probabilistic programs; however, besides a considerable
trend in verifying probabilistic programs, there is a big interest

Probabilistic specification in PZ

Specification in conventional Z

Formal Specification

Specification in Martin-Löf's theory of types

Interpretation

Prove the correctness

Functional probabilistic program

Interpretation

Fig. 1. The constructive framework for developing probabilistic programs

in the formal specification and development of such programs.
In our work-in-progress project, we are attempting to make
a constructive framework for deriving probabilistic programs
from correctness proofs of their formal specifications. In Fig
1., we have shown the architecture of this framework.

In this framework, we will use a Z-based formalism [15],
[18], called PZ (Probabilistic Z), to write specifications of
probabilistic programs. Then we will interpret the resulting PZ
specifications into their counterparts in the Z notation itself.
Of course, to interpret the obtained specifications in Z, we
will use a constructive set theory, called CZ set theory [10],
instead of the classical set theory Z. We choose CZ since
it has an interpretation [10] in Martin-Löf’s theory of types
[7]; this enables us to translate our Z-style specification of
a probabilistic program into its counterpart in Martin-Löf’s
theory of types and then drive a functional program from a
correctness proof of the resulting type theoretical specification.
In this way, we will provide a completely formal way for
developing probabilistic programs.

The main contribution of the current paper is to introduce
PZ and show how it can be interpreted in conventional Z.
We give an interpretation of PZ that can constructively lead
to programs preserving the initially specified probabilistic
behavior. To build PZ, we first augment the Z notation with a
new notion of operation schemas, called probabilistic schema,
intended to specify probabilistic operations. Also, since the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:1, 2010

43

schema calculus operations of Z will no longer work on
probabilistic schemas, we define a new set of operators for the
schema calculus operations negation, conjunction, disjunction,
existential quantifier, universal quantifier, and sequential com-
position which properly work on probabilistic schemas as well
as ordinary operation schemas. Augmenting Z with the notion
of probabilistic schemas and new operations for the schema
calculus results in the PZ formalism.

The paper is organized in the following way. In section
2, we give a brief overview of the CZ set theory and its
interpretation in Martin-Löf’s theory of types. Of course, in
order to follow the main issue of the paper, i.e. modeling
probabilistic behavior, we omit most of technical details in
the program development stage, specially when transforming
CZ specifications into type theory and using type theoretical
rules for extracting functional programs from resulting type
theoretical specifications. Thus, readers who are not familiar
with type theory or are not interested in following the technical
details of CZ and its interpretation in type theory can skip
section 2.

In section 3, we begin to introduce the PZ notation by
defining the notion of probabilistic schemas and showing how
they can be used to model probabilistic operations. We also
give an interpretation of probabilistic schemas in conventional
Z. Since the proposed interpretation of probabilistic schemas
is not sufficient for the purpose of program construction,
in section 4 we give a new interpretation of probabilistic
schemas leading constructively to functional programs that
can implement the initially specified probabilistic behavior.
In section 5, we show that the operations of the Z schema
calculus will no longer work on probabilistic schemas. We
thus introduce a new set of schema calculus operations into
PZ that can be applied to probabilistic schemas as well as
ordinary operation schemas. The last section is devoted to the
conclusion and directions for future work.

II. PRELIMINARIES

To employ both the facilities of Z as a specification medium
and the abilities of constructive theories in program develop-
ment, in [10], the CZ set theory has been introduced which
provides constructive interpretations for the specification con-
structs of the Z notation. Also, the CZ set theory has been
interpreted in Martin-Löf’s theory of types. Since we map all
the new specification constructs of PZ into Z itself, we can still
use the interpretation of CZ in type theory to extract functional,
probabilistic programs from their formal specifications written
in PZ. In this section, we give a brief description of the CZ
set theory and its interpretation in type theory.

A. CZ Set Theory

The constructive set theory CZ has been introduced in [10]
to provide constructive interpretations for Z specifications.
All proof rules of the classical set theory ZF (Zermelo-
Fraenkel) can be used in CZ except classical negation since
this rule is derived from the axiom of excluded middle. The
axioms of CZ shadow those of the classical theory; indeed,
most axioms remain intact. However, three axioms including

separation, foundation, and power set have been modified to
satisfy constructive scruples. Also, modifying the power set
axiom yields a new axiom concerning the cartesian product
set constructor. To indicate the constructive nature of CZ, we
give the modified version of the power set axiom here. Other
axioms of CZ can be found in [10].

decidable power set: ∀x · ∃ z · ∀ y · y ∈ z ⇔ y � x
In the above axiom, the relation y � x indicates that y is a
decidable subset of x. y � x iff y ⊆ x and ∀u ∈ x · u ∈
y ∨¬(u ∈ y). In the Z (ZF without the axiom of replacement
[10]) set theory, the power set is not restricted: any kind
of subset is permitted, not just the decidable ones. It is the
most important difference between Z and CZ set theories.
CZ only permits subsets which can be constructed in the
sense that we can determine their membership relative to their
superset. Intuitively, the decidable subsets can be identified
with decision procedures which test for membership.

The CZ set theory can be considered as a constructive
interpretation of the Z language. Specially, replacing instances
of the power set by decidable ones provides a way for deter-
mining whether specifications specify decidable problems. In
[10], it has been shown that the CZ set theory is enough for the
purposes of program specification in the style of Z. In other
words, the common set theoretical constructions employed in
Z can be interpreted using CZ. In the next subsection, we show
how one can transform CZ constructs into their counterparts
in type theory.

B. Interpretation of CZ in Martin-Löf’s Theory of Types

In [10], a model ν =< V, ∈̇, =̇ > of CZ in Martin-Löf’s
theory of types has been built in which each set is associated
with a pair consisting of a base type together with a family
of types, i.e., its elements. In the model ν, V ∼= Wx ∈ U.x,
where U is the universe whose elements are themselves types,
and W is the type constructor for recursive data types [13].
The general form of elements of recursive types is that each
node is built from a certain collection of predecessors of the
same type. Suppose that we have a type A of sorts of node.
For a particular kind of node a ∈ A, we specify what form the
predecessors of the node take by supplying a type B(a), which
we can think of as the type of names of predecessors places.
The collection of predecessors of the node a is determined by
a function from B(a) to the recursive type in question. The
type thus constructed is Wx ∈ A.B whose elements denoted
by sup(a, f), where a ∈ A and f is a function from B[a] to
Wx ∈ A.B. According to an important property of W , each
α ∈ V can be split into two components α− and α̃ such that
α = sup(α−, α̃) where α− ∈ U and α̃ ∈ α− ⇒ V .

To complete the description of the model ν, we need to
define two binary relations =̇ and ∈̇:
α =̇β ∼= (Πx ∈ α− · α̃ x ∈̇β) ⊗ (Πx ∈ β− · β̃ x ∈̇α)
α ∈̇β ∼= Σx ∈ β− · β̃ x =̇α

In the above definition, the equality between sets is explained
according to the extensional equality in set theories, stated by
the extensionality axiom. Using the model ν, in [10], it has
been given the type theoretical interpretations of the empty set
and the set of natural numbers as two basic sets of CZ. Also,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:1, 2010

44

the function ξ has been defined which assigns elements of V
to well-formed and atomic formulas of CZ as follows:

[Ω]ξ = Ω
[x = y]ξ = ξ(x) =̇ ξ(y)
[x ∈ y]ξ = ξ(x) ∈̇ ξ(y)
[φ ∧ ψ]ξ = [φ]ξ ⊗ [ψ]ξ
[φ ∨ ψ]ξ = [φ]ξ ⊕ [ψ]ξ
[φ⇒ ψ]ξ = [φ]ξ ⇒ [ψ]ξ
[∀x ∈ y · φ]ξ = Πα ∈ (ξ(y))− · [φ]ξ[(ξ(y))̃ α/x]

[∀x · φ]ξ = Πα ∈ V · [φ]ξ[α/x]

[∃x ∈ y · φ]ξ = Σα ∈ (ξ(y))− · [φ]ξ[(ξ(y))̃ α/x]

[∃x · φ]ξ = Σα ∈ V · [φ]ξ[α/x]

The translation given in [10] is not still sufficient to transform a
Z specification into a type theoretical one: we need to interpret
schemas, as a distinctive feature of the Z notation, in type
theory. In [4], we presented a solution to handle Z schemas.
Here, we only mention our solution for operation schemas.
Suppose that an operation schema has the following general
form:
Op Schema ∼= [x1 ∈ A1; ...; xm ∈ Am;

y1 ∈ B1; ...; yn ∈ Bn | φ],
where xi(i : 1..m) are input or before state variables, yj(j :
1..n) are output or after state variables, and φ denotes the pre-
and postconditions of the operation being specified. Now we
extend the function ξ to translate Op Schema into an element
of V :

[Op Schema]ξ = (Πα1 ∈ (ξ(A1))−, ..., αm ∈ (ξ(Am))−·
Σβ1 ∈ (ξ(B1))−, ..., βn ∈ (ξ(Bn))−·
[φ]ξ)[(ξ(Ai))̃αi/xi][(ξ(Bj))̃βj/yj]

Now, given a specification in Z, we can use the function
ξ to translate the specification into a type in type theory and
then extract a program (a term in type theory) which meets
the specification (more precisely, meets its representation in
type theory).

III. PROBABILISTIC SCHEMA

In this section, we introduce the PZ notation as a tool to
specify probabilistic programs. To achieve this goal, we first
define the notion of probabilistic schema by which one can
simply model probabilistic operations.

Definition 3.1 The general form of probabilistic schemas is
as follows:
P Schema ∼= [x1 ∈ A1; ...; xm ∈ Am;
y1 ∈ B1; ...; yn ∈ Bn | φ ∧ (p1 : φ1; ...; pl : φl)],

where xi(i : 1..m) are input or before state variables,
and yj(j : 1..n) are output or after state variables. Some
part of the schema predicate, shown as φ, specifies those
functionalities of the operation that are non-probabilistic; it
specially includes the preconditions of the operation being
specified. The remainder of the schema predicate has been
separated into l predicates φ1, ..., φl; pk ∈ R(k : 1..l) are
probabilities and by the notation pk : φk, we want to say that

the predicate φk holds with probability pk. In other words,
the relationship between the variables of P Schema is stated
by φk with probability pk. For a given probabilistic schema,
we assume that p1 + ... + pl = 1. We also assume that for
each k : 1..l, pk ≥ 0. Notice that in the predicate part of
P Schema, l may be equal to 0. In other words, ordinary
operation schemas are considered as special cases of proba-
bilistic schemas. �

In the next example, we use the notion of probabilistic
schema to specify a simple, probabilistic operation.
Example 3.2 A fly moves along a straight line in unit
increments. At each time period, it moves one unit to the left
with probability 0.3, one unit to the right with probability 0.3,
and stays in place with probability 0.4, independently of the
past history of movements. The straight line has m units, and
a spider is lurking at positions 1 and m: if the fly lands there,
it is captured by the spider, and the process terminates. By the
following probabilistic schema, we specify the movement of
the fly when moving from one of the positions 2, ...,m−1. In
this schema, x? and y! are the current and the next positions
of the fly, respectively. Also, m? is the number of units in the
straight line.
P FlyMove ∼= [x?,m?, y! ∈ N |
m? > 2 ∧ x? > 1 ∧ x? < m?∧
(0.3 : y! = x?−1; 0.3 : y! = x?+1; 0.4 : y! = x?)] �
Now, we present a way to transform probabilistic schemas

into ordinary operation schemas of Z. The next definition
introduces a function []P that maps probabilistic schemas into
ordinary operation schemas of Z. We will show later that such
an interpretation of probabilistic schemas is not enough for
the purpose of constructive program development. Therefore,
in section 4, we change this interpretation to provide a
constructive way for extracting probabilistic programs from
their PZ specifications.

Definition 3.3 Recall P Schema, given in definition 3.1
as the general form of probabilistic schemas. If for all real
numbers p1, ..., pl, the maximum number of digits to the right
of the decimal point is d, then we have:

if P Schema is an ordinary operation schema (i.e., when
l = 0), then [P Schema]P = P Schema;
otherwise, [P Schema]P ∼= [x1 ∈ A1; ...; xm ∈ Am;
y1 ∈ B1; ...; yn ∈ Bn |
φ ∧ (∃ p ∈ N · ((0 ≤ p < p1 ∗ 10d ∧ φ1)∨
(p1 ∗ 10d ≤ p < (p1 + p2) ∗ 10d ∧ φ2) ∨ ...∨
((p1 + ...+ pl−1) ∗ 10d ≤ p < (p1 + ...+ pl) ∗ 10d ∧ φl)))]

[]P behaves as an identity function when applied to an ordinary
operation schema, i.e., when l = 0; otherwise, an auxiliary
variable p ∈ N is introduced into the predicate part helping
us to implement the probabilistic choice between l predicates
φ1, ..., φl. The variable p ranges nondeterministically from 0
to 10d − 1, and the length of each allowable interval of its
values determines how many times (of 10d times) a predicate
φk(k : 1..l) holds (or in fact describes the relationship between
the schema variables). More precisely, in pk∗10d cases per 10d

times, a predicate φk(k : 1..l) determines the behavior of the
final program. In the next example, we apply the above defined

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:1, 2010

45

i

prog (N, N. N. (2 1 (N.

((0 3 = -1) (3 6 = +1) (6 10 =)))))

i
N, N

Hyp

N, N

v N q (1[v/])

prog = (,) t t = (v, q)

t

N. (2 1 (N. ((0 3 = -1) (3 6 = +1) (6 10 =))))

1 2 1 (N. ((0 3 = -1) (3 6 = +1) (6 10 =)))

q1 (2 1)

q = (q1, q2) q2 = (w, q3)
q4 = (q5, q6)q3 = inl(q4)

i

2 N. ((0 3 v = -1) (3 6 v = +1) (6 10 v =))

q2 2

3 (0 3 v = -1) (3 6 v = +1) (6 10 v =)

i

Hyp

w N q3 (3[w/])

q4 (0 w 3 v = -1)
i1

i
q5 (0 w 3) q6 (v = -1)

Math
w = 0

Hyp

Hyp

Fig. 2. Program extraction from the probabilistic schema P FlyMove.

interpretation to the probabilistic schema P FlyMove, given
in example 3.2. We then use the interpretation of CZ in
type theory to extract a functional program from the resulting
specification.
Example 3.4 We first use the function []P to transform
P FlyMove into an ordinary operation schema of Z as
follows:

[P FlyMove]P ∼= [x?,m?, y! ∈ N |
m? > 2 ∧ x? > 1 ∧ x? < m? ∧ (∃ p ∈ N·
((0 ≤ p < 3 ∧ y! = x? − 1) ∨ (3 ≤ p < 6 ∧ y! = x? + 1)∨
(6 ≤ p < 10 ∧ y! = x?)))]

By the above schema, p nondeterministically takes one of 10
values 0, 1, ..., 9. For three (i.e., in 3 cases per 10) possible
values of p (i.e., 0, 1, and 2), it has been specified that the
fly moves one unit to the left. For other three (i.e., in 3 cases
per 10) possible values of p (i.e., 3, 4, and 5), it has been
described that the fly moves one unit to the right. Finally,
for the remaining (i.e., in 4 cases per 10) possible values
of p (i.e., 6, 7, 8, and 9), it has been indicated that the fly
stays in place. Thus, it seems that if one makes a uniform
choice to select one of the values 0, 1, ..., 9 for p, s/he will
be provided with a correct implementation of P FlyMove.
Nevertheless, we now show that the schema [P FlyMove]P

cannot constructively lead to a program implementing the
probabilistic behavior specified by P FlyMove.

To extract a program from a correctness proof of
[P FlyMove]P , we first use the function ξ (see subsection
2.2) to translate the operation schema [P FlyMove]P into
type theory. The resulting type theoretical specification is as
follows:

Πα ∈ N, β ∈ N · Σγ ∈ N · (β>̇2 ⊗ α>̇1 ⊗ α<̇β⊗
(Σδ ∈ N · ((0≤̇δ<̇3 ⊗ γ=̇α− 1) ⊕ (3≤̇δ<̇6 ⊗ γ=̇α+ 1)⊕
(6≤̇δ<̇10 ⊗ γ=̇α)))),

where α, β, γ, and δ correspond to the variables x?, m?, y!,
and p existing in [P FlyMove]P , respectively. Also, b ≤̇ a
and b <̇ a are abbreviations for Σρ ∈ N·b+ρ=̇a and Σρ ∈ N1 ·
b+ ρ=̇a, respectively. Now we can use the inference rules of
type theory to prove the correctness of the above specification

(or in other words, construct an object of its corresponding
type). This object can be viewed as a program satisfying the
schema P FlyMove. A part of such a proof is shown in Fig.
2. At the end of the proof, the following functional program
has been obtained:
prog = λ(α, β).(α− 1, q),

where q is an intermediate proof object in the proof tree (see
Fig. 2). For each valuation of α, β ∈ N, the program prog
always provides the value α − 1 for γ, provided that β > 2,
α > 1, and α < β. In this way, prog cannot implement the
probabilistic behavior specified by P FlyMove: according to
prog, the fly always moves one unit to the left, provided that
it does not move from any of the positions 1 and m. Notice
that if we select another path in the proof tree (i.e., if we
prove the correctness of (3≤̇δ<̇6⊗ γ=̇α+ 1) or (6≤̇δ<̇10⊗
γ=̇α), rather than (0≤̇δ<̇3⊗γ=̇α−1)), we will again obtain
a program that cannot implement the probabilistic behavior
specified by P FlyMove. The problem is due to the fact that
in the proof tree, we can replace each of the variables γ and δ
by only one of the possible values. This occurs when we use
the introduction rule for dependent sum (Σi); see two circled
Σi in Fig. 2. As it can be seen in the proof tree, this finally
results in the single value 0 for δ and the single value α − 1
for γ. �

As it was shown in example 3.4, using the function []P

to interpret the probabilistic schema P FlyMove and then
proving the correctness of the resulting specification did not
constructively lead to a probabilistic program being enable
to implement the probabilistic behavior initially specified by
P FlyMove. We can investigate this problem in the general
case by applying []P to the schema P Schema, introduced
earlier in definition 3.1 as the general form of probabilistic
schemas:

[P Schema]P ∼= [x1 ∈ A1; ...; xm ∈ Am;
y1 ∈ B1; ...; yn ∈ Bn |
φ ∧ (∃ p ∈ N · ((0 ≤ p < p1 ∗ 10d ∧ φ1) ∨ ...∨
((p1 + ...+ pl−1) ∗ 10d ≤ p < (p1 + ...+ pl) ∗ 10d ∧ φl)))]

By the function ξ, presented in subsection 2.2, the following
equality holds:

[[P Schema]P]ξ =
Πα1 ∈ (ξ(A1))−, ..., αm ∈ (ξ(Am))−·
Σβ1 ∈ (ξ(B1))−, ..., βn ∈ (ξ(Bn))−·
([φ ∧ (∃ p ∈ N · ((0 ≤ p < p1 ∗ 10d ∧ φ1) ∨ ...∨
((p1 + ...+ pl−1) ∗ 10d ≤ p < (p1 + ...+ pl) ∗ 10d∧
φl)))]ξ)[(ξ(Ai))̃αi/xi][(ξ(Bj))̃βj/yj],

where [[P Schema]P]ξ is the type theoretical equivalent of
[P Schema]P . Using the conventions
A′

i = (ξ(Ai))− (i : 1..m), B′
j = (ξ(Bj))− (j : 1..n), and

φ′ = ([φ ∧ (∃ p ∈ N · ((0 ≤ p < p1 ∗ 10d ∧ φ1) ∨ ...∨
((p1 + ...+ pl−1) ∗ 10d ≤ p < (p1 + ...+ pl) ∗ 10d∧
φl)))]ξ)[(ξ(Ai))̃αi/xi][(ξ(Bj))̃βj/yj],

[[P Schema]P]ξ is equal to the following type in type theory:
Πα1 ∈ A′

1, ..., αm ∈ A′
m · Σβ1 ∈ B′

1, ..., βn ∈ B′
n · φ′

We can now derive a program from a correctness proof of
the above type theoretical specification. An initial part of such
a proof is shown in Fig. 3. The extracted program is as follows:
prog = λ(α1, ..., αm) · ((v1, ..., vn), q),

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:1, 2010

46

i

prog (1 1, …, m m.

1 1,…, n n.)

i
t (1 1, …, n n.)

Hyp

1 1, …, m m

v1 1, …, vn n q ([v1/ 1]…[vn/ n])

prog = (1, …, m) t

t = ((v1, …, vn), q)

Fig. 3. Program extraction from the probabilistic schema P Schema.

where q is the proof object of φ′[v1/β1]...[vn/βn]. For
each valuation of α1 ∈ A′

1, ..., αm ∈ A′
m, this program

always produces the single n-ary (v1, ..., vn). In this way,
the probabilistic behavior specified by P Schema cannot be
implemented by prog. The origin of this problem can be
realized considering the proof tree, specially where we used
the introduction rule for dependent sum (Σi) (see the circled
Σi in Fig. 3): according to the definition of Σi, we could
replace the n-ary (β1, ..., βn) by only one of its possible
values. Although the problem originates from the rules of type
theory, in the next section, we change the given interpretation
of probabilistic schemas such that without the need to modify
the proof rules of type theory, we will be able to construct
functional programs which can preserve the initially specified
probabilistic choice.

IV. A NEW INTERPRETATION OF PROBABILISTIC

SCHEMAS

As we have shown at the end of the previous section, the
current interpretation of probabilistic schemas is not sufficient
for the purpose of program construction. Although the problem
originates from the inference rules of type theory, we change
the current interpretation of probabilistic schemas such that it
explicitly models all possible values of the variable p and also
all possible values of the after state and output variables of
P Schema, allowed according to the predicate part of this
schema.

In this way, the process of proving correctness is forced to
construct a program that involves all possible values of p and
also all possible values of the after state and output variables;
such a program will be able to implement the probabilistic
behavior, initially specified by the probabilistic choice between
l predicates φ1, ..., φl. This approach is similar to what we
presented in [5] and [6] to specify nondeterminism explicitly
in Z. The next definition introduces a new function []NP that
interprets probabilistic schemas according to the new idea.
Definition 4.1 Recall P Schema, given in definition 3.1
as the general form of probabilistic schemas. If for all real
numbers p1, ..., pl, the maximum number of digits to the right
of the decimal point is d, we have:

if P Schema is an ordinary operation schema (i.e., when
l = 0), then [P Schema]NP = P Schema;
otherwise, [P Schema]NP ∼= [x1 ∈ A1; ...; xm ∈ Am;
pvar ∈ seq(B1 × ...×Bn × N) |
∀(y1, ..., yn, p) ∈ (B1 × ...×Bn × N)·
(y1, ..., yn, p) ∈ pvar ⇔ ψ],

where ψ ≡ φ ∧ ((0 ≤ p < p1 ∗ 10d ∧ φ1)∨
(p1 ∗ 10d ≤ p < (p1 + p2) ∗ 10d ∧ φ2) ∨ ...∨
((p1 + ...+ pl−1) ∗ 10d ≤ p < (p1 + ...+ pl) ∗ 10d ∧ φl))

Like []P , the function []NP behaves as an identity function
when applied to an ordinary operation schema, i.e., when l =
0; otherwise, it promotes the combination of the after state
and output variables and an auxiliary variable p ∈ N to a
sequence pvar of all possible combinations of these variables
that satisfy the predicates of the schema. We have combined all
of the above mentioned variables using the cartesian product
of their types in order to preserve the relationship between
them after the interpretation.
Theorem 4.2 Assume that for every predicate φk(k : 1..l)
existing in the predicate part of P Schema, each combination
of values of before state and input variables with one and only
one combination of values of after state and output variables
satisfies φk. A program extracted from the correctness proof
of the type theoretical counterpart of [P Schema]NP can
implement the probabilistic behavior specified by P Schema.
Proof. According to the predicate part of [P Schema]NP ,
a program satisfies [P Schema]NP iff when applied to a
combination of input values, it produces a sequence consisting
of all allowable values of y1, ..., yn, p and not anything else.
Therefore, any formal program development method that is
sound (such as the method of extracting programs from the
correctness proofs of the type theoretical counterparts of Z
specifications; see the soundness theorem in [10]) is forced
to extract a program from [P Schema]NP that for each
combination of input values, produces a sequence consisting of
all possible values of y1, ..., yn, p and not anything else. On the
other hand, considering the assumption stated by the theorem
statement, the resulting sequence includes 10d elements from
which pk ∗ 10d (k : 1..l) elements implement the behavior
specified by φk. Therefore, if we make a uniform choice over
the elements of this sequence, we will be provided with a
correct implementation of the probabilistic behavior, initially
specified by P Schema. �

In the next example, we show the application of the func-
tion []NP to the probabilistic schema P FlyMove, given in
example 3.2.
Example 4.3 We use the function []NP to translate the
probabilistic schema P FlyMove, given in example 3.2, into
an ordinary operation schema of Z:

[P FlyMove]NP ∼= [x?,m? ∈ N; pvar ∈ seq(N × N) |
∀(y!, p) ∈ (N × N)·
(y!, p) ∈ pvar ⇔ (m? > 2 ∧ x? > 1 ∧ x? < m?∧
((0 ≤ p < 3 ∧ y! = x? − 1)∨
(3 ≤ p < 6 ∧ y! = x? + 1) ∨ (6 ≤ p < 10 ∧ y! = x?)))]

If we apply the function ξ (see subsection 2.2) to the above
resulting schema, the following type theoretical specification

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:1, 2010

47

is obtained:
Π(α, β) ∈ (N ⊗ N) · Σγ ∈ List1 (N ⊗ N)·
Π(τ, δ) ∈ (N ⊗ N)·
(τ, δ)∈̇γ ⇔ (β>̇2⊗α>̇1⊗α<̇β⊗ ((0≤̇δ<̇3⊗ τ=̇α− 1)⊕
(3≤̇δ<̇6 ⊗ τ=̇α+ 1) ⊕ (6≤̇δ<̇10 ⊗ τ=̇α))),

where α, β, γ, τ , and δ correspond to the variables x?, m?,
pvar, y!, and p existing in [P FlyMove]NP , respectively.
Due to the space limitation, we do not give the correctness
proof of the above type theoretical specification here. Nev-
ertheless, such a proof results in a functional program that
for each combination of input values α and β, produces a
sequence consisting of all allowable values of τ and δ. For
example, for α = 2 and β = 4, this program produces the
sequence
< (1, 0), (1, 1), (1, 2), (3, 3), (3, 4), (3, 5), (2, 6), (2, 7),
(2, 8), (2, 9) >

Selecting any of the first three elements of the above sequence
results in τ = 1 which means that the fly moves one unit
to the left. Similarly, selecting any of the three elements
(3,3),(3,4) and (3,5) results in τ = 3 which means that the
fly moves one unit to the right. Finally, selecting any of the
four elements (2,6),(2,7),(2,8) and (2,9) results in τ = 2 which
means that the fly stays in place. Now, we can assume that we
have a programming construct in the final functional language
which uniformly chooses between the elements existing in the
above sequence. For instance, we can use a functional random
number generator, similar to what has been introduced in [16],
to make a uniform choice over alternatives existing in the
sequence. Making such a choice, it is guaranteed that the
fly will move one unit to the left with probability 0.3, one
unit to the right with probability 0.3, and stays in place with
probability 0.4. This behavior corresponds to the probabilistic
choice specified initially by P FlyMove. �

Although using the interpretation function []NP leads to
programs that can implement the probabilistic behavior, this
function suffers from a main drawback: it only works correctly
when applied to a probabilistic schema
P Schema ∼= [x1 ∈ A1; ...; xm ∈ Am;
y1 ∈ B1; ...; yn ∈ Bn | φ ∧ (p1 : φ1; ...; pl : φl)]

that obeys the following law:

for every predicate φk(k : 1..l), each combination of values
of before state and input variables with one and only one
combination of values of after state and output variables

satisfies φk.

Notice that the above law is really what has been explicitly
assumed in theorem 4.2. For instance, consider the following
probabilistic schema:
P GetLEQ ∼= [x? ∈ N; y! ∈ N |
0.5 : y! < x?; 0.5 : y! = x?]

P GetLEQ does not obey the above mentioned law: we can
find a value of the input variable x?, such as 2 or 3, that
with more than one value of the output variable y! satisfies
the predicate y! < x?. Now, applying the function []NP to
P GetLEQ results in the following schema:

1In [10], it has been shown that seqX of CZ is equivalent to List(X) of
type theory.

[P GetLEQ]NP ∼= [x? ∈ N; pvar ∈ seq(N × N) |
∀(y!, p!) ∈ (N × N) · (y!, p!) ∈ pvar ⇔
((0 ≤ p! < 5 ∧ y! < x?) ∨ (5 ≤ p! < 10 ∧ y! = x?))]

A program satisfying the above obtained specification is
not what the initial schema, i.e., P GetLEQ, specifies. For
example, for the input value 2, such a program produces the
sequence
< (0, 0), (1, 0), (0, 1), (1, 1), (0, 2), (1, 2), (0, 3), (1, 3), (0, 4),

(1, 4), (2, 5), (2, 6), (2, 7), (2, 8), (2, 9) >
Selecting any of the first 10 elements of the above sequence
results in an output value less than 2. In other words, a
uniform choice over the elements of this sequence selects an
output value less than 2 with probability 2

3 . It also selects the
output value 2 with probability 1

3 ; however, who wrote the
initial specification wants both the above sorts of output to
be produced with the same probability. This problem is due
to the nondeterministic relationship between possible values of
x? and y! allowed by the predicate y! < x? in P GetLEQ. A
similar problem occurs when a probabilistic schema involves
a predicate φk(k : 1..l) that is unsatisfiable for a combination
of values of before state and input variables. For instance,
consider the following probabilistic schema by which we
specify an operation that for each input value x, produces
x+1 with probability 0.5 and produces x−1 with probability
0.5:
P GetAdj ∼= [x? ∈ N; y! ∈ N |
0.5 : y! = x? + 1; 0.5 : y! = x? − 1]

Notice that for the input value x? = 0, there exists no value for
the output variable y! which satisfies the predicate y! = x?−1.
Now, using []NP to interpret P GetAdj results in a program
that for the input value x? = 0, produces the sequence <
(1, 0), (1, 1), (1, 2), (1, 3), (1, 4) >. A uniform choice over the
elements of this sequence always (with probability 1) results
in the value 1 for the output variable y! while the specification
writer wants the program to produce the output value 1 with
probability 0.5 and aborts (without producing anything) with
probability 0.5. Therefore, we have again obtained a program
that does not satisfy the initial specification. Introducing a new
interpretation of probabilistic schemas that solves the above
mentioned problem can be an interesting topic in continuing
this work.

We have so far proposed to use probabilistic schemas
instead of ordinary operation schemas in order to specify
probabilistic programs in the PZ notation. A distinctive feature
of Z is its schema calculus operations. In the next section,
we show these operations will no longer work correctly in the
presence of probabilistic schemas. We thus introduce a new set
of schema calculus operations into PZ that can be applied to
probabilistic schemas as well as ordinary operation schemas.

V. A CALCULUS FOR PROBABILISTIC SCHEMAS

We first investigate whether we can use the operations of
the Z schema calculus to manipulate probabilistic schemas. It
seems that a simple way to do this is to transform probabilistic
schemas into ordinary ones (using the function []NP) before
applying the schema calculus operations of Z; in this way,
we will have ordinary operation schemas that can be manip-
ulated by the Z schema calculus operations in the standard

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:1, 2010

48

way. However, we show that this approach may result in
unwanted specifications; it even may make the applications
of operations to schemas undefined. For instance, consider the
probabilistic schema P FlyMove, given in example 3.2. This
schema specifies a partial operation [18] since the effect of
the operation is undefined for some input values, i.e., when
m? ≤ 2, x? ≤ 1, or x? ≥ m?. To describe a total operation,
we give a new specification:
Res ::= OK | Not Move

P P F lyMove ∼= [x?,m?, y! ∈ N; r! ∈ Res |
m? > 2 ∧ x? > 1 ∧ x? < m? ∧ r! = OK∧
(0.3 : y! = x? − 1; 0.3 : y! = x? + 1; 0.4 : y! = x?)]
Exception ∼= [x?,m?, y! ∈ N; r! ∈ Res |
¬(m? > 2 ∧ x? > 1 ∧ x? < m?)∧
r! = Not Move ∧ y! = x?]

Now, we can describe a total operation by applying
a disjunction between two schemas P P FlyMove and
Exception above. Before doing this, however, we first trans-
late P P FlyMove into an ordinary operation schema as
follows:

[P P FlyMove]NP ∼= [x?,m? ∈ N;
pvar ∈ seq(N ×Res× N) |
∀(y!, r!, p) ∈ (N ×Res× N) · (y!, r!, p) ∈ pvar ⇔
(m? > 2 ∧ x? > 1 ∧ x? < m? ∧ r! = OK∧
((0 ≤ p < 3 ∧ y! = x? − 1) ∨ (3 ≤ p < 6 ∧ y! = x? + 1)∨
(6 ≤ p < 10 ∧ y! = x?)))]

Two schemas [P P FlyMove]NP and Exception are type
compatible, i.e., each variable common to two schemas has
the same type in both of them [18]. Thus, we can apply
the operator ∨ to these schemas. However, in the resulting
schema, there is no relationship between the variables y! and r!
coming from Exception and the sequence pvar coming from
[P P FlyMove]NP whereas all the elements of pvar involve
instances of y! and r! as their first and second components,
respectively. This problem originates from using the function
[]NP that forces the output variables y! and r! existing in
P P FlyMove to be combined into a new variable, and the
resulting variable to be promoted to a sequence.

Interpreting probabilistic schemas before applying the
schema calculus operations may even yield undefined op-
erations. For instance, suppose that we use ∃ y! ∈ N ·
P P FlyMove to hide y! in the resulting schema. If we use
the function []NP to interpret P P FlyMove before applying
the existential quantifier, we lose y! since it is combined with
some other schema variables and then promoted to a sequence;
in this way, the quantification over y! becomes undefined.

Similar problems occur when we transform probabilistic
schemas into ordinary ones before applying the other schema
calculus operations, such as conjunction, universal quanti-
fier, and sequential composition: By using []NP to interpret
probabilistic schemas, the relationship between instances of a
variable that exist in the declaration part of various schemas
(or exist in the list of quantified variables and the declaration
part of the quantified schema when applying universal or
existential quantifier) may be lost; hence, applying schema
calculus operations to the resulting schemas may be undefined
or result in unwanted specifications.

Unfortunately, another problem will occur if we try the
reverse path, i.e., applying the schema calculus operations
to probabilistic schemas before interpreting them by []NP .
For instance, suppose that we apply the operator ∨ to the
schemas P P FlyMove and Exception before interpreting
P P FlyMove:
P T F lyMove ∼= P P FlyMove ∨ Exception ∼=
[x?,m?, y! ∈ N; r! ∈ Res | (m? > 2∧x? > 1∧x? < m?∧
r! = OK∧
(0.3 : y! = x? − 1; 0.3 : y! = x? + 1; 0.4 : y! = x?))∨
(¬(m? > 2 ∧ x? > 1 ∧ x? < m?)∧
r! = Not Move ∧ y! = x?)]

P T FlyMove does not correspond to the general form
of probabilistic schemas (see definition 3.1). Therefore, we
are not allowed to apply the function []NP to interpret
P T FlyMove. It seems that we can solve this problem by
manually transforming the resulting schema into the general
form of probabilistic schemas or even changing the definition
of []NP to cover schemas such as P T F lyMove; however,
having such a method in mind, in various situations we
encounter various cases for each of which we must provide
a specially manual way. For instance, consider the following
simple specification:

[y! ∈ N | 0.5 : y! = 0; 0.5 : y! = 1]∨
[y! ∈ N | 0.5 : y! = 2; 0.5 : y! = 3]

The above disjunction results in the following schema:
S1

∼= [y! ∈ N | (0.5 : y! = 0; 0.5 : y! = 1)∨
(0.5 : y! = 2; 0.5 : y! = 3)]

By the above specification, we are in fact interested in the
following schema:
S2

∼= [y! ∈ N | 0.25 : y! = 0; 0.25 : y! = 1;
0.25 : y! = 2; 0.25 : y! = 3]

However, transforming manually S1 into S2 requires extra
analysis that becomes more complicated when we are to
handle more complex probabilistic schemas.

We have so far seen that both of the mentioned possible
paths (interpreting probabilistic schemas before applying the
schema calculus operations or the reverse path) to employ the
operations of the Z schema calculus in PZ do not work when
we want to manipulate probabilistic schemas. Now, we present
a usable approach in which the application of the schema cal-
culus operations and the interpretation of probabilistic schemas
occur in an interleaved manner. Suppose that the interpretation
function []NP operates in a two-step process. More precisely,
suppose that []NP is equivalent to the composition of two
functions []NP1 and []NP2 ; the former approximately behaves
like the function []P introduced in section 3 (see definition
3.3); unlike []P , []NP1 introduces the variable p into the
declaration part of the schema. Here is the formal definition
of []NP1 :
Definition 5.1 Recall P Schema, given in definition 3.1 as
the general form of probabilistic schemas. Also assume that
for all real numbers p1, ..., pl, the maximum number of digits
to the right of the decimal point is d. Thus we have:

if P Schema is an ordinary operation schema, then
[P Schema]NP1 = P Schema;
otherwise, [P Schema]NP1 ∼=
[x1 ∈ A1; ...; xm ∈ Am; y1 ∈ B1; ...; yn ∈ Bn;

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:1, 2010

49

p! ∈ &N | φ ∧ ((0 ≤ p! < p1 ∗ 10d ∧ φ1)∨
(p1 ∗ 10d ≤ p! < (p1 + p2) ∗ 10d ∧ φ2) ∨ ...∨
((p1 + ...+ pl−1) ∗ 10d ≤ p! < (p1 + ...+ pl) ∗ 10d ∧ φl))]

In definition 5.1, we have used the symbol & in the declaration
of p! in order to be able to distinguish between probabilistic
schemas and ordinary operation schemas when we want to
apply the function []NP2 . The function []NP2 takes a schema
and promotes the combination of its output and after state
variables to a sequence, provided that it includes an output
variable declared by the symbol &. In the following, we
formalize the definition of []NP2 :
Definition 5.2 Suppose that []NP2 applies to the following
operation schema:
Op Schema ∼= [x1 ∈ A1; ...; xm ∈ Am;
y1 ∈ B1; ...; yn ∈ Bn | φ],

where xi(i : 1..m) are input or before state variables, and
yj(j : 1..n) are output or after state variables. Now, we have:

if OP Schema has no output variable declared by &, then
[OP Schema]NP2 = OP Schema;
otherwise, [OP Schema]NP2 ∼= [x1 ∈ A1; ...; xm ∈ Am;
pvar ∈ seq(B1 × ...×Bn) |
∀(y1, ..., yn) ∈ (B1 × ...×Bn) · (y1, ..., yn) ∈ pvar ⇔ φ]

It can be easily justified that []NP = [[]NP1]NP2 . Now, to
manipulate probabilistic schemas by the operations of the
Z schema calculus, we propose to apply these operations
between the applications of []NP1 and []NP2 . An informal
illustration of the correctness of this approach is as follows:
[]NP1 transforms a probabilistic schema into an ordinary
one according to the probabilities involved in its predicate
part; however, []NP1 do not promote the combination of the
output and after state variables to a sequence. Therefore, we
can apply the operations of the Z schema calculus to the
resulting schema; this does not yield unwanted specifications
or undefined operations. At the final stage, we apply []NP2

to the resulting schema in order to guarantee that the final
program can implement the initially specified probabilistic
behavior.

To implement the above idea, we introduce a new set of
schema calculus operations into PZ that can be applied to
probabilistic schemas appropriately. In the Z notation [15],
[18], there exist operators ¬, ∧, ∨, ∃, ∀, and o

9 for the
schema calculus operations negation, conjunction, disjunction,
existential quantifier, universal quantifier, and sequential com-
position, respectively. Here, we define a new set of operators
consisting of ¬p, ∧p, ∨p, ∃p, ∀p, and o

9p instead of the previous
ones:
Definition 5.3 Let PS1 and PS2 be two probabilistic schemas.
Now, we have:
¬PS1

∼= [¬[PS1]NP1]NP2

PS1 ℘p PS2
∼= [([PS1]NP1 ℘ [PS2]NP1)]NP2 ℘ ∈ {∧,∨, o

9}
�p dh · PS1

∼= [� dh · [PS1]NP1]NP2 � ∈ {∃,∀},
where dh is the declaration of quantified variables.

To show the usability of the new operations of the schema
calculus, we apply ∨p to the schemas P P FlyMove and
Exception, introduced earlier in this section. By this example,
we also show that in the case of disjunction between a
probabilistic schema and an ordinary one, we must apply a

slight change to the ordinary schema after using []NP1 and
before using ∨:
P P FlyMove ∨p Exception ∼=
[([P P FlyMove]NP1 ∨ [Exception]NP1)]NP2 ∼=
[x?,m?, pvar ∈ (N ×Res× N) |
∀(y!, r!, p!) ∈ (N ×Res× N) · (y!, r!, p!) ∈ pvar ⇔
((m? > 2 ∧ x? > 1 ∧ x? < m? ∧ r! = OK∧
((0 ≤ p! < 3∧ y! = x?− 1)∨ (3 ≤ p! < 6∧ y! = x? + 1)∨
(6 ≤ p! < 10 ∧ y! = x?)))∨
(¬(m? > 2 ∧ x? > 1 ∧ x? < m?) ∧ r! = Not Move∧
y! = x?))]

The above resulting schema specifies a total operation. When
m? > 2 ∧ x? > 1 ∧ x? < m?, this operation produces a
sequence consisting of all allowable values of y! and p! and
also reports OK. When m? ≤ 2 ∨ x? ≤ 1 ∨ x? ≥ m?,
the operation assigns the value x? to y! and also reports
Not Move; however, the possible values of p! has not been
determined for this case. In other words, p! can take any
natural number; it violates producing a finite sequence for
pvar. To solve this problem, it is enough to introduce p! into
the declaration part of Exception and add a conjunct such as
p! = 0, limiting the possible values of p!, into the predicate
part of Exception before using ∨ between P P FlyMove
and Exception. By this modification, the following schema
is obtained finally:

[x?,m?, pvar ∈ (N ×Res× N) |
∀(y!, r!, p!) ∈ (N ×Res× N) · (y!, r!, p!) ∈ pvar ⇔
((m? > 2 ∧ x? > 1 ∧ x? < m? ∧ r! = OK∧
((0 ≤ p! < 3∧ y! = x?− 1)∨ (3 ≤ p! < 6∧ y! = x? + 1)∨
(6 ≤ p! < 10 ∧ y! = x?)))∨
(¬(m? > 2 ∧ x? > 1 ∧ x? < m?) ∧ r! = Not Move∧
y! = x? ∧ p! = 0))]

The new schema specifies an operation that for m? ≤ 2∨x? ≤
1∨x? ≥ m?, produces the sequence < (x?, Not Move, 0) >.
Notice that the recent modification is not required when we
use conjunction or sequential composition operators between a
probabilistic schema and an ordinary one since in these cases,
we apply a conjunction between the predicate parts of two
schemas; this automatically limits the possible values of p!.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a new Z-based formalism,
called PZ, by which one can build set theoretical models of
probabilistic programs. We have also reviewed a construc-
tive approach for formal program development that is well
integrated with PZ: since we have interpreted all the new
constructs of PZ in Z itself, we can still use the translation of
the CZ set theory into type theory [10] to derive functional
programs from correctness proofs of our PZ specifications of
probabilistic programs. In this way, we are provided with a
completely constructive framework for developing probabilis-
tic programs formally (see Fig. 1).

However, the current framework suffers from following
drawbacks/limitations in the program development stage:

1) We have shown that using the interpretation function
[]NP can lead to appropriate programs provided that this
function is applied to those probabilistic schemas

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:1, 2010

50

P Schema ∼= [x1 ∈ A1; ...; xm ∈ Am;
y1 ∈ B1; ...; yn ∈ Bn | φ ∧ (p1 : φ1; ...; pl : φl)]
that obey the following law:

for every predicate φk(k : 1..l), each combination of
values of before state and input variables with one and

only one combination of values of after state and
output variables satisfies φk.

Introducing a new interpretation of probabilistic schemas
that releases this limitation can be an interesting topic
in continuing this work.

2) Programs obtained after applying our constructive
framework to PZ specifications are not really proba-
bilistic programs. Instead, for each input setting, these
programs provide a sequence; now, a uniform choice
over the elements of the resulting sequence implements
the probabilistic behavior. To overcome this drawback
and as a direction for future work, one can extend
the interpretation of CZ in type theory and add new
inference rules into type theory in order to provide a way
to map probabilistic constructs of PZ into probabilistic
choice constructs of a probabilistic functional language.

As we have stated in section 1, much of the work in
the literature related to probabilistic programs has focused
on developing and verifying such programs in imperative
settings. Specially, in [9], [11], and [12], Morgan et al. have
proposed an imperative programming language, called pGCL,
with which probabilistic programs can be rigorously developed
and verified. On the other hand, there are some attempts
to translate Z specifications into specifications in refinement
calculi; for example, see [2] and [17].

As another direction for future research, one can extend an
existing translation of Z in a refinement calculus in order to
map probabilistic schemas of PZ, introduced in this paper,
to their equivalent specification statements in the refinement
calculus. By introducing new refinement rules that refine new
specification statements into probabilistic constructs of an
imperative language, such as pGCL, we will be provided
with a refinement approach, rather than a constructive one,
to formally develop imperative, probabilistic programs, rather
than functional ones, from their set theoretical specifications.

REFERENCES

[1] Audebaud, P., Paulin-Mohring, C.: Proofs of Randomized Algorithms in
Coq. In: MPC 2006, LNCS, vol. 4014, pp. 49-68 (2006)

[2] King, S.: Z and the Refinement Calculus. In: VDM’90, LNCS 428,
Springer-Verlag, pp. 164–188 (1990)

[3] Kozen, D.: Semantics of Probabilistic Programs. Journal of Computer and
System Sciences, pp. 328–350 (1981)

[4] Haghighi, H., Mirian-Hosseinabadi, S.H.: An Approach to Nondetermin-
ism in Translation of CZ Set Theory into Type Theory. In: FSEN 2005,
ENTCS 159 (2006)

[5] Haghighi, H., Mirian-Hosseinabadi, S.H.: Nondeterminism in Construc-
tive Z. Fundamenta Informaticae, vol. 88 (1-2), pp. 109–134 (2008)

[6] Haghighi, H.: Nondeterminism in CZ Specification Language. Ph.D.
dissertation, Sharif Univ. of Technology, Iran, (2009)

[7] Martin-Löf, P.: An Intuitionistic Theory of Types: Predicative Part. (H.E.
Rose, J.C. Sheperdson, Eds.), North Holland, pp. 73–118 (1975)

[8] McIver, A., Morgan, C.: Abstraction and Refinement in Probabilistic
Systems. ACM SIGMETRICS Performance Evaluation Review, vol. 32 ,
no. 4, pp. 41–47 (2005)

[9] McIver, A., Morgan, C.: Developing and Reasoning About Probabilistic
Programs in pGCL. LECTURE NOTES IN COMPUTER SCIENCE, pp.
123–155 (2006)

[10] Mirian-Hosseinabadi, S.H.: Constructive Z. Ph.D. dissertation, Essex
Univ. (1997)

[11] Morgan, C., McIver, A.: pGCL: Formal Reasoning for Random Algo-
rithms. Southern African Computer Journal (1999)

[12] Morgan, C., McIver, A., Hurd, J.: Probabilistic Guarded Commands
Mechanised in HOL. Theoretical Computer Science, pp. 96–112 (2005)

[13] Nordstrom, B., Petersson, K., Smith, J.M.: Programming in Martin-Löf’s
Type Theory: An Introduction. Oxford University Press (1990)

[14] Park, S., Pfenning, F., Thrun, S.: A Probabilistic Language Based Upon
Sampling Functions. In: ACM Symp. on Principles of Prog. Lang., pp.
171–182 (2005)

[15] Spivey, J.M.: The Z Notation: A Reference Manual. Prentice Hall (1989)
[16] Thompson, S.: Haskell: The Craft of Functional Programming, 2nd ed.

Addison-Wesley (1999)
[17] Woodcock, J.: An Introduction to Refinement in Z. In: VDM’91, LNCS

552, Springer-Verlag, vol. 2, pp. 96–117 (1991)
[18] Woodcock, J. and Davies, J.: Using Z, Specifications, Refinement and

Proof. Prentice Hall (1996)

