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 
Abstract—This paper presents a method for determining all of 

the co-prime right angle triangles in the Euclidean field by looking at 
the intersection of the Pythagorean and Platonic right angle triangles 
and the corresponding lattice that this produces. The co-prime 
properties of each lattice point representing a unique right angle 
triangle are then considered. This paper proposes a conjunction 
between these two ancient disparaging theorists. This work has wide 
applications in information security where cryptography involves 
improved ways of finding tuples of prime numbers for secure 
communication systems. In particular, this paper has direct impact in 
enhancing the encryption and decryption algorithms in cryptography. 
 

Keywords—Pythagorean triples, platonic triples, right angle 
triangles, co-prime numbers, cryptography.  

I. INTRODUCTION 

HE theory on Pythagorean triple has led to much research 
for several decades in the mathematical arena [1], and 

more recently in the computing field due to its increased 
application in information security where improved 
cryptosystems are warranted [2]. Generating Pythagorean 
triples is of interest, in particular, finding co-prime right angle 
triangles has utilisation in encryption, decryption, and public 
key cryptosystem for securing information [3], [4]. This paper 
proposes a new method of finding co-prime right angle 
triangles using the properties of Pythagorean triples. 

A Pythagorean triple denoted by (a,b,c) is a solution of the 
equation a2 + b2 = c2, where a,b,c are positive integers [5]. A 
Pythagorean triple (a,b,c) is considered to be primitive when 
a,b,c are co-prime to each other. In the other words, their 
greatest common divisor (gcd) is 1, i.e. gcd(a,b,c) = 1. The 
Pythagorean family of triples has a formula derived by Stark 
[6] as  

 
P(a,b,c) = (2n+1,2n2+2n,2n2+2n+1), 

 
where n is a positive integer. The triples can be enumerated as  

 
P(a,b,c) = {(3,4,5),(5,12,13),(7,24,25)...}. 

 
On the other hand, the Platonic family of triples is defined 

by (4m2 −1,4m,4m2 +1), which can be enumerated as  
 

P(a,b,c) = {(3,4,5), (15,8,17), (35,12,37)...}. 
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The alert reader will immediately note that both the 
Pythagorean and Platonic families have a common triple such 
that: P(a,b,c) = (3,4,5). It is also noted that this occurs when 
m=1 and n=1, such that P(a,b,c) = (3,4,5) ⟹ P(m,n) = (1,1). 
This describes the intersection between the Pythagorean and 
Platonian right angle triangles and the first point in the lattice. 
This triple has the much-desired property of being co-prime. 
The objective of this paper is to propose a method using this 
property to generate all the co-prime right angle triangles.  

This paper is organized as follows. The next section 
(Section II) gives a literature review of other related work and 
how this topic has applications in cryptography. In Section III, 
our proposed method is described. The summary of findings is 
given in Section IV and finally our conclusions are provided 
in Section V. 

II. LITERATURE REVIEW 

There are several methods of generating Pythagorean triples 
reported in literature [7]-[9]. Some classical methods generate 
Pythagorean triples, mainly producing primitive triples, while 
some others generate all possible triples, including non-
primitive triples. For example, the Euclid’s classical formula 
states that for any two positive integers m and n with m > n, a 
= m2 - n2, b = 2mn, c = m2 + n2 form a Pythagorean triple and 
generates infinitely many primitive triples but not non-
primitive ones [10]. In any primitive Pythagorean triple, either 
a or b is odd, and the other has to be even, and if a and b were 
both even then c would be even, violating primitivity. 
Previous work has shown that every primitive Pythagorean 
triple (a,b,c) with b even can be generated from the triple 
(3,4,5) as a starting triple [1], [11]. Another paper presents a 
direct method to generate all possible triples both primitive 
and non-primitive for any given number [12]. A recent 
previous work proposes a formula that parameterises the 
Pythagorean triples as elements of two series [13]. On the 
other hand, with the standard Euclidean formula, this 
parameterisation does not generate the Pythagorean triples 
where the elements of the triple are all divisible by 2. Since 
finding Pythagorean triples is equivalent to finding right 
triangles with integral sides, in this paper we propose a new 
method to find all the co-prime right triangles innovatively. 
We explore this idea by investigating the intersection of the 
Pythagorean and Platonic right angle triangles and the 
corresponding lattices produced. Our focus on finding co-
prime right angle triangles is due to its application in 
cryptography and random number generation algorithms 
widely required in the computing field. 

Cryptography, derived from the Greek word “Kryptos”, 
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means “hidden secret”, which is the practice and study of 
techniques for secure communication in the presence of third 
parties called adversaries [3]. Modern cryptography involves 
techniques to construct and analyse protocols that prevent 
third parties to read information. Its purpose is to hide 
information and to convert some secret information into non-
readable formats and it covers various aspects in information 
security such as data integrity and confidentiality, 
authentication and non-repudiation that have real-life 
applications in electronic commerce, military message 
transmissions, computer passwords and ATM cards. One of 
the most difficult aspects of cryptography is in the generation 
of random numbers. In general, there are two kinds of random 
number generators: non-deterministic random number 
generators (true random number generators) and deterministic 
random number generators (pseudorandom number 
generators) [14]. The problem faced here is that a computer 
cannot produce true random data, and many cryptography 
algorithms uses both with a hardware random-number 
generator to periodically re-seed a deterministic random 
number generator. Hence, to achieve this, it is often necessary 
to find big prime numbers and the factors of large integers 
[15].  

The well-known Rivest-Shamir-Aldeman (RSA) public key 
cryptographic system is based on the computational difficulty 
of factoring a big integer [16]. Here, two prime numbers p and 
q are chosen and a random number to be identified which has 
no common factor with (p − 1)(q − 1). In the Massy-Omura 
cryptosystem for message transmission, a random integer e is 
selected between 0 and q−1 such that gcd.(e,q −1) = 1 and, 
using the Euclidean algorithm, it computes its inverse d = e−1 
mod q-1. In 1980, the first three-pass protocol was called the 
Shamir No-Key Protocol since the sender and the receiver do 
not exchange any public keys, and requires having only two 
private keys for encrypting and decrypting messages. This 
algorithm uses exponentiation modulo of a large prime for 
both the encryption (E) and decryption (D) functions [17]. 
This can be mathematically expressed as E(e,m) = me mod p 
and D(d,m) = md mod p where p is a large prime, e is the 
encryption exponent 1≤ e ≤ p-1 with gcd(e,p-1) = 1, d is the 
corresponding decryption exponent chosen such that de ≡ 1 
(mod p-1). The basis for this concept is derived from Fermat’s 
Little Theorem that D(d,E(e,m)) = mde mod p = m.  

Overall, it can be observed that the nice properties of co-
prime right angle triangles help to build public key 
cryptosystems for satisfying the modern information security 
objectives in real-world applications. Hence, we propose a 
new method to achieve this as described in the next section.  

III. PROPOSED METHOD 

We propose a new method to determine all of the co-prime 
right angle triangles in the Euclidean field by considering the 
lattice points represented by the intersections of the 
Pythagorean and Platonic right angle triangles. This work 
advances previous research [13] and takes a step forward in 
proposing a conjunction between these two ancient 
disparaging theorists. 

Let us consider the right angle triangle in Fig. 1, with sides 
a,b,c. We make use of Apollonius' theorem that states as the 
following: 

"the sum of the squares of any two sides of any 
triangle equals twice the square on half the third side, 
together with twice the square on the median bisecting 
the third side" 
Using this theorem by Apollonius, we inscribe two circles 

(arcs) one from Point A with radius “a” and the other from 
Point B with radius “b” in Fig. 1. Next, we consider side “c” 
with segments d,e,f expressed as: ܿ ൌ ݀ ൅ ݁ ൅ ݂. 
 

 

Fig. 1 Right angle triangle - Segmenting side “c” 
 

Inscribe two circles (arcs) one from Point A with radius “d” 
and the other from Point B with radius “e” in Fig. 2. 

 

 

Fig. 2 Right angle triangle sides a,b,c as elements of d,e,f 
 

From Fig. 2, ܽ ൌ ݀ ൅ ݂, ܾ ൌ ݁ ൅ ݂, ܿ ൌ ݀ ൅ ݁ ൅ ݂, as a 
matrix is given below: 

 

ቈ
ܽ
ܾ
ܿ
቉ ൌ ൥

0 1 1
1 1 0
1 1 1

൩ ቈ
݁
݂
݀
቉ 

 
Pythagorean triples (a,b,c) = (2n+1, 2n2+2n, 2n2+2n+1) as a 

matrix is represented below: 
 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:11, 2017

1194

 

 

ቈ
ܽ
ܾ
ܿ
቉ ൌ ൥

0 1 1
1 1 0
1 1 1

൩ ൥
2݊ଶ

2݊
1
൩ 

 
Platonic triples (a,b,c) = (4m2− 1, 4m , 4m2+1) as a matrix 

is: 
 

ቈ
ܽ
ܾ
ܿ
቉ ൌ ൥

0 1 1
1 1 0
1 1 1

൩ ቎
2

2ሺ2݉ െ 1ሻ
ሺ2݉ െ 1ሻଶ

቏ 

 
Combining Pythagorean and Platonic triples [13], we get: 

 

ቈ
ܽ
ܾ
ܿ
቉ ൌ ൥

0 1 1
1 1 0
1 1 1

൩ ቎
2݊ଶ

2݊ሺ2݉ െ 1ሻ
ሺ2݉ െ 1ሻଶ

቏ 

 
From this matrix, we arrive at the following: 
 

	݁ ൌ 2݊ଶ, ݀ ൌ ሺ2݉ െ 1ሻଶ, ݂ ൌ 2݊ሺ2݉ െ 1ሻ. 
 

Redefining P(a,b,c) in terms of P(m,n), we get: 
 

ܽ ൌ ݀ ൅ ݂ ൌ 4݉݊ െ 2݊ ൅ 4݉ଶ െ 4݉ ൅ 1            (1) 
 

ܾ ൌ ݁ ൅ ݂	 ൌ 2݊ଶ ൅ 4݉݊ െ 2݊      (2) 
 
ܿ ൌ ݀ ൅ ݁ ൅ ݂ ൌ 2݊ଶ ൅ 4݉݊ െ 2݊ ൅ 4݉ଶ െ 4݉ ൅ 1 (3) 

 
This produces the lattice of triples as shown in Fig. 3. 

 

 

Fig. 3 Lattice of triples P(a,b,c) for P(m,n) 
 

It can be seen from Fig. 3, that some of the lattice triples, 
ܲሺ2,3ሻ ൌ ሺ27,36,45ሻ	ܽ݊݀	ܲሺ3,5ሻ ൌ ሺ75,100,125ሻ, are not co-
prime when n=2m−1. The next non-co-prime is ܲሺ4,7ሻ ൌ
ሺ147,196,245ሻ.  

The greatest common divisor (gcd) for these triples is given 
as: 
 
gcdሾܲሺ2,3ሻሿ ൌ 9, 	gcdሾܲሺ3,5ሻሿ ൌ 25, 	gcdሾܲሺ4,7ሻሿ ൌ 49 

⟹ gcdሾܲሺ݉, 2݉ െ 1ሻሿ ൌ ሺ2݉ െ 1ሻଶ 
 

The general expression for non-co-prime triples as follows: 
 

 ݊ ൌ 	݉௬ሺ2݉ െ 	1ሻ୸	,݉ ൐ 1, 	ݕ ൒ 0, ݖ ൐ 0 
 

The general expression for the gcd factor when ݊ ൌ
	݉௬ሺ2݉ െ 	1ሻ୸	is given below: 
 

gcdሼܲሾ݉,݉௬ሺ2݉ െ 	1ሻ୸ሿሽ ൌ ሾ݉௬ሺ2݉ െ 	1ሻ୸ሿଶ, 
݉ ൐ 1, 	ݕ ൒ 0, ݖ ൐ 0         (4) 

IV. SUMMARY OF FINDINGS 

The co-prime triples, ܲሺܽ, ܾ, ܿሻ can be expressed in terms of 
݉, ݊ such that	ܲሺ݉, ݊ሻ represents the lattice of the Platonic 
triples, ܲሺ݉ሻ and the Pythagorean triples, ܲሺ݊ሻ: 
 

ܲሺ݉, ݊ሻ ൌ ܲሺܽ, ܾ, ܿሻ 
 
ܲሺܽ, ܾ, ܿሻ can now be expressed in terms of ݉, ݊: 
 

ܽ ൌ 4݉݊ െ 2݊ ൅ 4݉ଶ െ 4݉ ൅ 1 
ܾ ൌ 2݊ଶ ൅ 4݉݊ െ 2݊ 

ܿ ൌ 2݊ଶ ൅ 4݉݊ െ 2݊ ൅ 4݉ଶ െ 4݉ ൅ 1 
 

The general expression for the gcd factor for non-co-prime 
triples is given below:  
 

gcdሼܲሾ݉,݉௬ሺ2݉ െ 	1ሻ୸ሿሽ ൌ ሾ݉௬ሺ2݉ െ 	1ሻ୸ሿଶ, 
݉ ൐ 1, 	ݕ ൒ 0, ݖ ൐ 0 

V. CONCLUSION 

This paper combines two methods of generating right angle 
triangles, Pythagoras and Plato, for finding all co-prime right 
angle triangles. We made use of the property that a 
Pythagorean triple ௡ܲሺܽ, ܾ, ܿሻ and a Platonic triple ௠ܲሺܽ, ܾ, ܿሻ 
when expressed in terms ሺ݉, ݊ሻ can be combined such that 
ܲሺܽ, ܾ, ܿሻ ൌ ܲሺ݉, ݊ሻ. A lattice for ܲሺ݉, ݊ሻ was given and the 
condition describing non-co-prime triples, within this lattice, 
was considered. This work was motivated by its application in 
cryptography and random number generation algorithms 
where improved ways of generating prime numbers forms a 
challenge.  
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