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Pseudo-polynomial motion commands for vibration
suppression of belt-driven rotary platforms

Giovanni Incerti

Abstract—The motion planning technique described in this paper
has been developed to eliminate or reduce the residual vibrations
of belt-driven rotary platforms, while maintaining unchanged the
motion time and the total angular displacement of the platform.
The proposed approach is based on a suitable choice of the motion
command given to the servomotor that drives the mechanical device;
this command is defined by some numerical coefficients which
determine the shape of the displacement, velocity and acceleration
profiles. Using a numerical optimization technique, these coefficients
can be changed without altering the continuity conditions imposed
on the displacement and its time derivatives at the initial and final
time instants. The proposed technique can be easily and quickly
implemented on an actual device, since it requires only a simple
modification of the motion command profile mapped in the memory
of the electronic motion controller.

Keywords—Command shaping, Residual vibrations, Belt transmis-
sion, Servomechanism.

I. INTRODUCTION

THE belt drives are widely used in industrial machines,
because they allow to achieve optimal design solutions,

in particular as regards low noise emissions during operation,
high mechanical efficiency, low maintenance costs and high
reliability. In cases where it is essential to eliminate slippage,
the use of timing belts is recommended, in order to obtain a
perfect synchronization between the shafts, even in presence
of unexpected load changes.

Nevertheless, as a result of rapid accelerations and/or high
loads applications, a belt drive may show serious dynamic
problems, such as vibration of some elements of the mechani-
cal transmission; this is essentially due to the elasticity of the
material used for the construction of the transmission belt. This
problem can be particularly evident on a multi-stage belt drive,
where the elasticity of the individual branches can degrade the
global dynamic performance of the system.

In cases where a vibration-free movement and high po-
sitioning accuracy are required, the transmission must be
carefully designed; for this purpose, it is very useful to carry
out computer simulations, using mathematical models able to
reproduce, with good reliability, the dynamics of an actual
belt transmission. Through the numerical simulation it is also
possible to verify the effects of a given motion command on
a transmission having a some degree of elasticity.

The purpose of this paper is to provide a contribution to
the design of positioning systems driven by low stiffness
belt transmissions, in particular as regards the reduction of
mechanical vibrations; the approach here presented is based
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on the selection of an appropriate motion strategy, which is
defined through an optimization procedure, in accordance with
the design constraints (motion time, total displacement, speed
and torque limits of the motor, etc.).

The proposed method seems to be particularly advanta-
geous, since it is easily implementable on an actual machine:
in fact it does not require mechanical changes aimed to
improve the belt transmission stiffness, but it acts on the
motion command of the servomotor that drives the system.
So a simple modification of the profile stored into the motion
controller is sufficient to improve the dynamic performances
of the machine. To implement this technique the following
steps are necessary:

1) definition of a mathematical model that allows to simu-
late the actual behaviour of the servomechanism with
good accuracy;

2) definition of a parametric motion command, whose
shape (i.e. the displacement, velocity and acceleration
profiles) can be modified by changing a set of numerical
parameters (called shape parameters);

3) definition of a performance index, that allows a simple
and practical evaluation of the vibratory effects;

4) use of a numerical algorithm which is able to determine
the “optimal” motion profile, that is the profile which
generates the best performance index.

II. MATHEMATICAL MODELING

To perform the dynamic analysis of an elastic belt trans-
mission, lumped parameter models with one or more degrees
of freedom are frequently adopted.

In general, the deduction of the equations of motion of a belt
transmission does not present particular difficulties and it can
be carried out through dynamical equilibrium considerations
or through the Lagrangian approach. The following hypotheses
are usually assumed:

• each branch of the belt is modeled by a linear spring
in parallel with a viscous damper; the stiffness k of each
branch can be determined by the well-known relationship
k = EA/L, where E, is the Young’s modulus of
the belt material, A is the cross sectional area of the
branch and L its length; the damping coefficient c can be
experimentally determined through free vibration tests;

• the mass of the belt is negligible, if compared to the
pulleys mass;

• no slippage of the belt on pulleys is considered in the
model;

• the belt has no flexural stiffness.
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Fig. 1. Rotary platform driven by a servomotor through a gear speed reducer and a belt transmission.

As in all cases where a mathematical modeling of an actual
device or machine is formulated, the values of physical para-
meters of the system should be determined with good accuracy
in order to obtain a correct simulation of the experimentally
observable phenomena.

To demonstrate the effectiveness of this approach, this paper
presents a practical example, where the previously described
technique is employed to reduce the residual vibrations of the
system represented in Fig. 1.

The device consists of a rotary platform driven by a servo-
motor through a gear speed reducer and a belt transmission.
The system parameters and their corresponding symbols are
listed in Table I.

If we suppose that the servomotor is able to correctly exe-
cute the motion command assigned by the electronic control
unit (this hypothesis is usually satisfied, when a position and/or
a velocity feed-back loop is implemented inside the motion
controller), the rotation of the motor shaft ϕm(t) and its time
derivatives ϕ̇m(t) and ϕ̈m(t) are known; through the gear ratio
z it is immediate to calculate the angular displacement of the
pulley (1). The rotation ϑ(t) of the pulley (2), which drives
the rotary platform, can be calculated by solving the following
motion equation:

Jϑ̈+ 2cR(Rϑ̇− rϕ̇) + 2kR(Rϑ− rϕ) = 0 (1)

which expresses the dynamic equilibrium of the rotating
masses about the pivot O2. Since ϕ = zϕm, Eq. (1) can be
rewritten as:

Jϑ̈+ 2cR2(ϑ̇− λϕ̇m) + 2kR2(ϑ− λϕm) = 0 (2)

where λ = zr/R.

TABLE I
PARAMETERS OF THE SYSTEM IN FIG. 1.

SYMB. DESCRIPTION
J Moment of inertia of the platform
k Stiffness of each belt branch
c Damping const. of each belt branch
r Radius of pulley (1)
R Radius of pulley (2)
z Gear ratio of the speed reducer

At this point it is convenient to introduce the variable
α = ϑ− λϕm, which represents the difference between the
actual position ϑ of the platform and its theoretical position
ϑ∗ = λϕm, corresponding to a perfectly rigid behaviour of
the belt transmission.

Using this new variable we obtain from Eq. (2):

J(α̈+ λϕ̈m) + ctα̇+ ktα = 0 (3)

where kt = 2kR2 and ct = 2cR2 are respectively the
equivalent stiffness and the equivalent damping constant of
the transmission.

Introducing the natural angular frequency of the mechanical
system ωn =

√
kt/J and the non-dimensional damping ratio

ξ = ct/2Jωn, Eq. (3) can be rearranged as follows:

α̈+ 2ξωnα̇+ ω2
nα = −λϕ̈m (4)

Knowing the analytical expression of the motor angular ac-
celeration ϕ̈m and starting from null initial conditions (that is
α(0) = 0, α̇(0) = 0), the solution of the differential equation
(4) can be calculated through the convolution integral [1]. If
the system is underdamped (ξ < 1) we have:

α(t) = − λ

ωd

∫ t

0

f(t, τ) dτ (5)

where ωd = ωn

√
1− ξ2 is the damped natural frequency of

the system and f(t, τ) is defined as:

f(t, τ) = ϕ̈m(τ)e−ξωn(t−τ) sin[ωd(t− τ)] (6)

The angular position of the rotary platform can be now easily
calculated through the following relationship:

ϑ(t) = α(t) + λϕm(t) (7)

Through a proper selection of the acceleration command of the
motor ϕ̈m(t) it is possible to eliminate or strongly attenuate
the residual vibrations of the rotary platform. The next section
gives some mathematical details about a class of functions
which seem to be particularly suitable to this aim.

III. PARAMETRIC MOTION COMMANDS

As it is well known, the preshaping technique employs
motion commands, whose analytical expressions are calculated
in order to satisfy some design requirements. Therefore it is
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important to use parametric functions, i.e. particular mathema-
tical expressions that depend on a set of numerical coefficients,
which play the role of control variables. Furthermore, it
must be possible to change the shape of the function without
affecting the boundary conditions (that is the conditions at the
initial and final time instants).

A particularly simple analytical expression used to define
these motion commands is the following:

ϕm(t) = Φ

[

1−
2∑

i=0

Ci

(

1− t

T

)γi
]

(8)

where ϕm is the displacement and t the time. The symbols
Φ and T indicate the total displacement and the motion
time respectively, whereas the exponents γi are the shape
parameters.

Differentiation of Eq. (8) yields:

ϕ̇m(t) =
Φ

T

[
2∑

i=0

γiCi

(

1− t

T

)γi−1
]

(9)

ϕ̈m(t) = − Φ

T 2

[
2∑

i=0

γi(γi − 1)Ci

(

1− t

T

)γi−2
]

(10)

We observe that the expressions (8), (9) and (10) satisfy the
following conditions:

ϕm(T ) = Φ ϕ̇m(T ) = 0 ϕ̈m(T ) = 0 (11)

In order to calculate the coefficients Ci (i = 0, 1, 2), we
impose that the displacement, the velocity and the acceleration
are null for t = 0; therefore we can write:

ϕm(0) = 0 ϕ̇m(0) = 0 ϕ̈m(0) = 0 (12)

In this way we obtain the following linear system of equations:
⎧
⎪⎪⎨

⎪⎪⎩

∑2
i=0 Ci = 1

∑2
i=0 γiCi = 0

∑2
i=0 γi(γi − 1)Ci = 0

(13)

which can be rewritten in matrix form as:

Zc = u (14)

where c = (C0 C1 C2)
T , u = (1 0 0)T and Z is a 3 × 3

matrix given by the following expression:

Z =

⎛

⎝
1 1 1
γ0 γ1 γ2

γ0(γ0 − 1) γ1(γ1 − 1) γ2(γ2 − 1)

⎞

⎠ (15)

The symbolic solution of the system (13) gives the values of
the constants C0, C1 and C2 as function of the exponents γ0,
γ1 and γ2:

C0 =
γ1γ2

(γ2 − γ0)(γ1 − γ0)

C1 =
γ0γ2

(γ1 − γ0)(γ1 − γ2)

C2 =
γ0γ1

(γ0 − γ2)(γ1 − γ2)

(16)

Clearly the procedure can be generalized, by extending the
boundary conditions up to the nth derivative of the displace-
ment; in this case the unknowns to be calculated are the n+1
coefficients C0, C1, . . . , Cn and the expression of ϕm(t) must
be modified as follows:

ϕm(t) = Φ

[

1−
n∑

i=0

Ci

(

1− t

T

)γi
]

(17)

The generalized formula for the kth time derivative
(1 ≤ k ≤ n) is:

ϕ(k)
m (t) = (−1)k+1 Φ

T k

{
n∑

i=0

P (γi, k)Ci

(

1− t

T

)γi−k
}

(18)
where

P (γi, k) =
k−1∏

r=0

(γi − r) (19)

Even in this case, for t = T , the function ϕm is equal to the
total displacement Φ and its time derivatives up to order n are
null; the coefficients Ci can be also calculated by imposing
the conditions:

ϕm(0) = ϕ̇m(0) = ϕ̈m(0) = · · · = ϕ(n)
m (0) = 0 (20)

In this way we obtain the following linear system of equations:
{ ∑n

i=0 Ci = 1
∑n

i=0 P (γi, k)Ci = 0 k = 1, 2, . . . n
(21)

which can be rewritten in matrix form as:

Z̄c̄ = ū (22)

where c̄ = (C0 C1 C2 . . . Cn)
T , ū = (1 0 0 . . . 0)T and Z̄ is

a square matrix of order n+1 having the following structure:

Z̄ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 1 . . . 1
γ0 γ1 . . . γn

γ0(γ0 − 1) γ1(γ1 − 1) . . . γn(γn − 1)
...

... . . .
...

P (γ0, n) P (γ1, n) . . . P (γn, n)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(23)

We note that the matrix Z̄ can be automatically compiled by
a computer program, without particular difficulties.

It is important to observe that the function ϕm(t) and
its time derivatives depend on the values assigned to the
coefficients γi.

If these exponents assume integer positive values, we ob-
tain the classical polynomial functions, widely cited in the
technical literature and frequently employed to design cam
mechanisms [2] or to define the reference motion commands
for electro-mechanical actuators employed in robotic manipu-
lators or in other automatic machines.

On the contrary, if these parameters assume non integer
(but always positive) values, the corresponding functions are
no more polynomial, even if, from the analytical point of
view, they can be still calculated with the previous described
procedure.

In this case we can introduce the concept of pseudo-
polynomial function, to put in evidence, at the same time,
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the analogies and the differences with a standard polynomial
function.

New motion commands can be generated, if the shape
parameters are suitably changed.

As an example, Fig. 2 show a comparison between a
standard polynomial function (with integer exponents) and a
pseudo-polynomial function (with non integer positive expo-
nents).

The diagrams have been calculated by means of Eqs. (8),
(9) and (10), using the control parameters listed in Table II; the
same table shows the values of the coefficients Ci (i = 0, 1, 2),
given by Eqs. (16). It is evident the deformation of the
diagrams, when non-integer values of the parameters are used.

These parameters can be automatically selected by a nume-
rical procedure, in order to optimize a suitable target function,
as it will be explained in the next sections.

IV. SUPPRESSION OF THE RESIDUAL VIBRATION

As mentioned above, the residual vibration is a free vibra-
tion that appears at the end of the motion interval, that is
for t > T ; in this situation the shaft of the servomotor is
kept locked on the final position, whereas the rotary platform
oscillates due to the elasticity of the belt transmission.

The vibration is possible because some energy is still
present in the mechanical device at the time instant t = T .

Through a proper selection of the reference motion com-
mand imposed to the servomotor it is possible to set at zero
or to minimize the value of this energy; consequently the
residual oscillations will be eliminated or strongly reduced in
amplitude.

Starting from these considerations, it is clear that the final
mechanical energy of the system plays the role of a target
function, whose value can be set to zero (or minimized),
by means of suitable optimization techniques, available in
literature [3].

For the 1-DOF system described by Eq. (1) the total
mechanical energy Etot, at the generic time instant t, can
be easily calculated by adding the kinetic energy of the
rotating masses Ekin = 1

2Jϑ̇
2 to the potential energy

Epot = k(Rϑ− rϕ)2 due to the elastic deformation of the belt
branches; so we have:

Etot =
1

2
[Jϑ̇2 + 2k(Rϑ− rϕ)2] =

1

2
[Jϑ̇2 + kt(ϑ− λϕm)2]

(24)
If we introduce the variable α, Eq. (24) can be rewritten as:

Etot =
1

2
J [(α̇+ λϕ̇m)2 + ω2

nα
2] (25)

where ω2
n = kt/J .

TABLE II
CONTROL PARAMETERS OF THE FUNCTIONS REPRESENTED IN FIG. 2.

γ0 γ1 γ2 C0 C1 C2

POLYNOMIAL 3 4 5 10 -15 6
PSEUDO-POLYN. 4.5 6.2 8.4 7.855 -10.107 3.252
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Fig. 2. Comparison between a polynomial motion command (solid line)
and a pseudo-polynomial motion command (dashed line). a) displacement;
b) velocity; c) acceleration. The functions have been calculated for T = 1 s
and Φ = 1 rad.

At the final time instant t = T the angular velocity of the
motor is null (ϕ̇m(T ) = 0); therefore we obtain from Eq. (25):

Etot(T ) =
1

2
J [(α̇2(T ) + ω2

nα
2(T )] (26)

The terms α(T ) and α̇(T ) that appear at the right-hand side
of Eq. (26) can be calculated through Eq. (5); in particular,
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the velocity term (for a generic time instant t) is given by the
following relationship:

α̇(t) = − λ

ωd

d

dt

∫ t

0

f(t, τ) dτ (27)

which requires differentiation under the integral sign1. Since
f(t, τ)|τ=t = 0, the formula indicated in the footnote gives
the following result:

α̇(t) = − λ

ωd

∫ t

0

g(t, τ) dτ (28)

where g(t, τ) = ∂
∂tf(t, τ). From Eq. (6) we obtain the

analytical expression of the g function:

g(t, τ) = ωnϕ̈m(τ)e−ξωn(t−τ) cos[ωd(t− τ) + δ] (29)

where tan δ = ξ/
√

1− ξ2. If now we introduce the following
definitions:

F =

∫ T

0

f(T, τ) dτ G =

∫ T

0

g(T, τ) dτ (30)

Eq. (26) assume the form:

Etot(T ) =
1

2
J

(
λ

ωd

)2

[G2 + ω2
nF

2] = hH (31)

where h = 1
2J

(
λ
ωd

)2

and H = G2 + ω2
nF

2.
The term between square brackets in Eq. (31) depends on

the motor acceleration ϕ̈m, through the functions f(T, τ) and
g(T, τ) and therefore it depends on the values assigned to the
control parameters γi. Hence, with mathematical formalism,
we can write:

H =
Etot(T )

h
= H(γ0, γ1, γ2) (32)

The control parameters can be automatically selected by a
numerical procedure, in order to optimize the target function
H. Using this approach, it is also possible to introduce of some
algebraic constraints, to reduce the computational time and to
drive the optimization process towards a satisfactory solution.

V. NUMERICAL RESULTS

This paragraph presents some numerical results, obtained
by means of the motion planning technique described in the
previous sections. The calculation have been performed for the
system represented in Fig. 1, whose parameters are listed in
Table III. The angular displacement of the motor has been set
to 15 revolutions, corresponding to a rotation of 180 degrees
of the platform. The total motion time is T = 1 s.

1We report here the general formula for differentiation under the integral
sign:

d

dt

∫ b(t)

a(t)
f(t, τ)dτ =

=

∫ b(t)

a(t)

∂

∂t
f(t, τ)dτ + f(t, b(t))b′(t)− f(t, a(t))a′(t)

If a(t) = 0 e b(t) = t the above-mentioned formula can be simplified as
follows:

d

dt

∫ t

0
f(t, τ)dτ =

∫ t

0

∂

∂t
f(t, τ)dτ + f(t, τ)|τ=t

The motion command for the servomotor has been gene-
rated by means of Eqs. (8), (9) and (10), using Eqs. (16) to
calculate the coefficients C0, C1 and C2.

In order to minimize the target function H an optimiza-
tion procedure has been implemented using a Quasi Newton
method; the initial values of the control parameters are γ0 = 3,
γ1 = 4, γ2 = 5 corresponding to a standard fifth degree
polynomial function. At the end of the optimization process
the following final values have been found: γ0 = 3.024,
γ1 = 4.565, γ2 = 5.874.

Fig. 3 shows the results before and after the optimization
process. In the first and in the second row we have reported
the angular velocity ϑ̇(t) and the angular acceleration ϑ̈(t) of
the rotary platform as function of time (solid line); the dashed
lines indicate the corresponding motion commands. The third
and the fourth row show the time histories of the kinetic and
potential energy of the system.

The comparison between the velocity and the acceleration
diagrams in the left and right columns clearly shows that
the residual vibration disappears, when optimized motion
commands are used to drive the servomotor.

VI. CONCLUSIONS

A method for reducing the residual vibration of belt-driven
rotary platform has been presented in the paper. The calcula-
tion procedure employs a mathematical model of the system,
a class of parametric functions and an optimization algorithm,
that minimizes the total mechanical energy of the system at the
final time instant. Through computer simulation, the technique
has been successfully tested on a 1-DOF vibrating system,
consisting of a rotary platform driven by an electric servomotor
through a speed reducer and an elastic belt transmission.

The numerical results indicate that the proposed approach
seems to be able to reduce (or totally eliminate) the residual
vibrations, without changing the motion time, nor altering the
boundary conditions of the motion command.

The proposed method does not require complex control
algorithms for the servomotor or additional feedback sensors
to measure the vibration amplitude and, for these reasons,
it can be implemented on an actual machine with very low
costs: in fact it is just sufficient a modification of the reference
function memorized in the motion controller.

Since a mathematical model of the actual device is em-
ployed for motion optimization, it is necessary an accurate
identification of the mechanical parameters, in particular as
regards the equivalent damping coefficient. For this reason,
in the future the technique will be implemented on an experi-
mental test-bed, in order to validate the theoretical results here
presented.

TABLE III
NUMERICAL VALUES OF THE SYSTEM PARAMETERS.

SYMB. VAL. UNIT SYMB. VAL. UNIT

J 6 kgm2 r 60 mm
k 9× 104 N/m R 180 mm
c 150 Ns/m z 1:10 -
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Fig. 3. Comparison between the non-optimized case (left column diagrams) and the optimized case (right column diagrams): a, b) angular velocity ϑ̇(t) of
the rotary platform; c, d) angular acceleration ϑ̈(t) of the rotary platform; e, f) kinetic energy of the masses rotating about pivot O2. g, h) elastic potential
energy due to belt deformation. The dashed curves in the diagrams of the 1st and 2nd row indicate the velocity command λϕ̇m(t) and the acceleration
command λϕ̈m(t).
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