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ψ-exponential Stability for Non-linear Impulsive
Differential Equations

Bhanu Gupta and Sanjay K. Srivastava

Abstract—In this paper, we shall present sufficient conditions
for the ψ-exponential stability of a class of nonlinear impulsive
differential equations. We use the Lyapunov method with functions
that are not necessarily differentiable. In the last section, we give
some examples to support our theoretical results.
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I. INTRODUCTION

Many evolution processes are characterized by the fact that
at certain moments of time, they experience a change of state
abruptly. The impulsive system of differential equations are
an adequate apparatus for the mathematical simulation of such
processes and phenomena studied in biology, economics and
technology etc. That is why, in recent years, the study of
such systems has been very intensive [3,11]. One of the most
investigating problems in stability analysis of such systems is
exponential stability, since it has played an important role in
many areas such as control theory, designs and applications of
neural networks [7,8].
Lyapunov method and Lyapunov-Razumikhin technique have
been successfully utilized in the investigation of asymptotic
and exponential stability of impulsive differential systems
[2,4,5,10].
Akinyele [9] introduced the notion of ψ-stability of degree k
with respect to a function ψ ∈ C(R+,R+), increasing and
differentiable on R+ and such that ψ(t) ≥ 1 for t ≥ 0
and limt→∞ ψ(t) = b, b ∈ [1,∞). In [6], Morachalo intro-
duced the notions of ψ-stability, ψ-uniform stability and ψ-
asymptotic stability of trivial solution of the nonlinear system
x

′
= f(t, x). Diamandescu in [1], proved some sufficient

conditions for ψ-stability of the zero solution of a nonlinear
Volterra integro-differential system.
The purpose of this paper is to establish sufficient conditions
for ψ-exponential stability and ψ-global exponential stability
for a class of nonlinear impulsive system of differential
equations via proposing a Piecewise Continuous Lyapunov ψ-
function. The theoretical result have been supported by some
examples in the last section.

II. PRILIMINARIES

Let R
n denote the Euclidean n-space. Elements of this

space are denoted by x = (x1, x2, ..., xn)T and their norm
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is given by ‖x‖= max{|x1|, |x2|, ..., |xn|}. For n×n real
matrices, we define the norm |A| = Sup‖x‖≤1‖Ax‖. Let
ψi : R+ → (0,∞), i = 1, 2, ..., n, where R+ = [0,∞) be
the continuous functions and let ψ = diag[ψ1, ψ2, ..., ψn].
Consider the impulsive differential system

ẋ = f(t, x), t �= tk,

Δx = Ik(x), t = tk, k = 1, 2, ..., n, (1)

x(t0 + 0) = x0,

where f : R+ × R
n −→ R

n is a nonlinear function,
Ik : R

n −→ R
n are continuous functions, 0 ≤ t0 < t1 <

t2 < ... < tn < t are fixed moments of impulse effect and
Δx = Ik(x) = x(tk + 0) − x(tk − 0).
Here we assume that functions f, Ik, k ∈ N , satisfy all
necessary conditions for the global existence and uniqueness
of solution for all t ≥ t0.

Definition 2.1: Let E ⊂ R
n be an

open set containing the origin. A function
V : R+ × E → R+ is said to belong to class V0

if
(i) V is continuous in each of the sets [tk−1, tk) × E.
(ii) V (t, x) is locally Lipschitizian in all x ∈ E ⊂ R

n and
for all t ≥ t0, V (t, 0) = 0.
(iii) For each x ∈ E ⊂ R

n and t ∈ [tk−1, tk), k ∈
N, lim

(t,y)→(t−k ,x)
V (t, y) = V (t−k , x).

Definition 2.2: Given a function V : R+ × E → R+, the
upper right hand derivative of V with respect to system (1) is
defined by

D+V (t, x) = lim
h→0+

sup
1

h
[V (t+ h, x(t+ h))− V (t, x)] (2)

for (t, x) ∈ R+ × E.

Definition 2.3: The zero solution of system (1) is ψ-
exponentially stable if any solution x(t, t0, x0) of (1) satisfies
‖ψ(t)x(t, t0, x0)‖ ≤ β(‖x0‖, t0)e−δ(t−t0),∀ t ∈
[tk−1, tk), k = 1, 2, ..., n where β(h, t) : R+ × R+ → R+

is a non-negative function increasing in h ∈ R+, and δ is a
positive constant.

If the function β(.) in the above definition does not
depend on t0, the zero solution of (1) is called ψ-uniformly
exponentially stable.

Definition 2.4: The zero solution of system (1) is said to be
ψ-globally exponentially stable if there exist some constants
δ > 0 and M ≥ 1 such that for any solution x(t, t0, x0)
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of (1), we have ‖ψ(t)x(t, t0, x0)‖ ≤ Me−δ(t−t0), ∀ t ∈
[tk−1, tk), k = 1, 2, ..., n.

Definition 2.5: A function V (t, x) ∈ V0 is called a
Piecewise continuous Lyapunov-ψ function for (1) if V (t, x)
is continuously differentiable in [tk−1, tk), k = 1, 2, ..., n and
there exist positive numbers λ1, λ2, λ3, L, p, q, r, δ such that

λ1‖ψ(t)x(t)‖p ≤ V (t, x) ≤ λ2‖ψ(t)x(t)‖q, (3)

∀t ≥ 0, x ∈ R
n;

D+V (t, x) ≤ −λ3‖ψ(t)x(t)‖r + Le−δt, (4)

∀t ∈ [tk−1, tk), k = 1, 2, ..., n;

V (tk, x(tk)) ≤ V (t+k , x(t
+

k )). (5)

Definition 2.6: A function V (t, x) ∈ V0 is called a gen-
eralized Piecewise continuous Lyapunov-ψ function for (1) if
there exist positive functions λ1(t), λ2(t), λ3(t), where λ1(t)
is non-decreasing, and there exist positive numbers L, p, q, r, δ
such that

λ1‖ψ(t)x(t)‖p ≤ V (t, x) ≤ λ2‖ψ(t)x(t)‖q, (6)

∀t ≥ 0, x ∈ R
n;

D+V (t, x) ≤ −λ3‖ψ(t)x(t)‖r + Le−δt, (7)

∀t ∈ [tk−1, tk), k = 1, 2, ..., n;

V (tk, x(tk)) ≤ V (t+k , x(t
+

k )). (8)

In order to study exponential stability of (1), we need the
following comparison principle. Consider a scaler impulsive
differential system

u̇ = g(t, u), t �= tk,

Δu = Gk(u), t = tk, k = 1, 2, ..., n,

u(t0 + 0) = u0

where g(t, u) ∈ C[R+ × R+,R+] and g(t, 0) = 0.

Lemma 2.1: Let u(t) be a maximal solution of above
system. If a piecewise continuous function ν(t) with ν(t) = u0

satisfy

D+ν(t) ≤ g(t, u(t)), ∀t ∈ [tk−1, tk), k = 1, 2, ..., n,

then
ν(t) − ν(t0) ≤ ∫ t

t0
g(s, u(s))ds, ∀t ∈ [tk−1, tk), k =

1, 2, ..., n.

III. MAIN RESULTS

In this section, we shall present sufficient conditions for the
ψ-exponential stability, ψ-uniformly exponential stability and
ψ-globally exponential stability of (1) via proposed Piecewise
continuous Lyapunov-ψ function.

Theorem 3.1 The zero solution of system (1) is ψ-
exponentially stable if it admits a generalized Piecewise con-
tinuous Lyapunov-ψ function and the following two conditions
hold:

δ > inf
t∈R+

λ3(t)

[λ2(t)]r/q
> 0, t ∈ [tk−1, tk); (9)

∃ γ > 0 such that V (t, x) − [V (t, x)]r/q ≤ γe−δt. (10)

Proof. Let x(t) be the solution of (1) with x(t0) = x0, where
t0 ≥ 0 is any initial time.
Set

Q(t, x(t)) = V (t, x(t))eM(t−t0), ∀t ∈ [tk−1, tk), k = 1, 2, ..., n,

where M = inft∈R+

λ3(t)
[λ2(t)]r/q .

We see that M < δ and

D+Q(t, x) = D+V (t, x)eM(t−t0) +MV (t, x)eM(t−t0).

Taking (7) into account, for all t ≥ t0, t �= tk, we get

D+Q(t, x) ≤ (−λ3(t)‖ψ(t)x(t)‖r + Le−δt)eM(t−t0)

+ MV (t, x)eM(t−t0), ∀t ∈ [tk−1, tk), k = 1, 2, ..., n.

From (6) and since, by the assumption, λ2(t) > 0 for all
t ∈ [tk−1, tk), we have

‖ψ(t)x(t)‖q ≥ V (t, x)

λ2(t)
,

equivalently

−‖ψ(t)x(t)‖r ≤ −[
V (t, x)

λ2(t)
]r/q.

Therefore, we have

D+Q(t, x) ≤ {−V (t, x)r/q λ3(t)

[λ2(t)]r/q
+ Le−δt}eM(t−t0)

+ MV (t, x)eM(t−t0).

Since
λ3(t)

[λ2(t)]r/q
≥M, ∀t ∈ [tk−1, tk),

and by the condition (10), we obtain

D+Q(t, x) ≤ M{V (t, x) − V (t, x)r/q}eM(t−t0) + Le−δteM(t−t0)

≤ Mγe−δteM(t−t0) + Le−δteM(t−t0)

= (L+Mγ)e−δteM(t−t0)

≤ (L+Mγ)e−δ(t−t0)eM(t−t0).

Therefore, D+Q(t, x) ≤ (L + Mγ)e(M−δ)(t−t0), ∀ t ∈
[tk−1, tk), k = 1, 2, ..., n.
By Lemma 2.1 to the case

ν(t) = Q(t, x(t)), g(t, u(t)) = (L+Mγ)e(M−δ)(t−t0),

we obtain

Q(t, x(t)) −Q(t0, x0) ≤
∫ t

t0

(L+Mγ)e(M−δ)(s−t0)ds t �= tk

= (L+Mγ)
1

M − δ
{e(M−δ)(t−t0) − 1}.

Setting δ1 = −(M−δ), by condition (9), we have δ1 > 0 and

Q(t, x(t)) ≤ Q(t0, x0) +
L+Mγ

δ1
− L+Mγ

δ1
e(M−δ)(t−t0)

≤ Q(t0, x0) +
L+Mγ

δ1
.

Since Q(t0, x0) = V (t0, x0) ≤ λ2(t0)‖ψ(t0)x0‖q, we get

Q(t, x(t)) ≤ λ2(t0)‖ψ(t0)x0‖q +
L+Mγ

δ1
.
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Letting

λ2(t0)‖ψ(t0)x0‖q +
L+Mγ

δ1
= β(‖x0‖, t0) > 0,

we have

Q(t, x(t)) ≤ β(‖x0‖, t0), ∀t ∈ [tk−1, tk), k = 1, 2, ..., n.
(11)

Furthermore, from condition (6), it follows that

λ1(t)‖ψ(t)x(t)‖p ≤ V (t, x(t)),

‖ψ(t)x(t)‖ ≤ {V (t, x(t))

λ1(t)
}1/p.

Since λ1(t) is non-decreasing, λ1(t) ≥ λ1(t0), we have

‖ψ(t)x(t)‖ ≤ {V (t, x(t))

λ1(t0)
}1/p.

Substituting

V (t, x) =
Q(t, x)

eM(t−t0)
,

into the last inequality, we obtain

‖ψ(t)x(t)‖ ≤ { Q(t, x(t))

eM(t−t0)λ1(t0)
}1/p. (12)

Combining (11) and (12),

‖ψ(t)x(t)‖ ≤ { β(‖x0‖, t0)
eM(t−t0)λ1(t0)

}1/p

= {β(‖x0‖, t0)
λ1(t0)

} 1

p e−
M
p (t−t0), (13)

∀t ∈ [tk−1, tk), k = 1, 2, ..., n,

which shows that system (1) is ψ-exponentially stable and
hence the Theorem.

If we consider ψ as scaler function independent of t, then
we get a sufficient condition for ψ-uniformly exponential
stability as stated below:

Theorem 3.2 Let ψ be a constant function independent of t.
Then the zero solution of system (1) is ψ-uniformly exponen-
tially stable, if it admits a piecewise continuous Lyapunov-ψ
function and the following two conditions hold:

δ >
λ3

[λ2]r/q
, (14)

∃ γ > 0 such that V (t, x) − V (t, x)r/q ≤ γe−δt, (15)

∀t ∈ [tk−1, tk), k = 1, 2, ..., n.

Proof. The proof is in the same line of the proof of Theorem
3.1, so omitted.

Theorem 3.3 The zero solution of system (1) is ψ-globally
exponentially stable, if it admits a piecewise continuous
Lyapunov-ψ function with p = q = r and δ, with δ > λ3

λ2

.
Proof. Let

Q(t, x) = V (t, x)eλ3t/λ2 , ∀ t ∈ [tk−1, tk), k = 1, 2, ..., n.
(16)

Then from (3), (4) and (16)

D+Q(t, x) = D+V (t, x)eλ3t/λ2 +
λ3

λ2

V (t, x)eλ3t/λ2 , t �= tk

≤ (−λ3‖ψ(t)x(t)‖p + Le−δt)eλ3t/λ2 +
λ3

λ2

Q(t, x)

≤ (−λ3

λ2

V (t, x) + Le−δt)eλ3t/λ2 +
λ3

λ2

Q(t, x)

= Le(−δ+
λ3

λ2
)t

= Le−βt , t �= tk, (17)

where β = δ − λ3

λ2

.
Integrating both sides (17) from t0 to t, t �= tk, we get

Q(t, x) −Q(t0, x0) ≤ β−1L[e−βt0 − e−βt]

≤ β−1L = L(δ − λ3

λ2

)−1.

Therefore

Q(t, x) ≤ Q(t0, x0) + L(δ − λ3

λ2

)−1 = a, (18)

where a = Q(t0, x0) + L(δ − λ3

λ2

)−1.
From (3), (16) and (18) we have,

‖ψ(t)x(t)‖ ≤ [
1

λ1

V (t, x)]1/p

= [
1

λ1

e−λ3t/λ2Q(t, x)]1/p

≤ [a
1

λ1

e−λ3t/λ2 ]1/p

= Me−ηt ≤Me−η(t−t0), ∀t ∈ [tk−1, tk),

where M = (a/λ1)
1/p and η = λ3/(λ2p).

This completes the proof.

IV. EXAMPLES

In this section, we give some examples to support our results
in above section.
Example 4.1 Consider an impulsive differential equation

ẋ = −1

6
etx

3

5 +
x

12
+ e−3t/2cost, t �= kπ/4, k = 1, 2, ...,

Δx = −1/2, t = kπ/4. (19)

Let ψ(t) = et and a piecewise continuous Lyapunov-ψ
function V (t, x) ∈ V0 with E = {x :| x |≤ 1} given by

V (t, x) = e−t/2x6.

Then (6) holds for p = q = 6, λ1(t) = e−13t/2, λ2(t) = e−6t.
Now

V̇ (t, x) = −1

2
e−t/2x6 − et/2x28/5 + 6e−2tx5cost

≤ −et/2x28/5 + 6e−2t, t �= kπ/4.

It follows that conditions (7) holds for λ3(t) = e−51t/10, L =
6, r = 28

5
, δ = 2.

Now inf λ3(t)
(λ2(t))r/q = inf et/2 = 1 < 2 = δ

and
V (t, x) − [V (t, x)]r/q = e−t/2x6 − e−7t/15x28/5 ≤ 0 ≤
e−2t, t �= kπ/4.
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Hence by Theorem 3.1, the zero solution of (19) is ψ-
exponentially stable.

Example 4.2 Consider impulsive differential equation

ẋ = −1

3
x

5

2 + xe−2t, t �= k, k = 1, 2, ..., (20)

Δx = −1, t = k.

Let ψ(t) = 1

2
and a piecewise continuous Lyapunov-ψ

function V (t, x) ∈ V0 with E = {x :| x |≤ 1} is

V (t, x) =| x |3=
{
x3 for x ≥ 0
−x3 for x < 0

Now

V̇ (t, x) =

{ −x 9

2 + 3x3e−2t for x ≥ 0

x
9

2 − 3x3e−2t for x < 0

= − | x | 92 +3 | x |3 e−2t

≤ − | x | 92 +3e−2t, t �= k.

It follows that conditions (3) and (4) holds for
λ1 = 1, λ2 = 16, λ3 = 29/2, p = q = 3,
L = 3, r = 9

2
and δ = 2.

Now λ3

(λ2)
r/q < 2 = δ

and
V (t, x) − [V (t, x)]r/q =| x |3/2 (| x |3/2 −1) ≤ 0 ≤ e−2t,
t �= k.
Hence the zero solution of (20) is ψ-uniformly exponentially
stable.

Example 4.3 Consider impulsive differential equation

ẋ = −x 1

2 + x2e−3t, t �= k, k = 1, 2, ..., (21)

Δx = −2, t = k.

Let ψ(t) = 1 and a piecewise continuous Lyapunov ψ-function
V (t, x) ∈ V0 with D = {x :| x |≤ 1} given by

V (t, x) =| x |1/2=

{
x1/2 for x ≥ 0
−x1/2 for x < 0

Now

V̇ (t, x) =

{ − 1

2
x0 + 1

2
x3/2e−3t for x ≥ 0

1

2
x0 − 1

2
x3/2e−3t for x < 0

= −1

2
| x |0 +

1

2
| x |3/2 e−3t

≤ −1

2
| x | 12 +

1

2
e−3t, t �= k.

It follows that conditions (3) and (4) holds for λ1 = 1, λ2 =
1, λ3 = 1/2, p = q = r = 1/2, L = 1/2, δ = 3.
Now λ3

λ2

= 1/2 < 3 = δ.
Hence the zero solution of (21) is ψ-globally exponentially
stable.
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