International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:5, No:9, 2011

W-Eventual Stability of Differential System with
Impulses
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Abstract—In this paper, the criteria of W-eventual stability have
been established for generalized impulsive differential systems of
multiple dependent variables. The sufficient conditions have been
obtained using piecewise continuous Lyapunov function. An example
is given to support our theoretical result.
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I. INTRODUCTION

Many evolution processes are characterized by the fact that
at certain moments of time, they experience a change of
state abruptly. The impulsive system of differential equation
are an adequate apparatus for the mathematical simulation
of numerous processes and phenomena studied in biology,
economics and technology etc. That is why, in recent years,
the study of such systems has been very intensive (See [2-
11].

Akinyele [7] introduced the notion of W-stability of degree
k with respect to a function ¥ € C(Ry, Ry), increasing
and differentiable on R, where R = [0,00) and such that
U(t) > 1 for t > 0 and limy_,o, ¥(t) = b,b € [1,00). In [6],
Morachalo introduced the notions of W-stability, ¥-uniform
stability and W-asymptotic stability of trivial solution of the
nonlinear system — f(t,z). Then Diamandescu [1] proved
some sufficient conditions for W-stability of the zero solution
of a nonlinear Volterra integro-differential system.

The main purpose of this work is to investigate the sufficient
conditions for the existence of W-eventual stability of trivial
solution for generalized impulsive differential system of multi-
ple dependent variables, where U is a matrix function defined
in the section below.

The paper is organized as follows. In Section 2, we introduce
some preliminary definitions and notations which will be
used throughout the paper. In Section 3, we investigate some
sufficient conditions for W-uniform eventual stability and -
uniform asymptotic eventual stability of trivial solution of the
impulsive differential systems. In Section 4, an example to
support our theoretical result has been discussed.

II. PRILIMINARIES

Let R" denote the Euclidean n-space. Elements of this
space are denoted by z = (z1,2,...,7,)T and their norm
is given by |lz| = max{|z1]|,|z2], ..., |zn|}. For n x n real
matrices, we define the norm [A| = supj, < [|Az|. Let
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U, : Ry — (0,00),7 = 1,2,...,n where Ry = [0,00) be
continuous functions and let ¥ = diag[¥q, Vs, ..., U,,].

Let Rj; be the s-dimensional Euclidean space with a suitable
norm ||.|| and Ry, = {z € R®: ||z|| < H}.

Consider the system

= f(t,z)+9(ty) +h(t 2),t # 7,

) = u(t,z,y) oty 2) +w(t, z, 2),t # Tk,

2 = Ilt,x,y,2),t# 1%, (1)
Azli=r, = Au(@)+ Bi(y) + Ci(2),
Ayli=r, = Di(z,y)+ Ei(y, z) + Fi(z,2),
Az|t=r, Ge(z,y,2),k=1,2,..,

wheret€ Ry, x € R", y€ R™, z€ RP, f: Ry x R} —
R" g: Ry xRp}p — R", h: R xRY, - R", u:
R+><R}L{><R}”}—>Rm, v:RJ,_XRﬁXR’;IHRm’, w
RT™ x RY, x RY, — R™, | : RY x R} x R} x R, —
RP. Ay R}y, — R", By : R} — R", Cy: R}, — R", Dy :
RY x Ry — R™, Et:R$XR%—>Rm, F,: R} x RY, —
R™, G,:RY x R} x RY, — RP.
Ax‘t:Tk = x(Tk) - ZE’(T);),

y(Tl;)v Az|t=‘r;c = Z(Tk) - Z(T];)'
Lettyo € Ry,xz0 € R",yo € R™, 2y € RP.

Let .'l?(t, thxo»yovZO)»Z/(tytvaanOsZO):Z(t7t0~,l’an0,ZO) be
the solution of the system (1) satisfying the initial conditions

Ayli=r, = ylm) —

z(tg) = mo, y(td) = yo, 2(t§) = 20. )

Throughout this article, we assume the following conditions:
(a) The functions f(t,z), g(t,y), h(t, 2),u(t,x,y),v(t,y, z),
w(t,x,z) and I(¢,x,y,z) are continuous in their definition
domains, f(t,0) = g(t,0) = h(t,0) = 0;u(t,0,0) =
v(t,0,0) = w(t,0,0) =0 and I(¢,0,0,0) = 0 for tg € R
(b) The functions A, By, Cy, Dy, Ey, F; and G are continuous
in their definition domains and A4;(0) = B:(0) = C¢(0) =
D,(0,0) = E,(0,0) = F,(0,0) = G4(0,0,0) = 0.

© If z € %,y € Rp and z € RY,

then [z + Ai(z) + Bi(y) + CG:(2)l < |zl

ly + Dilz,y) + Eiz,y) + Fu(z,y)l < |[ly| and
2+ Ge(x,y, 2)[| < ]|

DWO<T9< T <7< ..and limg_,o T = 0.

() For each point (to,z0,Y0,20) € R. x

"oox RY xR, the solution z(t,%o, %0, Y0, 20)s
y(t, to, To, Yo, 20), 2(t, Lo, o, Yo, 20) of the system (1) is
defined in (tg,00) and is unique.

Note that ¥(ty) = V.
Now, we have following definitions:
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Definition 2.1: The zero solution of (1) is said to be W-
uniformly eventually stable if for e > 0, 36 = d(¢) > 0 and
7 =7(€) > 0 such that || (¢)z(t) + P (t)y(t) + T (t)z(t)|| < €
for ||Wozo + Yoyo + Yozoll < 0 and ¢ > to > 7(e).

Definition 2.2: The zero solution of (1) is said to be V-
uniformly asymptotically eventually stable if it is uniformly
eventually stable and 3 § > 0 such that for e > 0, there exist
7=7(e) >0and T = T(e) > 0 such that for (zq, yo, 20) €
RY x R x RY, and [[Wozo + Poyo + Pozo| < & implies
1T ()z(t) + T(t)y(t) + U(t)z(t)|| < e fort > tog+ T,tg >
7(€).

Definition 2.3: A function V : Ry X Ry, X R x Ry, — Ry
is said to belong to class V) if
(i) V is continuous on each of the sets [1p_1,7x) X R} X
R7 x RE;

(ii) V(t,x,y, 2) is locally Lipschitizian in all z,y, z on each
of the sets [,_1,7) X R x RT x R¥, and V(¢,0,0,0) =0
forte Ry;

(iii) For each (z,y,2) € RY% X RJY x RY, we have,
lim( V(t,z,y,z) = V(T]:r,l‘o,yo,ZO) ex-
1sts.

Definition 2.4: Let V € V,, for any (¢,z,y,2) €
[Thi—1,7K) X R% x RP x RE, the right hand derivative
V'(t,2(t),y(t), z(t)) along the solution of the problem (1)
is defined as

t.,a:,y,z)—*(‘f':— ,L0,Y0520)

’ 1
V (ta),y(0),2() = lim =~[V(t+s2+s{f(t2)
s— S
+ 9(ty) + 0t 2)}y + sfult, 2, y)
+ vty 2) fw(t,z,2)h 2+
Sl(t7 r,y, Z)) - V(t7 z,y, Z)]
We define,
K ={w € C(R4, Ry) : w is strictly increasing and
w(0) = 0},
= {¢ € C(Ry,R:) : ¢ isincreasing and ¢(s) <
s for s > 0}.

ITII. MAIN RESULTS

In this section we shall present sufficient conditions for
the W-uniform eventual stability and W-uniform asymptotic
eventual stability of trivial solution of the impulsive
differential system (1).

Theorem 3.1 Assume that there exist functions V €
Vo,a,b € K, ¢ € K; such that
) b([[®(@)=(t) + U(t)y(t) + V(@)2(t)])) < V(E,z,y,2) <
a([[¥()z(t) + W (t)y(t) + ¥ (t)z(1)])),
(t,z,y,2) € Ry X R x R x Rby;
() V' (ta(t),y(t),2(8) < gO)w(V(ta(t),y(t), 2(t))),
where (t,z,y.2) € [Tk—1.7k) X Ry x R}y x R} and the
functions g, w : Ry — R, are locally mtegrable
(iii) For all ¥ € N, (x,y,2) € RY x Ry x
Ry, V(mea(ry) + Az) + Bily) + Cil2),y(r,) +
Di(z,y) + E(y,2) + Fi(z,x),2(r;) + Ge(z,y,2)) <
oV (7 2(my, ), y(7y ), 2(7,)));
(iv) There exist a constant A > 0 such that f;il g(s)ds < A

and ffﬁl(m —ds_ > A for any 4 >0 and k € N.

w(s)

Then the zero solution of system (1) is W-uniformly eventually

stable.

Proof: Let € > 0 and choose § = d(e) > 0,7(e) > 0 such

that § < a=1(¢(b(e))),to > 7(€). We are to prove that for

(Io,yo,ZO) S RZ X RTHR X RI;{ ”\I/()LI?O + \I/Qy() + \I/()Z()H <4

implies

[W(6)z(t) + W()y(t) + C(B)z(O)] < et = to = 7(e).

Let tg € [Timn—1, Tm) for some m € N. We firstly prove that
V(t,z,y,2) < ¢~ 1(ald)), to <t < T 3)

Clearly,

V(to, Zo, Yo, z0) < a(||Wozo+Poyo+Wozol|) < a(f) < ¢~

If (3) does not hold, then there is a t; € (to, 7,,) such that

V(ty, x(th), y(t1), 2(t1)) > ¢~

From the continuity of V' (¢, x,y, 2) in [T—1, Tm ), there is an
s1 € (to,t1) such that

V(si,a(s1),y(s1),2(s1)) = o' (a(0)),
V(t,z(t),y(t),2(t) > ¢ '(a(d)), s1 <t <t1(4)
V(t,x(t),y(t),2(t)) < ¢ '(a(d)), to <t < s,

and there also exist an sy € (%g, s1) such that

a(d),
a(d), s2<t<s1. (5

Vi(s2,x(s2),y(s2),2(s2)) =
Vi(t,x(t),y(t),2(t) >

Integrating the inequality given in (ii) within [sz, s1] and by

condition (iv), we get
"V (s1,2(s1),y(s1),2(s1)) d "5 T
/ —ig/gwﬁg/
Visza(s2)u(sa)z(s2)) W)~ Uy -
(6)

On the other hand, from the inequalities (4), (5) and condition

(iv), we have
»~ " (a(5))
-/ G osa @
() w(s)

/V(Sl73”(:91)7?/(51)72(31)) du
V(s2,2(s2),y(s2),2(s2)) w(u)

which contradicts the inequality (6) and so the inequality (3)
holds.

From condition (iii), we have

V(T (T )5 Y(Tim) s 2(Tm))
= Vit 2(1,) + A7) + Bi(y) + Ci(2), y(
+E(y, 2) + Fi(z,2), 2(1,) + Gu(,y, 2))
OV (7o, 2(70), ¥(710), 2(77)))

IN N

Now, we prove
V(t,x(t),y(1), () < ¢~ (al(6)), i <t < Tygr. (9

If the inequality (9) does not hold, then there exist { €
(T, Tm+1) such that V (£, z(1),y(0), 2(£)) > o~(a(6)) >
CL((S) Z V(Tm7l‘(7—m)7y(7_m)vz(7—m))'

Ha(9)).

L(a(8)) > a(d) > V(to, 0, Yo, 20)-

g(t)dt < A.

) + Di(2,y)

$(¢~"(a(9))) = a(9). (8)

1501



International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:5, No:9, 2011

From the continuity of V (¢, z,y, 2) in [T, Tim+1), there is an
r1 € (T, t) such that

V(ri,a(r) y(r), 2(r) = ¢~ (a(9)),
V(tz(t),y(t),2(t) > ¢ '(al(d)), r1 <t <#(10)
Vit 2(t).y(t).2(t)) < 67 (al(d)), to <t <,

and there also exist an ry € (7, 71) such that

V(TZv (12),y(72) (12)) = a

V(tvl(t)ay(t)vz(t)) > a yI'2 StSTL (11)

Again integrating the inequality given in (ii) within [ry, 7]
and by similarly as above, we get a contradiction.

So the inequality (9) holds.

From (iii), we have

V(Tma1s T (Tt 1) Y(Tma1)s 2(Tm1))
V (Tt 1, 2(Tp 1) + At(z) + Bi(y) + Ci(2),2

( m+1>

U(t)y(t) + ()z(0)|) < alg),t > to > 7(q), it is obvious
that V(t,z,y,2) < a([[U(t)z(t) + U(t)y(t) + U(t)z(H)]]) <
a(q),t = to > 7(e).

So in any case, we have V(t,z,y,2) < a(|¥(@)z(t) +
U(t)y(t) + U(t)z(t)||) < alq) holds for ¢ > tg > 7(€).

In the following, we prove that for 7'(¢) > 0 such that
[Pozo+Poyo+ Wozo|| < 6 implies || W (¢)z(t, Lo, To, Yo, 20) +
U(t)y(t, to, zo, Yo, z0) + Y (t)z(t, to, o, Yo, z0)|| < € for t >
to+T(e),to > 7(e)

Now, let

I \/

M = M9 = sup{ s 6(0(0) < 5 < (o))

and note that 0 < M < oo. For b(e) < p < alq),

we have ¢(b(e) < ¢p) < p < alg) and so
< Jd> o) u(;) < M(p — ¢(p)), from which we obtain

(f)(p) <p-— B/M < p —d, where d = d(¢) > 0 is chosen

such that d < \4 .

+D¢(z,y) + Ei(y, 2) + Fi(z,%), 2(Tp 1) + Gi(2,9,2)) Let N = N(e) be the smallest positive integer for which

¢(V( m+17 ( 7n+1)7y( m+1)7 ( 'm+1)))

ININ

By induction, we can prove that in general

V(t,2(t),y(t), 2(t) < ¢~ (a(0)), Timri <t < Tmyit1,
V(Tmtit 1, T(Tmtit1)s Y(Tmtit1)s 2(Tmtit1)) < a(0), (13)

fori=0,1,2,..
L(a(d)), it follows that form (3) and (13) that

(a(d)) < ble), t > to > 7(€).
(14)

Now by condition (i), we have ||U(¢)z(t) + ¥(t)y(t) +

V()20 < b= LV (1, 2(0). y(0). (1)) < b1 (b(e)) = ¢, ¢ >

to > 7(€).

Thus the zero solution of (1) is ¥-uniformly eventually stable.

As a(d) < ¢~
V(t,z(t),y(t),2(t) < ¢

Theorem 3.2 Let all the conditions of Theorem 3.1 be
satisfied except (iv), which is replaced by
V) = supgeg{m — T} < < 4 =
SUP;>g ftﬂr'y g(s)ds < oo and B = inf ;5 j;;l(q) i > A
Then the zero solution of system (1) is W-uniformly asymp-
totically eventually stable.
Proof: If all the conditions of Theorem 3.2 holds, then all the
conditions of Theorem 3.1 hold. Thus the zero solutions of
system (1) is W-uniformly stable.
Therefore, for given ¢ > 0, for all {x € R4, we can
choose § > 0,7(q) > 0 such that a(d) = ¢(b(q)), for all
(%0,Y0,20) € Ry x R x RE,, such that ||Toxo + Poyo +
Wozg|| < & implies

[W(t)z(t) +W(B)y(t) + WD)z < g, t > to > 7(q).

Moreover, V(t,z,y,z) < a([|P()z(t) + Y()y(t) +
U(t)z(t)]l) < alg), t>to>T(Q)

Now, let ¢ > 0 be given, we can find 7(¢) > 0 such that
tO > T( )

If 7(e) < 7(q), then V (¢, z,y,2) < a(||¥(t)z(t) + ¥ (¢)y(t) +
Y(t)z(t)]) < alg).t = to = 7(q) = 7(e).

If 7(¢) > 7(q), then as V(t,z,y,2) < a(|P(t)z(t) +

d(¢ " (a(9))) = a(d). (12)

a(q) < b(e) + Nd and we define T = T'(¢) = N~.

Given a solution = = ({0, 20,Y0,20),y =
y(tatlhx()sy()vzﬂ)vz = Z(t,t0,$07y0,20) of system
(1), where ty € [r-1,7;) for some integer I, we
will prove that if ||Pozg + Poyo + Tozol| < 6
then || (¢)x(t,to, z0,Y0,20) + Y(t)y(t, to,zo,Y0,20) +
U (t)z(t,to, o, Yo, 20)|| < € t > to+T(€),tog > T(€).

Given 0 < D < a(g) and j > 1, we will show that

(@ if  V(r, (), y(r), 2(15)) < D then
V(t,z(t),y(t), 2(t)) < D for t > 7;;

(b) if in addition D > b(e), then V (¢, 2(¢), y(t), 2(t)) < D—d
for t > ;.

Firstly we prove (a).

If (a) does not holds, then there exist some t > 7; such
that V(¢,2(¢),y(t),2(t)) > D. Then let t; = inf{t >
T o V(tx(t),y),2(t)) > D}. Thus 1 € [7h,Tht1)
for some k > 4. As V(mg,x(7),y(1e),2(1)) <
oV (rsa(r )y 27 ) < 6(D) < D, then
t1 € (Tk, Th41). Moreover, V (t1,z(t1),y(t1), 2(t1)) = D and
V(t,z(t),y(t),z(t)) < D for t € [1j,t1].

Let

t=sup{t € [ri, 1] : V(£ 2(t),y(t), 2(1)) < ¢(D)}.

As Vit o(t),y(t), 2(t1) = D > 6(D),

then & € [m,t1), V(L,2(0)y(0),2(1)) = ¢(D) and
V(t,l‘(t), y(t)7 Z(t)) 2 ¢(D) for ¢ /E [t7 tl]

So integrating inequality V (¢, x(t),y(¢), 2(¢)) <
g()w(V(t,x,y,z)) over [t,t1], we get

/V(tlwz(tl)vy(tl)vz<tl)> ds
vV

<A
(@ a@@) w(s)

Also fv(tl, (t1),y(t1),2(t1)) ds

natad ) wt = Iy w2 B> A

This is a contradiction, so (a) holds.
Now we prove (b).
On the contrary, assume that there exist some ¢ > 7;,
such that V(¢,z(t),y(t),2(t)) > D — d. Then define
r1 = inf{t > 7 Vt,x(t),y(t),z(t)) > D — d}
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and let k¥ > j be chosen such that r; € [Tk, Tk+1). AS
b(e) < D < a(q), we have ¢(D) < D — d.

So from (a) and condition (iii),

V(s (1), y(71), 2(7k)) < S(V (7, 2(73, ), 9(73, ),

< ¢(D) < D —d.

2(1,)))

Thus r € (Tk77k+1)

Moreover, V (ri,z(r1),y(r1),2(r1)) =
t € [1g,m), V(L x(t),y(t)) <D —d.
Let 7 = sup{t € [, 71), V(t,2(¢),y(t), 2(t)) < ¢(D)}.
As  V(ry,z(r).y(r1),z(r1)) -
¢(D) 2 V(Tkvz(Tk)v )

[T, 1), V (7, (), y(7), 2(7)) =
V(t,a(t), (1), 2(t)) = 6(D) for t € [F, 7).
So integrating the inequality V'(t,z(t),y(t),
g w(V (¢, (), y(t), 2(t))) over [F,r1], we have

D — d and for

(1) <

/V(le(h)ﬂl(rl)ﬁ(?‘l)) ds
V(F,2(F),y(F),2(7) w(s) ~

Also

fV r1,2(r1),y Tl) z T1 ) _ds fD d ds
V(7,x(7),y(7),z w(s) — Jo(D) w(s)

fd)(D) 'w(.s fD d w(.s

As b(e) < D < a(q), we have
(()) ¢(D) < D —d <D < afq).
_MforD d<s<D.

=

=
==

5

So we get

IV(H,L(H) W(r1),2(r1)) ds

V(7,2 (7) y(7),2(F)) w(s) = 2B - fD aMds =B —dM

>B+A—-B=A,
which is a contradiction, so (b) holds.

We define the indices k() for i = 1,2,3..., N as follows.
Let 51 =] and for i = 2,...N, let k() be chosen such that
Te() 1 < Trpi-1) < Tr(i).

Then from condition (v), we have 7,4y = 7 < to + r, and
fori=1,2,...., N,

T < Trp_1+7 < Trpa-1) +7r. Combining these inequalities,
Ty <to+rN =19+ T(G).

We claim that for each i = 1,2, ..., y(t), z(t)) <
a(q) — id for t > ).

By setting D = a(g) in (b), by condition (iii) and b(¢) < a(q),
we get V(¢ z(t),y(t),z(t)) < alq) —d for t > 7,0, as
V(t,x(t),y(t), 2(t)) < alq) fort € [to, T4y ), which establish
the base case.

We now proceed by induction and

V(tvx(t)9y(t>az(t)) < a(q) - ]d for ¢
some 1 <j<N-—1.

Let D = a(q) —jd. As Ty < TrpG+n, V(& x(
D for t > 1,5+ and so V (¢, x(t), y(t), z(¢
a(q) — (j + 1)d for t > 7,641

So we have proved our claim by induction.

N,V(t,x(t),

assume that
> Tpo for

t).y(t), =(t))
) < D-d

A

When j = N — 1, we get

V(t,z(t),y(t), () <a(q) — Nd < be),t > T .

As to + T'(e) > T, by condition (i), we get || U(¢)x(t) +
U(t)y(t) + U (t)z(t)|| < e fort > tg+ T(e) and to > 7(e).
Thus, the impulsive system (1) is WU-uniformly asymptotically
eventually stable.

IV. EXAMPLE

In this section, we give an example to illustrate our theo-
retical result.
Consider the system

T = cx(t) +dy(t) +ez(t). t # m,
(k) = (Tk)+/3y(7;§)+72(7£)7
= ay(t) +diz(t),t # 7, y(me) = oany(ry ) + Brz(y,),
zZ = ez(t),t 76 Tk, 2(m) =mz(r, ), k=1,2,3,..., (15)

where 0 < 79 < 14 < 7o < ... and limg .o 7, = 00,Cc >
0, d>0,e>0,¢1>0,d;y >0,e3 >0, a>0, 3>
0, v >0, a7 >0, 1 >0, 77 > 0 and the following
conditions hold:

De>ec, c>e, d>d, d>e a2 > f2+a?, o >
A+ 41 .

Q) 7 — -1 < 471"(3”2;/; )tin2
LetV(tly,):%( + y? + 2%),
B?)s, w(s) = s, g(t) = 2c +d.

Take WU(t) = 1/2,a(z) = 422, b(x) = x/2 € K.
Clearly,

¢(s) = (20° +

b @B)(t) + TEy(t) + VE)ap)]) < EHE)
Vit,z.0,2) < a¥0a(0) + W00 + YOO,
V/(t,x,y,z) = xx+yy+ 2z

= ca®(t) +da(t)y(t) + ex(t)z(t) + c1y’(t)
+day(t)z(t) + er2(t)

c(@2(t) + y2(t) + 22(t)) + d*

IN

LRSS0

= g(t)w(V(t, z,Y, Z))

72(t) + 2 (t) + 22 (1)
2
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Also,
V(T 2(7;) + Ae(x) + Bily) + Cil2), y(7y,) + Di(,y)
FE(y,2) + Pz ), 2(7) + Gol,3,2)

= Vi a(ry) + By(r) + 2 o (rp)
Hiy(r) + )

= @20 + B () + 22 ) + 20l ()
+287y (i )2(70) + 2073 ( )2(7) + edy® (7))
0122 (1) + 200 Buy () )2 () + 7727

< SO + ¥R + ) + 208 ()
2 (r0) + 2]

= B ) 4y )+ )

< (202 + P)a() + ) + )

= o(V(rg ,a(ry )yl )7z (73 )))-
Now, let A = —lnMQ—JrﬂQ, then A > 0 and

Tk — 2 2) 41 o? 2
fr,:,1 g(s)ds < (2¢+ d)( ln2a2(:_% )Hin2 7.2 ;B = A.

Lastly for any p > 0,
o) ds  _ fm“ ds
n s

w w(s) =Insmtmm

202+ﬁ2 = A

Therefore by Theorem 3.1, the zero solution of system (15)
is W-uniformly eventually stable.
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