
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:6, 2016

1159

Proxisch: An Optimization Approach of
Large-Scale Unstable Proxy Servers Scheduling

Xiaoming Jiang, Jinqiao Shi, Qingfeng Tan, Wentao Zhang, Xuebin Wang, Muqian Chen

Abstract—Nowadays, big companies such as Google, Microsoft,
which have adequate proxy servers, have perfectly implemented
their web crawlers for a certain website in parallel. But due to
lack of expensive proxy servers, it is still a puzzle for researchers
to crawl large amounts of information from a single website in
parallel. In this case, it is a good choice for researchers to use
free public proxy servers which are crawled from the Internet. In
order to improve efficiency of web crawler, the following two issues
should be considered primarily: (1) Tasks may fail owing to the
instability of free proxy servers; (2) A proxy server will be blocked
if it visits a single website frequently. In this paper, we propose
Proxisch, an optimization approach of large-scale unstable proxy
servers scheduling, which allow anyone with extremely low cost to
run a web crawler efficiently. Proxisch is designed to work efficiently
by making maximum use of reliable proxy servers. To solve second
problem, it establishes a frequency control mechanism which can
ensure the visiting frequency of any chosen proxy server below the
website’s limit. The results show that our approach performs better
than the other scheduling algorithms.

Keywords—Proxy server, priority queue, optimization approach,
distributed web crawling.

I. INTRODUCTION

AWeb crawler [1] is a program which downloads web

pages from World Wide Web. Many companies and

organizations are using this technology to collect the web

pages from www. The Google search engine [2] is a distributed

system that uses multiple machines for crawling. Attributor

[3] is a company that monitors the web for copyright and

trademark infringements by web crawler. Meanwhile, web

crawling and network security has a great relevance. For

example, many researchers and hackers use web crawling to

crawl data from websites, such as LinkedIn, Facebook. There

are many researches about connecting heterogeneous social

networks [4]-[5]. Hackers can get comprehensive personal

information by connecting different social networks, which is

a disaster for users.

Focused (topical) crawlers [6] are a group of distributed

crawlers that specialize in certain specific topics. Each crawler

will analyze its topical boundary when fetching web pages.

Many researchers have published studies about distributed

Xiaoming Jiang, Muqian Chen are with the Institute of Information
Engineering, CAS, National Engineering Laboratory for Information Security
Technologies, and University of Chinese Academy of Sciences, China (e-mail:
jiangxiaoming@iie.ac.cn, chenmuqian@iie.ac.cn).

Qingfeng Tan is with the Institute of Information Engineering, CAS
and National Engineering Laboratory for Information Security Technologies,
China (corresponding author, e-mail: tanqingfeng@iie.ac.cn).

Jinqiao Shi, Wentao Zhang, and Xuebin Wang are with the Institute
of Information Engineering, CAS and National Engineering Laboratory
for Information Security Technologies, China (e-mail: shijinqiao@iie.ac.cn,
zhangwentao@iie.ac.cn, wangxuebin@iie.ac.cn).

crawler [7]-[8]. There are two types of distributed crawlers [9]:

The crawlers distributed in a Local Area Network (LAN) and

the crawlers distributed in Wide Area Network (WAN). Since

LAN only uses one global IP address, a crawler distributed in

a LAN tends to be detected as impolite crawler. On the other

hand, implementing crawler distributed in WAN is costly. To

avoid the problem, Harry et al. [9] proposed a method to run

hundreds of threads in a single web crawler and to distribute

the threads into hundreds or thousands publicly available proxy

servers. Moreover, public proxy servers can hide the IP address

and other personal information. However, they did not use a

scheduling approach to schedule these unstable proxy servers.
Most free proxy servers are not always available, and they

may be broken during a period of time. And most websites

have a limit of visiting frequency. A focused web crawler has

to run carefully. If a user visits a website too frequently, the

IP address of this user may be blocked for a long period of

time during which the user cannot get access to this website.

Therefore, to ensure that the speed and efficiency of crawling

will not be affected, the following two critical issues should

be firstly considered. One is that many tasks may fail owing to

the instability of free proxy servers. The other is that a proxy

server will be blocked if it visits a single website frequently.

These two issues which can be said to be critical problems

seriously affect the efficiency of mining data.
To solve these two critical problems, we propose Proxisch:

An optimization approach of large-scale unstable proxy servers

scheduling to use free public proxy servers efficiently and save

time of mining data in parallel. To solve the first problem, it

selects the proxy servers by probability of their success rates;

to solve the second problem, it launches a priority queue based

on time. Both of the two methods will be introduced in detail

later.
Contributions: To address the above open problems,

we systematically study, implement, and evaluate Proxisch.

Specifically, our main contributions are as follows:

1) We design and implement a distributed web crawling

system. It enables users to quickly crawl data from a

single website by 2000 public proxy servers in parallel.

To the best of our knowledge, the work of Harry et al. [9]

is closest to our work. But they did not use a scheduling

approach to schedule these unstable proxy servers while

we use Proxisch to schedule unstable proxy servers.

2) In our system, we systematically study the proxy servers

life span and verify that the life span of proxy servers

obeys to exponential distribution. We come to know

when most proxy servers are unavailable and how often

we should update proxy servers by our analysis.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:6, 2016

1160

3) In proxisch, we estimate the reliability of proxy servers

and the stabler proxy servers are used preferentially. In

this way, the success rate of network tasks is higher than

other algorithms when used in our system.

4) In proxisch, we propose a frequency control mechanism

which can ensure the visiting frequency of chosen proxy

server below the limit of a single website, thus we can

avoid proxy servers being blocked by any website.

5) We introduce a method to help researcher or research

groups with small infrastructures to build an efficient

distributed web crawler. And it has proved to be a good

method.

Roadmap. Section II presents the summary of the most

representative related work. Section III describes the system

architecture of our distributed web crawler. Section IV focuses

on the frequency control mechanism and proxy servers

selection mechanism which are the two cores of system

architecture. The other core of system architecture which is

named IP proxy span analysis, according to which we update

our proxy servers regularly, is discussed in Section V. The

most important results are summarized in Section VI where

we give a description of our experiments. Finally, we make a

conclusion and give an introduction of future work in Section

VII.

II. RELATED WORK

A great deal of work on web crawling, especially distributed

web crawling has been done and is being done in the world.

Distributed web crawling can increase the speed of crawling.

Resource scheduling algorithm can help to make full use of

proxy servers properly. In this section, we survey about the

previous research on distributed web crawling and resource

scheduling algorithm.
Distributed web crawling. Salvatore et al. [10] crawled

part of data from Facebook for social network analysis with a

single thread in 10 days. It is too slow for collecting data

from a website. And other researches also show that it is

necessary to run a distributed system for collecting a great deal

of data [7]-[11]. Researchers have proposed lots of methods

for distributed web crawling. A distributed web crawling [12]

which can speed up this activity was put forward by Ming Ke.

However, it is not a good crawler when used to get data from

a certain website. Mining data from a single website differs

from mining data from many websites because the former is

intended to collect specific data from a certain place. Wang

[13] crawled Twitter from January 3rd to 24th 2010. During

this period, he collected around 500 thousand tweets and 49

million relations from 25 thousand users. Shkapenyuk et al.

[8] implemented a high-performance distributed web crawler

which can scale to (at least) several hundred pages per second.

But collecting a very large data in a limited time tends to be

detected as a cyber attack and will be banned from connecting

into the web server. To avoid the problem, Harry et al. [9]

proposed a method to run hundreds of threads in a single web

crawler and to distribute the threads into hundreds or thousands

public available proxy servers. However, considering that most

of public available proxy servers are unstable, a reasonable and

effective method to dispatch proxy servers is necessary.

Resource scheduling algorithm. Because proxy servers

may become unavailable during certain periods of time, we

study papers with the similar case here. Liu et al. [14] proposed

an effective hybrid algorithm based on particle swarm

optimization for permutation flow shop scheduling problem

with the limited buffers between consecutive machines to

minimize the maximum completion time. Similar to Liu whose

algorithm is with the limited buffers, Gunter [15] presented

a paper which reviewed results related to deterministic

scheduling problems with limited machine availability. McCoy

et al. [16] presented Proximax, a robust system that distributes

the proxies among the different channels in a way that

maximizes the usage of these proxies while minimizing the

risk of having them blocked. Wang et al. [17] proposed

rBridge user reputation system for bridge distribution; it

assigned bridges according to the past history of users to

limit corrupt users from repeatedly blocking bridges. Au et

al. [18] presented BLACR, which constituted a first attempt

to generalize reputation-based anonymous revocation, where

negative or positive scores can be assigned to anonymous

sessions across multiple categories. But all of these methods

cannot be used to schedule proxy servers directly.

To overcome the above problems, this paper proposes

Proxisch: An optimization approach of large-scale unstable

proxy servers scheduling. It can speed up multi-threading web

crawling and make full use of proxy servers which are crawled

from the public websites.

III. SYSTEM ARCHITECTURE

As mentioned above, mining big data without proxy servers

from a single website is very difficult. If it’s done too

fast, the IP address of users may be blocked for a certain

of time. To solve this problem, it is advisable to turn to

a fast distributed crawler with proxy servers. Large-scale

stable and rechargeable proxy servers are too exorbitant for

researchers, so we tend to crawl free proxy servers from

websites. However, free proxy servers are always unstable or

may be prohibited due to the limit of visiting frequency of

most websites. Even if a batch of proxy servers work well in

the beginning, most of them may be broken after a period of

time. Therefore, we propose Proxisch and implement a web

crawling system by Proxisch. The system architecture is shown

in Fig. 1.

A. Free Public Proxy Servers

There are lots of publicly free proxy servers on the Internet.

Some websites provide an interface by which we can get a

large number of proxy servers. Others only provide a few

proxy servers and we must analyze their pages to get their

proxy servers. We crawl about 8000 proxy servers from the

listed websites in Table I.

B. Checking Public Proxy Servers

Since lots of the public proxy servers are unreliable, they

must be checked before used. In our program, we test every

proxy server for 3 times at most. If a proxy server can get



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:6, 2016

1161

Fig. 1 System Architecture

TABLE I
WEBSITES FROM WHICH WE CAN GET PUBLICLY FREE PROXY SERVERS

Home Have a interface Type
www.89ip.cn Yes http/https
www.shifengsoft.com Yes http
www.66ip.cn/pt.html Yes http
http://www.xicidaili.com No http/https

access to global.bing.com for less than 4 times, then it is

considered as an available proxy server and will be stored

in the database. Otherwise, it will be discarded. The results of

our experiments show that only about 25 percent of them are

available.

C. Updating Public Proxy Servers

The available time of public proxy servers is always very

tight. If it takes 2 hour to complete our task and the proxy

servers do not work after 40 minutes, most of the task is not

completed. Therefore, it is meaningful to study the life span

of proxy servers. We verify that the life span of proxy servers

obeys to exponential distribution and use the model to compute

the interval we should change our proxy servers.

D. Proxisch

In order to improve efficiency of web crawler, the following

two issues should be considered primarily: (1) Tasks may fail

owing to the instability of free proxy servers; (2) a proxy server

will be blocked if it visits a single website frequently. Proxisch

exactly deals with the issues. To solve the first problem, it sets

up a mechanism, under which the stabler proxy servers are

used preferentially. To solve the second problem, it establishes

a frequency control mechanism which can ensure the visiting

frequency of any chosen proxy server below the website’s

limit. The detail of Proxisch will be explained in Section IV.

E. Distributed Web Crawler

In order to enhance the parallelism of system, we use gevent

[19] which is a coroutine-based Python networking library and

it uses greenlet to provide a high-level synchronous API on

top of the libev event loop. In our system, the size of thread

pool is 2000. It means that there are 2000 threads running

simultaneously.

IV. DESIGN

In this paper, we propose Proxisch which can enhance

the effective utilization of proxy servers and save time of

web crawling. The two cores of Proxisch are: 1) Frequency

control mechanism: It controls the used speed of proxy

servers by a priority queue; 2) Proxy servers selection

mechanism: It selects a proxy server by probability of the

proxy server’s success rate. In this section, we amply describe

the implementation of Proxisch.

A. Frequency Control Mechanism

Since most websites have visiting frequency limits (e.g.,

Google will block the IP address that visits it too often), we

should choose those usable proxy servers whose visits are not

frequent. Otherwise, many proxy servers will be blocked and

we will lose our usable resources. So we need to create a

new proxy servers’ allocation mechanism that considers the

visiting frequency limit.

TABLE II
PARAMETERS AND NOTATION USED IN SECTION IV

T The frequency limit: once every T seconds
Et The earliest available time of a proxy server

Et
′

The next earliest available time of a proxy server
Ct The current time
Max(Ct,Et) The bigger one between Ct and Et

Ten next earliest available time Et
′

is defined as:

Et
′
= Max(Ct,Et) + T (1)

This means that the time interval of one proxy server’s two

continuous visits is more than T seconds, so it meets the limit

of visiting frequency. The pseudocode of frequency control

mechanism is as Algorithm 1.

Algorithm 1 Frequency Control Mechanism

1: Get IP address of n proxy servers, and save them in

ip[0...n-1]

2: for i = 0 → n− 1 do
3: list[i] ← ip[i]
4: queue[i] ← [list[i], Ct, 0, 0]
5: end for
6: function GETPROXYFREQUENCY()

7: choice ← queue[0]
8: tail ← [queue[0][0],Max(Ct,Et) +

T, queue[0][2], queue[0][3]]
9: del queue[0]

10: queue[n− 1] ← tail
11: return choice
12: end function

The third element of the queque (defined in Algorithm 1)

means the number of successful visits of the proxy server

while the fourth element of queque means the number of

visiting failures of the proxy server. When we select and delete

a proxy server from the head of queque, it is used in a network

task at once. And we will put this proxy server into the tail

of the queque with the new earliest available time. So proxy



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:6, 2016

1162

servers are used cyclically and can meet visiting frequency

limit of websites.

B. Proxy Servers Selection Mechanism

Since all of the proxy servers are free, they are unreliable

and unstable. If we choose a proxy server only based on its

available time, then we will get many visiting exceptions. So

every time we choose a proxy server to do the coming network

job, we should consider its stability and reliability. So we

create the proxy servers selection mechanism based on success

rates. The better proxy servers are used more frequently and

this way can solve the problem exactly.

TABLE III
PARAMETERS AND NOTATION USED IN SECTION IV

Ff The number of visiting failures
Fs The number of successful visits
Sr The probability with which one proxy server is selected

Table III shows parameters and notation that will be used.

Sr which means the success rate is computed as:

Sr = Fs/(Fs+ Ff) (2)

This means that the proxy server chosen from the queue is

selected with Sr probability, and abandoned with (1 − Sr)
probability; if the current proxy server is abandoned, then

another proxy server is chosen from the queue until a proxy

servers is selected. The pseudocode of proxy servers selection

mechanism is shown in Algorithm 2.

Algorithm 2 Proxy Servers Selection Mechanism

function GETPROXYPROBABILITY()

2: choice ← GETPROXYFREQUENCY()

if choice[2] + choice[3] < 10 then
4: return choice

else
6: random = get a random number between 0 and 1

if random <= choice[2]/(choice[2]+choice[3])
then

8: GETPROXYPROBABILITY()

else
10: return choice

end if
12: end if

end function
14: function TASK()

choice ← GETPROXYPROBABILITY()

16: use the proxy server to run crawling job

result = the result of job

18: if result = 1 then
choice[2] + = 1

20: else
choice[3] + = 1

22: end if
end function

Every time a task is going to an end, it will update the Fs
and Ff of its used proxy server. Only when a proxy server is

used more than 10 times, it could be selected by its success

rate. Otherwise, it will be selected directly.

Estimate the availability according to the visiting history

of a proxy server and select a proxy server with probability

according to its success rate. It is obvious that the better the

proxy server is, the more frequently it is used. So the success

rate of all network tasks is increased and the effectiveness of

proxy servers is upgraded.

V. PROXY SERVERS LIFE SPAN ANALYSIS AND ITS

APPLICATION

The available time of public proxy servers is always very

tight. If it takes 2 hour to complete our task and the proxy

servers do not work after 40 minutes, most of the task is not

completed. Therefore, it is meaningful to study the life span

of proxy servers, because it can tell us how often the proxy

servers should be updated.

In this section, we first introduce exponential distribution

to which the life span of proxy servers probably obeys

approximately. And then we verify that the life span of proxy

servers obeys to exponential distribution in reality and use the

model to compute the updated time interval.

A. Proxy Servers Life Span

Here, qualities of the free proxy servers usually become

worse with time, so we can generalize proxy servers as a kind

of resource whose effectiveness and reliability are decreased

with time. That is to say, the newer the resource is, the stabler

it will be. And available time of them has no relation with the

time they has been used. As this kind of resource is just like

ideal lamps whose available time is decreased gradually over

time. And life of ideal lamp obeys exponential distribution

approximately, therefore we can suppose that life of this kind

of resource also obeys exponential distribution approximately.

The probability function of exponential distribution is:

f(x) = λe−λx, if x > 0. (3)

Fig. 2 shows the exponential distribution where λ = 0.5.

Suppose that X1,X2,· · ·,Xn are n samples which subject to

exponential distribution and the parameter is λ. Then we can

get maximum likelihood estimation of λ:

L(x1, x2, , xn;λ) = f(X = x1)∗f(X = x2)∗...∗f(X = xn);
(4)

Then we can get the result: λ = 1/
∑n

i=1 xi

n
If we get the value of λ which can be calculated by

experiments, then we can calculate the theoretical available

time of resources, denoted Tt. If the value of Tt is too small,

which means most resources are old and unstable, we should

think about to update them.

B. Application

In order to know how long we should update our proxy

servers and verify that life of proxy servers obeys to

exponential distribution, we tested the life span of 299 proxy



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:6, 2016

1163

Fig. 2 Exponential distribution where λ = 0.5

Fig. 3 Actual and theoretical life span distribution of proxy servers

servers, and the result showed that the value of λ is 13.2. And

distribution function of exponential distribution is as:

F (x) = 1− e−λx, if x > 0. (5)

The actual life span distribution of proxy servers and

theoretical life span distribution are shown in Fig. 3.

According to Fig. 3, the actual life span distribution is close

to the distribution function of exponential distribution and it

can prove that our model is right. The available time of about

90% proxy servers is shorter than 30 minutes. So to ensure

stability and availability of free proxy servers, we update our

proxy servers per half hour.

VI. IMPLEMENTATION AND EXPERIMENT

In this section, we firstly elaborate on the implementation

of our program. Then a series of experiments are introduced

to compare Proxisch with other scheduling approaches.

A. Implement

In order to verify the efficiency of Proxisch, we implement

a test program to send http requests to Renren. Renren, whose

home is www.renren.com, is a popular social network website.

The related report [20] said that there was about 2.8 billion

users in 2013. In our experiments, we did not crawl data from

Renren, we only sent http requests to its home and we can

know weather a proxy server is available by the http responses

or not. The distributed program is written in python. In order

to enhance the parallelism of system, we use gevent [19]

which is a coroutine-based Python networking library. In our

experiments, the size of thread pool is 2000. It means that there

are 2000 threads running simultaneously. Furthermore, we

use the Requests v2.7.0 library [21] to send http requests. In

order to make a comparison, we selected 1000 checked proxy

servers and sent 300,000 http requests. The key parameters of

experimental environment are shown in Table IV.

TABLE IV
THE KEY PARAMETERS OF EXPERIMENTAL ENVIRONMENT

OS Ubuntu 14.04.1
Cpu cores 4
Cache size 15360 KB
Cpu MHz 2400.000
MemTotal 4130476 kB
Tested website www.renren.com
Programming language python
High-level synchronous API gevent
Time interval of updating proxy servers half an hour
Average number of proxy servers 1000
The number of HTTP requests for each experiment 300,000
Timeout 40 seconds

It is regarded as a network error if we do not get a response

40 seconds after the request or we can not connect to the proxy

servers. It is seen as an another error if we the http status code

of a response is not 200. It is seen as a successful request only

when we the http status code of a response is 200.

B. Experiment

1) Experiments of visiting frequency: To study how visiting

frequency affects the results, we made a set of experiments

in which only the visiting frequency is different and other

parameters are same as shown in Table V. The value in Visiting

frequency column of Table V means the visiting time interval

of proxy servers (e.g, 7 seconds once). The unit of Time



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:6, 2016

1164

column of Table V is second (e.g, 2905 seconds). And the

visiting success/s column of Table V means the number of

successful visits per second.

TABLE V
THE RESULTS OF EXPERIMENTS OF VISITING FREQUENCY

Visiting Total Request Network Other Time Visiting
frequency requests success error error success/s
7 300,000 229,620 56,191 14,189 2905 79
5 300,000 229,387 52,372 18,241 2061 111
3 300,000 225,337 56,243 18,420 1819 123
1 300,000 226,712 30,947 42,341 1753 129

According to Table V, we can see that when we visited the

home of Renren every 7 seconds, although the number of total

successful visits is the highest, it took the longest time and the

number of its successful visits per second is lowest. We can

conclude that the number of network errors is not only related

to visiting frequencies, it’s also related to the stability of proxy

servers. Most of other errors are due to frequent visits. The

results show that the more frequent the visits are, the more

other errors there will be.

2) Experiments of Different Scheduling Approaches: To

study how scheduling approaches affect the results, we made

a set of experiments in which only the selection mechanisms

is different and other parameters are same as shown in Table

V. The total number of requests is 300,000. The results are

shown in Table VI. We made a comparison of Proxisch

and Round-Robin scheduling, which is a classic scheduling

algorithm.

TABLE VI
THE RESULTS OF EXPERIMENTS OF DIFFERENT SCHEDULING METHODS

Selection Visiting request Network Other Time visiting
mechanism frequency success error error success/s
Proxisch 3 225,337 56,243 18,420 1819 123
Round-Robin 3 192,115 74,290 33,595 2308 83

According to Table V, our scheduling approach has a better

result than polling scheduling. Our scheduling algorithm can

get more successful visits within a shorter period of time. The

number of successful visits per second of proxisch is 1.48

times of that in the polling scheduling.

VII. CONCLUSION AND FUTURE WORK

In this paper we have presented Proxisch: An optimization

approach of large-scale unstable proxy servers scheduling and

it’s used in distributed web crawling. We show how we get the

free proxy servers and check them before they are used. We

introduce the life span model of proxy servers according to

which we update our free proxy servers regularly. Moreover,

we explain our approach and make a set of experiments.

In conclusion, our solution is a practical way to schedule

large-scale unstable proxy servers.

Our future work is to make our approach adjust the visiting

frequency automatically according to the results of previous

tasks. There are only http proxy servers now and we attempt

to get lots of Socks proxy servers in the future.

ACKNOWLEDGMENT

This work was supported in part by the National Natural

Science Foundation of China under Grant No. 61303260; the

Strategic Priority Research Program of the Chinese Academy

of Sciences under Grant No. XDA06030200.

REFERENCES

[1] S. Kaur and A. Gupta, “A survey on web focused information extraction
algorithms,” 2015.

[2] S. Brin and L. Page, “Reprint of: The anatomy of a large-scale
hypertextual web search engine,” Computer networks, vol. 56, no. 18,
pp. 3825–3833, 2012.

[3] Attributor, “Attributor.”
[4] Y. Zhang, J. Tang, Z. Yang, J. Pei, and P. S. Yu, “Cosnet: Connecting

heterogeneous social networks with local and global consistency,” in
Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 2015, pp. 1485–1494.

[5] S. Ji, W. Li, P. Mittal, X. Hu, and R. Beyah, “Secgraph: A uniform
and open-source evaluation system for graph data anonymization and
de-anonymization,” in 24th USENIX Security Symposium (USENIX
Security 15), 2015, pp. 303–318.

[6] R. Patel and P. Bhatt, “A survey on semantic focused web crawler
for information discovery using data mining technique,” International
Journal for Innovative Research in Science and Technology, vol. 1, no. 7,
pp. 168–170, 2015.

[7] W. Galuba, K. Aberer, D. Chakraborty, Z. Despotovic, and
W. Kellerer, “Outtweeting the twitterers-predicting information cascades
in microblogs,” in Proceedings of the 3rd conference on Online social
networks, vol. 39, no. 12, 2010, p. 3âAS3.

[8] V. Shkapenyuk and T. Suel, “Design and implementation of a
high-performance distributed web crawler,” in Data Engineering, 2002.
Proceedings. 18th International Conference on. IEEE, 2002, pp.
357–368.

[9] H. T. Y. Achsan and W. C. Wibowo, “A fast distributed focused-web
crawling,” Procedia Engineering, vol. 69, pp. 492–499, 2014.

[10] S. A. Catanese, P. De Meo, E. Ferrara, G. Fiumara, and A. Provetti,
“Crawling facebook for social network analysis purposes,” in
Proceedings of the international conference on web intelligence, mining
and semantics. ACM, 2011, p. 52.

[11] L. F. Lopes, J. Zamite, B. Tavares, F. Couto, F. Silva, and M. J.
Silva, “Automated social network epidemic data collector,” in INForum
informatics symposium. Lisboa, 2009.

[12] M. Ke, P. Zhang, and G. Chen, “The crawler of specific resources
recognition based on multi-thread,” in Computational Sciences and
Optimization (CSO), 2012 Fifth International Joint Conference on.
IEEE, 2012, pp. 569–572.

[13] A. H. Wang, “Don’t follow me: Spam detection in twitter,” in Security
and Cryptography (SECRYPT), Proceedings of the 2010 International
Conference on. IEEE, 2010, pp. 1–10.

[14] B. Liu, L. Wang, and Y.-H. Jin, “An effective hybrid pso-based algorithm
for flow shop scheduling with limited buffers,” Computers & Operations
Research, vol. 35, no. 9, pp. 2791–2806, 2008.

[15] G. Schmidt, “Scheduling with limited machine availability,” European
Journal of Operational Research, vol. 121, no. 1, pp. 1–15, 2000.

[16] D. McCoy, J. A. Morales, and K. Levchenko, “Proximax: A
measurement based system for proxies dissemination,” Financial
Cryptography and Data Security, vol. 5, no. 9, p. 10, 2011.

[17] Q. Wang, Z. Lin, N. Borisov, and N. Hopper, “rbridge: User reputation
based tor bridge distribution with privacy preservation.” in NDSS, 2013.

[18] M. H. Au, A. Kapadia, and W. Susilo, “Blacr: Ttp-free blacklistable
anonymous credentials with reputation,” 2012.

[19] D. Bilenko, “gevent,” http://www.gevent.org/, 2015.
[20] 199it, “Report about renren,” http://www.ebrun.com/20130507/72900.shtml,

2013.
[21] K. Reitz, “Requests library,” http://www.python-requests.org/en/latest/,

2015.


