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Abstract—In the field of quantum secure communication, there
is no evaluation that characterizes quantum secure communication
(QSC) protocols in a complete, general manner. The current paper
addresses the problem concerning the lack of such an evaluation
for QSC protocols by introducing an optimality evaluation, which
is expressed as the average over the three main parameters of QSC
protocols: efficiency, security, and practicality. For the efficiency
evaluation, the common expression of this parameter is used, which
incorporates all the classical and quantum resources (bits and qubits)
utilized for transferring a certain amount of information (bits) in a
secure manner. By using criteria approach whether or not certain
criteria are met, an expression for the practicality evaluation is
presented, which accounts for the complexity of the QSC practical
realization. Based on the error rates that the common quantum attacks
(Measurement and resend, Intercept and resend, probe attack, and
entanglement swapping attack) induce, the security evaluation for
a QSC protocol is proposed as the minimum function taken over
the error rates of the mentioned quantum attacks. For the sake of
clarity, an example is presented in order to show how the optimality
is calculated.

Keywords—Quantum cryptography, quantum secure
communcation, quantum secure direct communcation security,
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I. INTRODUCTION

THE application of quantum mechanics to the field of

telecommunications gives rise to the so-called quantum

communications. It appears to be an important area of

research in the modern and future information age due to

the influx of focusing on the quantum computing, which

enforces the emergence of quantum technologies into the

communications. To be more precise, the uprise of quantum

computing leads to the burst of quantum cryptography.

The latter is concerned with transferring information in a

confidential manner based on the laws of quantum physics.

The most common and well-known representatives of this field

are the quantumkey distribution (QKD) and quantum secure

communication (QSC). The former offers reliable sharing

of a secret cryptographic key between two parties before

their communication, so that confidential data transfer could

subsequently take place.
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The latter achieves communication secureness without

resorting to cryptographic tasks, i.e. encryption/decryption and

key distribution are not needed. QSC, in turn, is divided into

two branches: quantum secure direct communication (QSDC)

[1]-[7] and deterministic secure quantum communication

(DSQC) [1], [8], [9]. In the former, the message to be kept

in secret is directly translated over a quantum communication

channel, that is, a transmission not resorting to encryption and

auxiliary classical channels. On the other hand, in the latter

the secret message translation resorts to using at least 1-bit

auxiliary classical channel.

In attempting to judge the success of a QSC model, we may

ask ourselves three questions: (1) ”Is the protocol secure?”,

(2) ”Is the protocol efficient?”, and (3) ”Does the protocol

rely on practical setup?”. So, only in the case when positive

answers are given to these question we may say that a model

is satisfactory, optimal. That is, in order to determine whether

a QSC protocol is optimal, we should first answer to the above

three questions. Answers to the questions could be given by

means of the three parameters: efficiency that is judged by

the amount of resources used to transfer given amount of

information; security that is judged by the extent to which a

scheme is liable to existing attacks or could be more precisely

defined by the probability of detecting the presence of an

eavesdropper; and practicality that is judged by the complexity

of the given model and the devices used for its realization. In

terms of the efficiency of QSC protocols, there is a common

evaluation proposed by [10]

E =
bs

qt + bt
, (1)

bs being the information, in bits, sent from sender to receiver;

qt and bt being the qubits and bits, respectively, used to

facilitate sending bs in a secure manner. However, there

are no general, straightforward ”answers” (evaluations) for

the security and practicality – evaluations convenient for

common use. As in the case of security and practicality, there

does not exist an ”answer” to the question ”Is the protocol

optimal?”, i.e., there is no general optimality evaluation for

QSC protocols (an evaluation incorporating all the parameters

that characterize a protocol) by means of which we could

completely evaluate and compare all the existing QSC

protocols. For the latter reasons, in the current paper we aim

to present general, straightforward evaluations for the security,
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practicality and optimality of QSC protocols.

The paper is organized as follows. In Section II, the

expressions for the security, practicality, and optimality

evaluations are sequentially given. Also, in the end of the

section, an example is shown of how the optimality of a QSC

protocol is calculated. The conclusions are set out in Section

III.

II. OPTIMALITY EVALUATION OF QSC PROTOCOLS

In order to present the optimality evaluation of QSC

protocols, we first introduce the expressions for evaluation of

both the security (Section II.A) and practicality (Section II.B).

For the sake of clarity, we end up the section with an example

that demonstrates how the optimality of a QSC protocol is

calculated.

A. Security Evaluation

Up to the present the only characteristic that we have

considered on a QSC and described by an expression is the

efficiency. We shall now go on to discuss the security for a

general QSC model and in that connection it will be defined

in terms of both the classical and quantum channels.

In general, for a QSC protocol to be secure, it has not to

succumb to both quantum and classical channel attacks. For

the evaluation of quantum channel succumbing we subject the

given QSC protocol to common attacks (Measure and resend

attack, Intercept and resend attack, Probe attack, Entanglement

swapping attack) [8], [9] in order to verify whether or not the

scheme is secure and to what extent it is secure — what is

the probability of detecting the presence of an eavesdropper.

Besides the quantum channel, both the auxiliary classical

channel (in DSQC models) and classical channel used for

check procedures could also pose a threat, thus giving rise

to information leakage to somewhat extent.

Being unevaluated mathematically so far in a general and

straightforward manner, along the following lines of this

section the security in terms of both quantum and classical

channels is aimed to be examined and expressed.

1) Classical Channel Security: Loophole in the classical

channel (auxiliary or public one) and its evaluation:

The loophole occurring is that an eavesdropper could gain

information about the data transferred over the quantum

channel, when monitoring the auxiliary or public classical

channel. If we assume that the quantum channel is completely

secure, that is, the eavesdropper does not have access to the

quanta shared, his/her only option is to monitor the classical

channels (auxiliary or public one). In general, not knowing the

content of data running through an informational (quantum)

channel, one has the only option — to pick out in a random

way one of the possible data sequences that the message

is presented by (e.g., 0 and 1). For example, suppose the

data transferred is 00. Being unaware of the data content,

but aware of the length of a data sequence, one could give

oneself a try to guess the original bit sequence. In this case,

the probability of occurring a positive outcome out of this

trial for the eavesdropper is 1/4 or 25%, because there are

four possible sequences of length two and from eavesdropper’s

standpoint they are equiprobable. That is, the entropy in the

eavesdropper’s informational frame of reference is

He = −
4∑

i=1

p(xi) log2 p(xi) = − log2
1

4
= 2bits, (2)

where p(00) = p(01) = p(10) = p(11) = 0.25. The problem

posed here is the fact that there is a classical channel tightly

related to the data transfer, which can be wiretapped in an

unhindered manner by an eavesdropper.

Let us now observe a case in which the eavesdropper

wiretaps the classical channel only (i.e., launches classical

channel attack) for a two-bit procedure of a QSC protocol.

Here, knowing the information passing through the classical

channel, it is possible for the eavesdropper to be aware of the

fact that only two two-bit information sequences can occur

in the procedure, for instance, the probabilities of ’01’ and

’10’ to occur are p(01) = p(10) = 0.5. That is, unaware of

the quantum procedure, one gains some information about

the data transferred. Thus, in this case for the entropy of the

eavesdropper we get

H ′
e = −

4∑

i=1

p(xi) log2 p(xi) =

− p(00) log2 p(00)− p(01) log2 p(01)

− p(10) log2 p(10)− p(11) log2 p(11)

= −0 log2 0− 0.5 log2 0.5− 0.5 log2 0.5− 0 log2 0 = 1bit.
(3)

Therefore, comparing this result to the above one (2), it

is evident that He falls out from its maximum. Accordingly,

this means that the uncertainty about the data bit sequence

obtained for the latter case is lower than the former one. As

can be readily seen, the He decreases by a factor of two:

H ′
e

He
=

1

2
. (4)

Hence, this ratio can be used to evaluate the security of a

QSC model in the presence of classical channel attack. So, let

us call it classical channel immunity and denote it by χ, i.e.,

χ =
H ′

e

He
, (5)

where H ′
e is the entropy when eavesdropper monitors the

classical channel and He is that when the eavesdropper does

not observe the classical channel.

2) Quantum Channel Security: Generally, the security of

the QSC in terms of the quantum channel attacks is evaluated

with regard to the robustness against quantum attacks (e.g.,

Measure and resend attack, Intercept and resend attack, Probe

attack, Entanglement swapping attack [8], [9]) — the protocol

is either secure or insecure, depending on whether or not it is

resilient to the attacks. In other words, the security could be

in this way evaluated by 0 (insecure) and 1 (secure). To make

the evaluation more granular, we resort to utilizing the fact

that the security is conditioned by the statistical nature of the

process of detecting eavesdroppers. Therefore, the expression

defining to what extent a quantum channel is secure can be
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given by the lowest value of the error rates (ER) expected each

quantum attack to evoke, that is,

λ = min(ERk), [%] (6)

where k is the number of quantum attacks taken into account.

3) Overall Security: In this work, the overall security of

a quantum secure communication protocol is proposed to be

evaluated by the following expression

Σ =
χ+ λ

2
, (7)

i.e., as the average taken over the classical and quantum

channels securities.

B. Practicality Evaluation

The approach to evaluate the practicality of a quantum

secure communication is the following. It consists in

determining whether or not a quantum secure communication

protocol meets the criteria:

• c1: usage of exotic (special) quantum state in a QSC

protocol. For instance, the states used both for quantum

channels and data quantum systems (quantum systems

carrying the information) in [8].

• c2: usage of more than one type of quantum channel in a

QSC protocol (i.e., using more than one type of quantum

channel to transmit a message). For example, using

both single-qubit and two-qubit channels to transmit

binary information in a protocol. The latter requires the

utilization of two quantum sources. Another example is

the case in which two or more quantum channels are

used in a protocol, which differ from one another by

a quantum operation or quantum operations (performing

quantum gates) – Hadamard gate is an exception.

• c3: usage of additional classical operation in a QSC

protocol, which requires deploying certain classical

device. An example of an additional classical operation

is the process of encoding. As is known, it requires

the realization of an encoder, whose presence leads to

decrease in the practicality.

The criteria can be represented by a binary vector. For we

have three criteria, the vector is composed of three elements

c = ci = [c1 c2 c3],

where i runs from 1 to 3. Because the vector is of binary

type, each element of it could either be ’0’ or ’1’. In this

representation, the binary digit ’0’ is assigned to a criterion

when it is met and the binary digit ’1’ is assigned to a criterion

when it is not met by a QSC protocol. Using the above criteria

approach, the practicality can be mathematically represented

by the expression

ξ =
n∑

i=1

1

n
· ci. (8)

It is evident from Equation (8) that the possible values of

the practicality lie within the interval [0, 1], i.e., ξ ∈ [0, 1].

C. Optimality Evaluation of QSC Protocols

The optimality incorporates the efficiency E, the security

Σ, and the practicality ξ of a QSC model (protocol). It is

evaluated as follows

ζ =
E +Σ+ ξ

3
. (9)

That is, the optimality is the average taken over all the three

main parameters of a QSC. Because E ∈ [0, 1], Σ ∈ [0, 1], and

ξ ∈ [0, 1], the optimality also lies within the interval [0, 1].
In the following lines of the section, we present an example

that clarifies the process of calculating the optimality of a QSC

protocol – the optimality of the protocol [3] is evaluated.

Example of optimality evaluation:

1) Efficiency: Taking into account the evaluation [10] and

the efficiency analysis introduced in [3], the efficiency of the

protocol proposed by Deng et al. is

E =
bs

qt + bt
=

2

2 + 0
= 1. (10)

2) Practicality: The protocol [3] is characterized with the

following features:

• The protocol does not utilize exotic (special) quantum

channel [3] – it utilizes Bell state quantum channel.

• The protocol uses only one type of quantum channel for

transferring information – Bell state quantum channel.

• There is no additional classical operation in the protocol.

Therefore, according to Equation (8) and the criteria

approach given in Section II.B, the practicality of the protocol

[3] is

ξ =
1

3
· 1 + 1

3
· 1 + 1

3
· 1 = 1. (11)

3) Security: We shall now consider the security of the

protocol proposed in [3] with respect to four common quantum

attacks: Measure and resend attack, Intercept and resend

attack, Probe attack, and Entanglement swapping attack.

Measure and resend attack. Here the eavesdropper,

conventionally called Eve, captures the particles from the

travel groups of the sender, Alice, measures them and then

resends them to the recipient, Bob. If the decoys are prepared

both in (+) or (×) basis, Eve conducts measurements on the

intercepted by her particles in (+) or (×) chosen at random.

Being of unknown to Eve state, each particle intercepted by

her is then characterized by the well-known expressions

|ψ〉 = α |0〉+ β |1〉when Eve uses (+), (12)

|ψ〉 = α |+〉+ β |−〉when Eve uses (×), (13)

where α and β — probability amplitudes, display the statistics

of the states. In the case now considered, the statistics depends

on the state in which the particle is generated (sent), or more

precisely, on the basis in which is sent. For instance, given

(+) is used by Eve and the particle intercepted is sent in

the (+) basis, then either α or β is unity, i.e. α = 1, β = 0
or α = 0, β = 1. However, if it is sent in (×) basis, then

|α| = |β| → |α| = |β| = 1/
√
2. Taking into consideration the
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above lines, we could summarize for the instance when (+)
basis is used by Eve the following

|0〉 → |ψ〉 = α |0〉+ β |1〉 measuring
=====⇒ |0〉 ;α = 1, β = 0

|1〉 → |ψ〉 = α |0〉+ β |1〉 measuring
=====⇒ |1〉 ;α = 0, β = 1

|+〉 → |ψ〉 = α |0〉+ β |1〉 measuring
=====⇒ |0〉 or |1〉 ;α =

1√
2
= β

|−〉 → |ψ〉 = α |0〉 − β |1〉 measuring
=====⇒ |0〉 or |1〉 ;α =

1√
2
,

β = − 1√
2
. (14)

But, if Eve uses (×) basis, then the following occurs

|+〉 → |ψ〉 = α |+〉+ β |−〉 measuring
=====⇒ |+〉 ;α = 1, β = 0

|−〉 → |ψ〉 = α |+〉+ β |−〉 measuring
=====⇒ |−〉 ;α = 0, β = 1

|0〉 → |ψ〉 = α |+〉+β |−〉 measuring
=====⇒ |+〉 or |−〉 ;α =

1√
2
= β

|1〉 → |ψ〉 = α |+〉 − β |−〉 measuring
=====⇒ |+〉 or |−〉 ;α =

1√
2
,

β = − 1√
2
. (15)

But, how come Eve knows which basis to use? The answer is

that she does not know. Thus, measuring in a basis selected

at random, Eve at some instances introduces errors that are

detected by Alice and Bob.

Using similar approach as [11], we evaluate the error rate

occurred in this type of attack. We divide the analysis into

two cases: (+) basis chosen by Eve; and (×) chosen by

Eve, and for each of them calculate the error rate. Then, we

combine the two error rates obtained to get the total one, which

characterizes the Measurement and resend attack.

Let us first start off with the (+) case. As shown in Equation

(14), two states could occur for Eve in the measurement —

|0〉 or |1〉. When |0〉 (or |1〉) occurs, it is evident that either

|0〉 (|1〉) or |+〉 or |−〉 is sent by Alice to Bob and since

Eve does not know the basis of the particle sent, she chooses

at random (probabilities p(|0〉) = p(|+〉) = p(|−〉) = 33.33%)

a state to resend. In this case, (+)-sent particle implies that

33.33% + 66.66% · 50% of the cases Eve will resend a correct

particle state and 33.33% an incorrect state, whereas (×)-sent

particle implies that 33.33% · 50% + 66.66% · 50% of the

cases Eve will resend an incorrect state and 50% a correct one.

Summing up, for the error rate in this case we get on average

33.33% · 50% + (33.33% · 50% + 66.66% · 50%) · 50%, that

is, 41.66%.

Because the (×) case is symmetric to the above one, the

error rate obtained for it is the same — 41.66%.

The overall (the average) error rate, accounting for both

randomly (+)- and (×)-chosen cases, is therefore

ER = 50% · 41.66% + 50% · 41.66% = 41.66%. (16)

Intercept and resend attack. Eve intercepts the particles of

the first travel block and after that sends her own prepared

group of particles to Bob. In this way, she introduces errors

into the decoys’ states because of her ignorance of the

original ones. Therefore, Eve can be detected during the first

eavesdropping check process. The reason for this is the fact

that |0〉, |1〉, |+〉, and |−〉 states could occur for a particle

intercepted by Eve, since either |Φ+〉 = (|00〉+ |11〉)/√2 or

|Φ+〉 = (|++〉+ |−−〉)/√2 state is used for the two-qubit

decoy systems. Since these two two-qubit states are equally

likely, the single-qubit states aforementioned are then

equiprobable — they share probability of 25%. In this case,

the probability of success attack is 50%, or equivalently, the

error rate is 50%. This is so due to the relations presented

below in Table I.

TABLE I
RESENT-POSSIBLE STATES RELATIONS

Resent Possible Success probability
|0〉 |0〉 25%
|0〉 |1〉 0%
|0〉 |+〉 25% · 50% = 12.5%
|0〉 |−〉 25% · 50% = 12.5%

The overall success probability is a sum of the success

probabilities of the relations shown. The relations for the other

states (|1〉, |+〉,|−〉) that could be resent are the same. So, the

overall error rate can be assumed to be equal to 50%.

According to analyses put forward in [8], [9], the Probe
attack and Entanglement swaping attack for the protocol

[3] have one and the same error rate values: 50%.

So, the quantum channel security for the protocol of [3]

obtains the value

λ = min(ER1, ER2, ER3, ER4) =

min(41.66%, 50%, 50%, 50%) = 41.66% ≈ 0.42, (17)

where ER1 corresponds to the error rate in Measurement and

resend attack, ER2 corresponds to the error rate in Intercept

and resend attack, ER3 corresponds to the error rate in Probe

(Entaglement) attack, and ER4 corresponds to the error rate

in Entanglement swapping attack.

On the other hand, the classical communication carried out

in the protocol of [3] demonstrates that the classical channel

security resides in the value of

χ =
H ′

e

He
=

2

2
= 1. (18)

Therefore, for the overall security of the protocol, we obtain

Σ =
χ+ λ

2
=

1 + 0.42

2
= 0.71. (19)

4) Optimality: According to Equation (9) and the values

obtained above for the efficiency, practicality, and security,

the optimality of the protocol is

ζ =
E +Σ+ ξ

3
=

1 + 0.71 + 1

3
≈ 0.9. (20)

III. CONCLUSION

In summary, mathematical expressions for the security and

practicality of QSC protocols were introduced. Also, the

three main parameters of QSC protocols: efficiency, security,

and practicality, were incorporated into a more general

parameter, called optimality. The latter was proposed in order
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to characterize any existing QSC protocol in a complete

manner. An example is presented demonstrating how the

optimality of the protocol [3] is calculated. It is furthermore

evident that the optimality can be used as parameter by means

of which one can compare distinct protocols.
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