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Abstract—Mass-mail type worms have threatened to become a
large problem for the Internet. Although many researchers have
analyzed such worms, there are few studies that consider worm
propagation via mailing lists. In this paper, we present a mass-mailing
type worm propagation model including the mailing list effect on the
propagation. We study its propagation by simulation with a real e-
mail social network model. We show that the impact of the mailing
list on the mass-mail worm propagation is significant, even if the
mailing list is not large.
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I. INTRODUCTION

Mass-mailing type worms that are propagated via e-mail
make up a large proportion of all worms. When a user receives
e-mail containing such a worm in an attachment file and clicks
on it, the computer is compromised. The worm searches for
e-mail addresses stored in the computer, and then it sends a
massive e-mail-out to all the stored addresses, including that
of the worm itself. Although the propagation mechanism is
therefore known, the characteristics of this process are still
unknown. Recently, research on this topic has expanded, but
none of these recent studies has considered the effects of
mailing lists on the propagation.

In this paper, we design a mass-mailing type worm prop-
agation mechanism including use of mailing lists, and in a
simulation we show that mailing lists exercise a greater effect
on the propagating worm than does the network topology.

The rest of this paper is structured as follows. Firstly, we
present the background and studies related to our research
in Section 2. Then we describe the classical epidemiological
models and present a version in matrix form in Section 3. In
Section 4, we present an extension of the matrix epidemical
model, which can handle mailing lists. In Section 5, we present
and discuss the results of a simulation with our epidemical
model. In Section 6, we conclude our study and discuss
possible future research.

II. BACKGROUND AND RELATED WORK
A. Mass-mailing Worms

In this section, we explain how a mass-mailing worm
propagates, as a background to our work, and also indicate
some related work.

In the case of compromise by a mass-mailing worm, a
user first receives an e-mail with an attachment file, which
contains the mass-mailing worm. If the user double-clicks on
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or executes that file, the computer is compromised by the
worm.

After compromise, the worm starts to gather e-mail ad-
dresses from the address book of the user or from the entire
hard disk drive. The basic strategy of the mass-mailing worm
is to send e-mails to all addresses gathered from the address
book or the hard disk drive. In addition, recent mass-mailing
worms have modified their list of addresses by adding well-
known account names and removing inconvenient addresses.
Such mass-mailing worm extracts all domains from the list of
addresses that it has constructed. It then removes all addresses
with domains such as government or security company do-
mains. Then the worm adds well-known account names to all
domains, and sends itself to every address on its list.

The compromised computer usually begins with a Denial
of Service (DoS) attack. Since such an attack launched si-
multaneously by large numbers of compromised computers
results in a Distributed Denial of Service (DDoS) attack, some
studies have analyzed trends in network traffic caused by mass-
mailing worms (see [8][4]).

Since these studies have considered traffic from computers
compromised by mass-mailing worms only, they did not take
account of the propagation of such a worm, nor any effect of
the mailing-list.

B. E-mail Network

From the mechanism that we have described, it follows that
propagation depends on the topology of the network through
which email is sent, which we shall refer to as an e-mail
network.

Recent research on complex networks has shown that e-mail
networks have certain characteristics. Ebel et al. extracted the
“From” and ”To” e-mail address pairs from SMTP server log
files and analyzed that network[3]. If we regard an e-mail
address as a node and a From-To pair as a network link, then
the degree distribution has the scale-free (power-law) property.

Newman et al. also analyzed e-mail networks[5]. They
analyzed address books of the entire user base of their large
university computer system, and showed that the degree dis-
tribution satisfies an exponential relationship.

We analyzed e-mail networks in a similar fashion, following
Ebel’s approach. We analyzed our laboratory SMTP server
log files over 3 months. There were 31388 mails relayed by
the SMTP server, 2550 unique addresses and 3397 unique
From-To pairs. The average degree of e-mail addresses was
2.66. Figures 1 and 2 show the in-degree and out-degree
distributions. They also show the scale-free property. In this
paper, we shall assume that the e-mail network is scale-free.
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Fig. 1. In-Degree Distribution of addresses on our Laboratory SMTP Server
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Fig. 2. Out-Degree Distribution of addresses on our Laboratory SMTP Server

Since we propose a mass-mailing worm propagation model
which includes a mailing list effect in this paper, we count the
number of mailing lists from SMTP server log files. In general,
it is difficult to identify mailing list addresses precisely among
e-mail addresses. In this study, we extracted 69 mailing list
addresses from server logs by using characteristics of the
mailing list service tool (Majordomo, fml, Mailman, etc.)
settings.

C. Analysis of Worm Propagation across a Scale-Free Net-
work

Recently, there have been several studies of worm propaga-
tion across a scale-free network. Such studies may be divided
into two groups, depending on whether the worm studied was
a network worm or a mass-mailing worm.

In network worm propagation analysis, researchers made
use of the scale-free characteristic of routers or the AS
(Autonomous Systems) network topology on the Internet.
Briesemeister et al. considered a topology effect for the
classical epidemic model and showed how worm propagation
was related to it [2]. Nikoloski et al. also considered network
worm propagation across a scale-free network [6]. They used
a pair approximation technique to characterize the classical
epidemic model.

On the other hand, Zou et al. focused on mass-mailing
worm propagation across a scale-free network [10] [9]. These
studies were focused on the differences between a scale-free
network and a random graph, but did not mention any effects
of the mailing list on propagation. They used a differential
equation for the epidemic model presented by Pastor-Satorras

and Vespignani [7]. The equation models infection dynamics
of nodes with different degree distributions on the network.

III. THE CLASSICAL EPIDEMIC MODEL IN TERMS OF
MATRICES

A. Requirements for Model Extension

The classical epidemic model cannot be applied directly to
yield a model, which includes a mailing list effect. A worm
propagation model that includes a mailing list effect has to
satisfy the following three conditions:

a) 1) Expression of Flexible Network Topology: Al-
though e-mail networks have been assumed to be scale-free
in research analyzing the propagation of mass-mailing worms,
some studies have shown that an e-mail network may involve
an exponential distribution. To analyze how a mass-mailing
worm propagates through a real network, it is necessary for
the model to be able to handle a flexible network topology.

b) 2) State Transition Induced by Anti-virus Software: In
classical epidemic models, a state transits from susceptible (S)
to infected (I), then transits from infected (I) to removed (R).
Since anti-virus software guards against worm/virus infection,
whether the computer is infected or not, it is necessary for the
model to deal with state transitions from S to R.

c) 3) Mailing List Effect for Worm Propagation: E-mail
addresses may be regarded as nodes in a network; however,
mailing list e-mail address nodes behave differently from
normal e-mail address nodes. A mailing list is a kind of
amplifier of an e-mail message, whether or not the message
contains a worm. Intuitively it seems that such amplification
makes propagation more rapid. Therefore it is necessary for
the model to deal with mailing lists.

In the following subsections, we describe the classical
SI/SIR model

B. SI/SIR Model

The classical epidemic model was created by Kermack and
McKendrick. There are three states: Susceptible (S), Infected
(I), and Removed (R). The number of nodes in each state is
described by differential equations as follows:

ds

= _— _B3SJ

dt BS

I

Z—t — BST —~1 )
dR

kY §

ar )

In these equations, the infection rate is denoted by g and

the removal rate is denoted b}(fi g Without sglate R, the model
I
(SI model) is represented by — = —3S1, i BSI.

Since they use the term ”dif%rential” equation even though
its values (S, I, R) are discrete in these equations, we also
use the word “differential” in this paper.

These equations are based on a complete network, but the
network topology is not considered.
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C. SIS Model

There is another model for epidemics, called the SIS model.
In the SIS model, a node in state ”I” returns to ”’S” instead of
”R” in the SIR model.

ds

dl @
= BSI —~I

e =pSI -~

Pastor-Satorras and Vespignani expand this model by allow-
ing the infection dynamics to be related to the degrees of the
nodes [7]. They include an equation of the probability py(t)
that a node with k links is infected.

dpy(t

) - )+ B ) OB) O

O(p) is the probability that any given link points to an

infected node and is described as follows, using P(k), which
is the fraction of nodes that have degree k :

}:ZSP ©)

Although this differential equation is employed by Zou et
al ([10],[9]), this model describes the dynamics of all kinds of
worm because of its use of the SIS model. We cannot employ
this model directly, since we want to focus on specific worm
epidemic dynamics. Furthermore, this model does not consider
the effects of mailing lists on worm multiplication.

D. Expression of the SI/SIR Model in terms of Matrices

The classical SI/SIR models and other studies as discussed
above do not satisfy the conditions of Section 3.1. To derive
a model satisfying the conditions, we present an alternative
description of the epidemic model, which makes use of
adjacency matrices.

Some definitions of notation and state transition expressions

follog)' Some notation:

A = {a.y} M x N matrix A and its element
E :  Identity matrix

AB : Matrix multiplication

A-B Each element multiplication

F(A) = {f(amy)}

1 ifas, >0.5
f(@ay) :{ 0 elsey

e) State Matrix:
I(t) = {i=(t)}

1 if node x is infected at time ¢
0 else

ra(t) = 1 if node z is removed at time ¢
T 0 else

If i»(t) = 0 and r,(¢t) = 0, the node z is in state ”S”.

Expression of the Network:
T = {tey}
.= 1 if z — yhas alink
T 0 else

If T is a symmetric matrix, i.e. t,y = ty,. the network
defined by T is an undirected graph.
State Transition of R(t):

R(t+1)=F(R(t) +1(t) - A) (5)
ra(t +1) = f (ra(t) + iz (t)Aa (1)) (©)
A ={X()}

1 if the random value 7 <
0 otherwise

SOR
State Transition of 1(t):
I(t+1)=FI(t) (E+ D(t) -
t2(t+1) =

f (z iy()(eye + dyxu)tyx)) 1-xn@) @

T)-1-R@) O

D = {d,, (1)}
oo (1) = {

1 if the random value 7 <
0 otherwise

E. Matrix Expression of the Classical Model

In this section, we show our matrix expression can be cho-
sen to match the classical model, thus showing the correctness
of our model.

Let S(t) (respectively I(t), R(t)) denote the number of
nodes that are in state S (respectively I, R). Then transitions
between states may be expressed as follows:

S(t+1) = S(t) - St)p(S — I
It+1)=I(t) + SOPS = I) = IWpI = R) (9
R(t+1) = R(t) + I(t)p(I - R)

Now, S — I means (i,(t) = 0 and A, (t) = 0) —
(iz(t +1) = 1 and A (t + 1) = 0). Then it goes to (any
i (t)dis () tre =1 at 1 < k < N), and p(S — I) as follows:
= plany iy (t)dye (t)ty. = 1)

Ziy(t)tyw
=1-(1-p)"

=1- (1=

p(S = I)

(10)

me(t) = Z iy(t)ty. means the number of infected nodes

]
which have a link to node z. In the case of a complete network,

since all ¢y, = 1,
Z iy(t) = I(t
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and, if § <« 1, Eq. (10) goes to

p(S = I) = BI(1) (1)
Also, p(I — R) is as follows:
pI = R) =~ (12)

From Eq. (11) and (12), Eq. (9) can be changed as follows.
St+1)=S() —BS(t)I(t)
I(t+1)=1(t) +BSE)I(t) —vI(t) (13)
R(t+ 1) = R(t) +vI(t)

When we also change the Eq. (13) expression to differential
equation form, it can be seen that it is the same as Eq. (1).

IV. EPIDEMIC MODEL FOR MASS-MAILING WORM
A. Variant SIR Model for Mass-mailing Worm

Our model above satisfies the first requirement. Thus, we
need to modify the model to satisfy the second requirement.
This is quite easy. We merely need to adjust equation (5) as
follows:

R(t+1)=FR(t)+A) (14)

B. Mailing List Expression

In this section, we extend the matrix expression of the
epidemic described in III-D to satisfy the third requirement.

To handle mailing lists (ML), we treat an ML address as
a special node. When an ML node receives an e-mail from
another node, it forwards the e-mail to all ML members
immediately. On the other hand, when a normal user node
receives an e-mail (in this case, a mail containing a mass-
mailing worm), the mail is not forwarded to other nodes until
the user is infected, i.e. the user activates the attachment file
in the mail. An ML node has a 2-step action (infection and
propagation) whereas a normal node has a 1-step action (Fig.
IV-B).

Fig. 3. Treating a Mailing List Address as a Special Node

To allow for the special characteristics of an ML node, we
firstly convert the expression of the time scale. When the time
value is even, the action of a normal node and the first action
of an ML node (infection) are carried out. The second action
of an ML node (propagation) is carried out in odd time steps.

Intection Propagaon
(fal ) Activey
Fig. 4. 2 Step Epidemic Dynamics of an ML Node
1 cloce e
Carrent Tive wxzressecn » + 3 —f 4 4 - l

1 ehoek & 2 g o o 1 S

'
L e S S e e S e it I R

New Time Expresson

Fig. 5. Time Scale for the Proposed Model

Next we extend the matrix expression to deal with an
ML node. The state matrix I(¢), R(¢) and the network
expression T are extended to I'(¢), R'(¢), T', using the
ML node state matrix Irarry(t), Ryasry(t) and the network

topology Tyy_nmry, Tymr—uvy, Tymr—mry which denote
the topologies of user nodes to ML nodes, ML. nodes to user
nodes and ML nodes to ML nodes respectively. Thus, 0 is a
matrix with all elements equal to 0, and 1 is a matrix with all
elements equal to 1.

I'(t) = {1(t). Larry (1)}
R’(t) = {R(t): R{ML}(t)}

—_ ( T Twomry >
Tiymr—vy

Tiymr—mry
Twoy = {T, Twomy }
T{ML%} ={Timr-vy Tymromry}
Then, we also extend state transitions to R'(¢) and I'(¢).
I'(2t + 1) is extended from Eq(7).
R'(2t +1) = F (R'(2t) + {A,0})

(15)
R/(2t +2) = R'(2t + 1)

I'2t+1) =
F (I'(2t) ({E, 0} +D'(2t) - T{Uﬁ})) (16)
-({1-R(2t),0})

T'(2t+2) =
F ({I’(2t +1),0) +Tiapy (2 + 1)T{ML_,}) (17)
S(1-R'(2t+2)

C. Differential Equations for the Proposed Model

In this section, we provide differential equations for the
variant SIR model and the mailing list model. These equations
are derived in the same manner as those in section III-E.
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Fig. 6. ST Model Simulation : 3 = 0.005, E[k] = 8

1) Variant SIR Model for Mass-mailing Worm:

ds
— = (1 =7)B5me(t) =S
dI
7 = (1= BSma(t) =1 (18)
dR
ot I
o =S+
2) Mailing List Model:
ds
o = ~(1=mBSQe—~S
dI
— =(1=-7)pSQ —~I (19
dt
dR
ot I
o =S+
N4+M
where Q = m,(2¢t) + Z My (2t)tya.
y=N+1

V. SIMULATION

We simulate each model described above and compare the
results with those of previous studies. We focus on three
aspects for comparison: 1) propagation differences due to the
network topology, 2) comparisons between the SIR model and
the variant SIR model, and 3) the mailing list effect on worm
propagation.

The number of nodes N was taken as 300 and the number of
initially infected nodes I(0) was taken as 5 in all simulations.
We use a scale-free topology generation algorithm from work
of Barabasi and Albert [1]. Thus, we take Tyyrnmry = 0,
that is, we assume that members of one mailing list are not
included in other mailing lists in our simulations.

A. Scale-free Topology Effects on Propagation

At first, we study propagation differences between scale-free
networks and random graphs.

For a start, we compare transitions of I(¢) for the SI model
to measure simple speed of propagation. In the simulation,
we generated both networks so that both were of the same
average degree E[k]. Fig. 6 shows the result of the simulation
for the infection rate 5 = 0.005 and average degree E[k] = 8,
and Fig. 7 shows the result for § = 0.01 and E[k] = 8. Both

—— Random
---- Scale-Free

Time:t

50 100 150 200 250

Fig. 7. ST Model Simulation : 3 = 0.01, E[k] = 8

—— Random
---- Scale-Free

Fig. 8. SIR Model Simulation : 8 = 0.005, = 0.01, E[k] = 12

results indicate that a scale-free network leads to more rapid
worm propagation than a random graph.

Next, we compare transitions of I(¢) for the SIR model.
Fig. 8 shows the result of a simulation with infection rate
B = 0.005, removal rate v = 0.01, and average degree
Elk] = 12, and Fig. 9 shows the result with 3 = 0.01,
v = 0.01 and E[k] = 12. For this model also, worms
propagated more rapidly across a scale-free network than
across a random graph. Furthermore, peaks of I(t) in a scale-
free network occurred earlier than for a random graph.

B. Evaluation of the Variant SIR Model

Secondly, we studied I(¢) transitions for the variant SIR
model and compared it with the SIR model. We used a scale-
free network with E[k] = 12. Fig. 10 shows the result with
B = 0.005, v = 0.01, and Fig. 11 shows the result with
B =0.01 and v = 0.01.

The variant SIR model resulted in a low peak for both cases.
Basically, the cause of the low peaks in the variant SIR model
is clearly the effect of the S — R state transitions. The peak

E[(I)]
200

—— Random

---- Scale-Free
150

Time:t

50 100 150 200 250

Fig. 9. SIR Model Simulation : 8 = 0.01,~ = 0.01, E[k] = 12
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—_— SIR
--- Variant SIR

Fig. 10. SIR Model and Variant SIR Model: 8 = 0.005, v = 0.01

—_— SIR
--- Variant SIR

Fig. 11. SIR Model and Variant SIR Model: 8 = 0.01,v = 0.01

values in Fig 10 were 143.23 at ¢ = 107 for the SIR mode
and 54.86 at t = 90 for the variant SIR mode. The ratio of
the peak values was 0.38. Similarly the peak values in Fig 11
were 196.54 at ¢t = 59 for the SIR mode and 130.53 at t = 60
for the variant SIR mode. The ratio of the peak values was
0.66.

Because the removal rate 7 was the same for both, the
difference in peak values was due only to the infection rate .

C. Mailing List Impact on Mass-mailing Worm Propagation

In this section, we compare the MLL model and the variant
SIR model with respect to the mailing list effect on worm
propagation. We prepared two types of network for use with
the ML model. The first network contained 3% ML nodes; the
second network contained 5% ML nodes. E[k] = 12 for both
networks and both had a scale-free network topology.

Fig. 12 shows the result with g = 0.005, v = 0.01. We call
this Case 1. Fig. 13 shows the result with 5 = 0.01, v = 0.01.
We call this Case 2.

We can see quite rapid propagation and high peak for I(t)
in both cases. Although we found differences for the peak
ratios in section V-B and the cause can be considered to be
due to differences in the infection rate, these peaks are quite
high. It appears that the peak value is affected more strongly
by the proportion of ML nodes than the infection or removal
rate.

Furthermore, the most notable feature of propagation using
the M. model is its growth in the first three steps. We can see
the outbreak with the ML model in Table V-C, which shows
each value at t' = 0,1,2 and 3. Figures 14, and 15 also show
this. These differences are caused by the increasing value of
the factor {2 in % of Eq.19. It seems that a hub node of large
degree k infected at an earlier time by an email posted to a
mailing list caused the outbreak.

E[(I)] i
— — Variant SIR
150 N Proposed (ML:3%)
125 (/ "~\} Proposed (ML:5%)
- N\

1004, \

75 N

RN
50 ~
.
25 e
—_—
Time:t

50 100 150 200 250 300

Fig. 12. Mailing List Impact: 8 = 0.005, v = 0.01

—_ Variant SIR
K --- Proposed (ML:3%)
Proposed (ML:5%)

N \\ —

Fig. 13.  Mailing List Impact: 8 = 0.01, v = 0.01

VI. CONCLUSION

In this paper, we have proposed a new propagation model
for the mass-mailing worm. Our model includes a mailing list
effect on propagation and such an effect has not previously
been considered. We simulate mass-mailing worm propagation
using the proposed model and show that the mailing list has a
large effect on the propagation. Although previous studies have
mainly considered propagation characteristics with respect to
a scale-free network topology, our results show that mailing
lists have a more powerful effect on worm propagation.

There remains more work to do on modeling mass-mailing
worm propagation. For example, a representative mass-mailing
worm NetSky still exists in the wild, though its outbreak
occurred in 2004. Such survival can be compared to survival of
a real virus in the world. To express survival of a mass-mailing
worm, we have to consider adding more conditions to this
model, such as periodic propagation activities of an infected
node, and re-infection of a removed node. Also, determining
the appropriate differential equations for a proposed model
such as that expressed by Eq.(3) will enrich the study of this
topic.

TABLE I
I(t) TRANSITION

t’ 0 1 2 3

Case I(variant SIR) | 5 5.3 5.57 5.83
Case 1(ML:3%) 5 | 3243 63.83 74.17
Case 1(ML:5%) 5| 49.12 | 104.61 | 117.36
Case 2(variant SIR) | 5 53 5.57 5.83
Case 2(ML:3%) S | 3248 67.92 81.44
Case 2(ML:5%) S5 | 4774 ] 109.88 126.6
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