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Abstract—This paper at first presents approximate analytical 

solutions for systems of fractional differential equations using the 
differential transform method. The application of differential 
transform method, developed for differential equations of integer 
order, is extended to derive approximate analytical solutions of 
systems of fractional differential equations. The solutions of our 
model equations are calculated in the form of convergent series with 
easily computable components. After that a drive-response 
synchronization method with linear output error feedback is 
presented for “generalized projective synchronization” for a class of 
fractional-order chaotic systems via a scalar transmitted signal. 
Genesio_Tesi and Duffing systems are used to illustrate the 
effectiveness of the proposed synchronization method. 

 
Keywords—Generalized projective synchronization; Fractional-

order; Chaos; Caputo derivative; Differential transform method 

I. INTRODUCTION 
YNCHRONIZATION of chaotic systems [1-4] has been focus 
of attention in recent literature owing to its applications in 

secure communications of analog and digital signals [5]. 
Fractional calculus deals with derivatives and integration of 
arbitrary order [6] and has deep and natural connections with 
many fields of applied mathematics, engineering and physics. 
Fractional calculus has wide range of applications in control 
theory [7], turbulence, electromagnetism, signal processing  
[8-9] and bioengineering. 

  In this paper, a synchronization called “generalized 
projective synchronization” is used and a drive-response 
synchronization method is developed, this method is used to 
“generalized projective synchronization” of a class of 
fractional-order chaotic systems via a scalar transmitted signal 
[10]. A new application of the differential transform method 
[11] is also introduced to provide approximate solutions for 
the system of fractional 
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differential equations. There are several definitions of a 
fractional derivative of order α>0. The two most commonly 
used definitions are the Riemann–Liouville and Caputo. Each 
definition uses Riemann–Liouville fractional integration and 
derivatives of whole order. The differential transform method 
was first applied in the engineering domain in. In general, the 
differential transform method is applied to the solution of 
electric circuit problems. The differential transform method is 
a numerical method based on the Taylor series expansion 
which constructs an analytical solution in the form of a 
polynomial. 

  The remainder of the paper is organized as follows: section 
II provides a brief review of the fractional order derivative and 
the numerical algorithm of fractional-order differential 
equation. In section III, fractional differential equations using 
differential transform method and numerical examples are 
described. In section IV, the generalized projective 
synchronization is introduced. In section V, the 
synchronization criterion is given. In section VI, proposed 
method is applied to synchronize fractional-order 
Genesio_Tesi and Duffing chaotic systems. Finally, Section 
VII yields the conclusions. 

II. MATHEMATICAL BACKGROUND 
  Consider the system of fractional differential equations: 

ܦ כሻݐଵሺݔ
ఈభ ൌ ଵ݂ሺݐ, ,ଵݔ … ,  ௡ሻݔ

ܦ כሻݐଶሺݔ
ఈమ ൌ ଶ݂ሺݐ, ,ଵݔ … ,  ௡ሻ  (1)ݔ

    

                                                                ڭ 

ܦ כሻݐ௡ሺݔ
ఈ೙ ൌ ௡݂ሺݐ, ,ଵݔ … ,  ௡ሻݔ

  Where,  Dכ
஑౟ is the derivative of xi of order αଵ in the sense 

of Caputo and 0 ൏ ଵߙ ൑ 1, subject to the initial conditions 

ଵሺ0ሻݔ ൌ ܿଵ, ଶሺ0ሻݔ ൌ ܿଶ, … , ௡ሺ0ሻݔ ൌ ܿ௡. (2)              

   The difference between the two definitions is in the order 
of evaluation. Riemann–Liouville fractional integration of 
order α is defined as: 

ܬ ݂ሺݔሻכ
ఈ ൌ ଵ

Γሺఈሻ ׬ ሺݔ െ ሻఈିଵ௫೟ݐ
௫బ

݂ሺݐሻ݀ߙ    , ݐ ൐ 0, ݔ ൐ 0 (3)  

S
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     Where, x଴ and x୲ are the initial and final state vectors, 
and: 

 Γሺݖሻ ൌ ׬ ∞௭ିଵݐ
଴  ݁ି௧ ݀(4)     ݐ              

  And the Riemann–Liouville and Caputo fractional 
derivatives of order α, are defined respectively, as: 

ܦ ݂ሺݔሻ௫଴
ఈ ൌ ௗ೘

ௗ௫೘ ሾܬ௠ିఈ ݂ሺݔሻሿ  (5)                       

ܦ ݂ሺݔሻכ௫଴
ఈ ൌ ௠ିఈሾܬ ௗ೘

ௗ௫೘ ݂ሺݔሻሿ             (6)   

Where m െ 1 ൏ ߙ ൑ ݉ and m א N. 

  III. FRACTIONAL DIFFERENTIAL TRANSFORM method 
  In this section, we introduce the fractional differential 

transform method used in this paper to obtain approximate 
analytical solutions for the system of fractional differential 
equations. This method has been developed as follows: 

 

ܦ ݂ሺݔሻ௫଴
௤ ൌ

1
Γሺ݉ െ ሻݍ

݀௠

௠ݔ݀ ቈන
݂ሺݐሻ

ሺݔ െ ሻଵା௤ି௠ݐ

௫

௫଴
  ቉ݐ݀

 (7) 

݂ሺݔሻ ൌ ∑ ଴ሻ௞ݔሺ݇ሻሺെܨ ఈൗ  ∞
௞ୀ଴  (8) 

Where α is the order of fraction and F(k) is the fractional 
differential transform of f (x). 

 

Theorem1. If f (x) = g(x) ± h(x), then F(k) = G(k) ± H(k). 

Theorem2. If f(x) = g(x) h(x), then F(k)=  ∑ ሺ݇ܪ ሺ݈ሻܩ െ ݈ሻ௞
௟ୀ଴   

Theorem3. If f(x) = g1(x)g2(x) . . . gn−1(x)gn(x), then 

ሺ݇ሻܨ ൌ ෍ ෍ ڮ
௞೙షభ

௞೙షమసబ

௞

௞೙షభసబ

෍ ෍ ଵሺ݇ଵሻܩ
௞మ

௞భసబ

௞య

௞మసబ

ଶሺ݇ଶܩ െ ݇ଵሻ 

ڮ ௡ିଵሺ݇௡ିଵܩ െ ݇௡ିଶሻܩ௡ሺ݇ െ ݇௡ିଵሻ  (9) 

 

Theorem4. If ݂ሺݔሻ ൌ ௫଴ܦ
௤ ሾ݃ሺݔሻሿ, then 

ሺ݇ሻܨ ൌ ௰൫௤ାଵା௞ ఈൗ ൯
௰൫ଵା௞ ఈൗ ൯

ሺ݇ܩ ൅  ሻݍߙ

 Proofs of theorems were brought in [9]. 

 

IV. DEFINITION OF GENERALIZED PROJECTIVE 
SYNCHRONIZATION 

 
  Let us at first introduce the projective synchronization and 

the generalized synchronization at first. 
For two identical chaotic systems which are coupled 

through the variable z in the form: 

ቐ
ܦ ௠ݔ ൌ כ௠ݔሻݖሺܣ

ఈ

ܦ ௦ݔ ൌ כ    ௦ݔሻݖሺܣ
ఈ

ܦ ݖ ൌ ,௠ݔሺܣ כ  ሻݖ
ఈ

 (10)                   

lim
௧՜∞

ԡݔߪ௠ െݔ௦ԡ ൌ 0 

x୫ is synchronized to xୱ up to a scaling factor σ, via 
“projective synchronization”. Besides, for the following two 
chaotic systems in unidirectional coupling form: 

ቊ
ܦ ݔ ൌ ݂ሺݔሻכ

ఈ             
ܦ ݕ ൌ ݃ሺݕ, כሻሻݔఓሺݑ

ఉ    (11)                   

If μ = 0, then y has no relation to x. When μ = 0, the two 
systems are said to be “generalized synchronization”. 

Consider the following chaotic systems: 

൜ ܦ ݔ ൌ ݂ሺݔሻ  כ
ఈ             

ܦ ݕ ൌ ݃ሺݕ, ݄ሺݔ, כሻሻݕ
ఈ       (12)                   

If there exists a constant σ ∈ R − {0} such that: 

lim௧՜∞ԡݔߪ െݕԡ ൌ 0         (13)                   

Then we regard the two systems are synchronized. Such 
synchronization is called “generalized projective 
synchronization”. 

V. THE PROPOSED METHOD: GENERALIZED PROJECTIVE 
SYNCHRONIZATION OF  A CLASS OF FRACTIONAL-ORDER 

CHAOTIC SYSTEMS 
  Assume the fractional order chaotic drive systems under 

study can be written as: 

ܦ ݔ ൌ ݂ሺݔሻכ
ఈ ൌ ݔܣ ൅ ሻݔሺܿܨܤ ൅  (14)                         ܧ

        Since the adoption of a scalar transmitted signal is 
suitable and expected for synchronization and secure 
communication, we choose the output of the system like: 

ݕ ൌ                   (15)               ݔܥ

and use the scalar signal to drive the fractional-order 
response system which is constructed in the form: 

ܦ ෤ݔ ൌ ෤ݔܣ ൅ ሻݔሺܿܨܤሺߪ ൅ ሻܧ ൅ ݕߪሺܭ െ כ෤ሻݕ
ఈ         (16) 

                                      
Where x෤ ∈  Rn, y෤  ൌ  Cx෤, and σ is the synchronization 

scaling factor, K ∈  Rn  is a feedback gain matrix to be 
decided such that the synchronization error ԡσx െ x෤ԡଶ→0 as 
t→∞. Then, the error system can be expressed as: 

ܦ ݁ ൌ ሺܣ െ כሻ݁ܥܭ
ఈ          (17)                   

ܦ כߝ
ఈ ൌ ሺ்ܣ െ ߝሻ்ܭ்ܥ ൌ ߝ்ܣ ൅            (18)   ݑ்ܥ

 

Where the input u ൌ െkTε  of system (AT, CT ) acts as a 
state feedback. 

Lemma1. System D x ൌ Axכ
஑  is: 

• Asymptotically stable if and only if 
|arg(λi(A))|>απ/2, i = 1, 2, . . . , n, where arg(λi(A)) 
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denotes the argument of the Eigen value λi of A. In 
this case, the components of the state decay 
towards 0 like t−α; 

• Stable if and only if either it is asymptotically 
stable or those critical Eigen values which satisfy 
|arg(λi(A))| = απ/2 have geometric multiplicity 
one. 

VI. SIMULATIONS 
  In this section, the proposed method is applied to 

synchronize fractional-order Genesio_Tesi and Duffing 
chaotic systems.  

 The fractional-order Genesio_Tesi chaotic systems can be 
expressed in this form: 

൮
ܦ כଵݔ

௤ଵ

ܦ כଶݔ
௤ଶ

ܦ כଷݔ
௤ଷ

൲ ൌ ൭
0 1 0
0 0 1

െ1.1 െ1.1 െ0.45
൱ ൭

ଵݔ
ଶݔ
ଷݔ

൱ ൅ ൭
0
0
1

൱ xଵ
ଶ                                                 

 (19) 

ݕ ൌ ,ଵݔሺܥ ,ଶݔ ଷሻ்ݔ ൌ  ଵݔ

q= [1, 1, 0.95 ]. 

൮
ܦ כ෤ଵݔ

௤ଵ

ܦ כ෤ଶݔ
௤ଶ

ܦ כ෤ଷݔ
௤ଷ

൲ ൌ ൭
0 1 0
0 0 1

െ1.1 െ1.1 െ0.45
൱ ൭

෤ଵݔ
෤ଶݔ
෤ଷݔ

൱ 

൅ߪ ൭
0
0
1

൱ ଵݔ
ଶ ൅ ݇ሺݕߪ െ  ෤ሻ  (20)ݕ

 We can set the Eigen values λi =−1 of A−KC with K= 
(2.55, 0.7525,-3.244). The phase diagrams of (19) and (20) are 
plotted together in Fig. 1(a) and (b) with scaling factor σ=2 
and 4. The curves of synchronization errors are shown in Fig. 
2 and 3 with σ =4, which indicate that the chaos 
synchronization between (19) and (20) is achieved. 

 
 

 
(a) 

 
(b) 

Fig. 1 The attractors of drive system (19) and response system (20) 
with q = (1, 1, 0.95) (a) σ = 2 (b) σ = 4 

 

 
Fig.2 Synchronization errors of drive system (19) and response 

system (20) 
 

 

 

 
Fig.3 Synchronization of the fractional-order chaotic Genesio_Tesi 

systems (19) and (20) with  
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K= (2.55, 0.7525,-3.244),σ ൌ 4.  ሺaሻ x1, x෤1; ሺbሻ x2, x෤2; ሺcሻ x3, x෤3. 
The fractional-order Duffing chaotic system, the equation 

will be defined as follows: 

ቆܦ כଵݔ
௤ଵ

ܦ כଶݔ
௤ଶ ቇ ൌ ቀ0 1

1 െ0.15ቁ ቀ
ଵݔ
ଶݔ

ቁ ൅ ቀ 0
െ1ቁ ଵݔ

ଷ ൅ 

ቀ 0
0.3ቁ cosሺݐሻ                                         (21) 

ݕ ൌ ,ଵݔሺܥ ଶሻ்ݔ ൌ  ଵݔ

q=[0.9,1]. 

ቆ
ܦ כ෤ଵݔ

௤ଵ

ܦ כ෤ଶݔ
௤ଶ ቇ ൌ ቀ0 1

1 െ0.15ቁ ൬ݔ෤ଵ
෤ଶݔ

൰ ൅ ሾቀߪ 0
െ1ቁ ଵݔ

ଷ ൅ 

ቀ 0
0.3ቁ cosሺݐሻሿ ൅ ݇ሺݕߪ െ  ෤ሻ                   (22)ݕ

 We can set the Eigen values λi =−1 of A−KC with K= 
(1.85, 1.7225). The phase diagrams of (21) and (22) are 
plotted together in Fig.4 (a) and (b) with scaling factor σ=2 
and 4. The curves of synchronization errors are shown in Fig. 
5 and 6 with σ =4, which indicate that the chaos 
synchronization between (21) and (22) is achieved.   

 
  

 
 

 
Fig.4 The attractors of drive system (21) and response system (22) 

with q = (0.9,1) (a) σ = 2 (b) σ = 4 

 
Fig.5 Synchronization errors of drive system (21) and response 

system (22) 

 

 
Fig.6 Synchronization of the fractional-order chaotic Duffing systems 
(21) and (22) with K= (1.85, 1.7225), σ ൌ 4.  ሺaሻ x1, x෤1; ሺbሻ x2, x෤2. 

 

VII. CONCLUSIONS 
 In the present work we demonstrate that fractional order 

Genesio_Tesi and Duffing chaotic systems can be 
synchronized using a scalar transmitted signal It is further 
observed that the synchronization starts earlier for larger 
values of fractional order q. 

 

REFERENCES 
[1] Pecora LM, Carroll TL. Synchronization in chaotic systems.     

Phys Rev Lett 1990;64(8):821. 
[2] Pecora LM, Carroll TL. Driving systems with chaotic signals. Phys 

Rev A 1991;44:2374. 
[3] Kocarev L, Parlitz U. General approach for chaotic 

synchronization with applications to communication. Phys Rev 
Lett 1995;74:5028. 

[4] Carroll TL, Heagy JF, Pecora LM. Transforming signals with 
chaotic synchronization. Phys Rev E 1996;54(5):4676. 

[5] Hilfer R. Applications of fractional calculus in physics. USA: 
World Scientific; 2001. 

[6] Podlubny I. Fractional differential equations. San Diego: 
Academic Press; 1999. 

[7] Sabatier J, Poullain S, Latteux P, Thomas J, Oustaloup A. Robust 
speed control of a low damped electromechanical system based on 
CRONE control: application to a four mass experimental test 
bench. Nonlinear Dyn 2004;38:383–400 

[8] Anastasio TJ. The fractional-order dynamics of brainstem 
vestibulo-oculomotor neurons. Biol Cybern 1994;72:69–79. 

-3 -2 -1 0 1 2 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a)

 

 
response
attractor

-6 -4 -2 0 2 4 6
-4

-3

-2

-1

0

1

2

3

4

(b)

 

 attractor
response

0 10 20 30 40 50 60 70
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

t

e1
.e

2

0 10 20 30 40 50 60 70
-6

-4

-2

0

2

4

6

t
(a)

x1

0 10 20 30 40 50 60 70
-4

-2

0

2

4

t
(b)

x2



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:5, No:6, 2011

809

[9] Ortigueira MD, Machado JAT. Fractional calculus applications in 
signals and systems. Signal Process 2006;86(10):2503–4. 

[10] G.Peng , Y. Jiang. Generalized projective synchronization of a 
classof fractional-order chaotic systems via a scalar transmitted 
signal. 372 (2008) 3963–3970 

[11] Arikoglu, I. Ozkol, Solution of fractional differential    equations 
by using differential. 

 

 

 


