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Abstract—Throughput is an important measure of performance 

of production system. Analyzing and modeling of production 
throughput is complex in today’s dynamic production systems due to 
uncertainties of production system. The main reasons are that 
uncertainties are materialized when the production line faces changes 
in setup time, machinery break down, lead time of manufacturing, 
and scraps. Besides, demand changes are fluctuating from time to 
time for each product type. These uncertainties affect the production 
performance. This paper proposes Bayesian inference for throughput 
modeling under five production uncertainties. Bayesian model 
utilized prior distributions related to previous information about the 
uncertainties where likelihood distributions are associated to the 
observed data. Gibbs sampling algorithm as the robust procedure of 
Monte Carlo Markov chain was employed for sampling unknown 
parameters and estimating the posterior mean of uncertainties. The 
Bayesian model was validated with respect to convergence and 
efficiency of its outputs. The results presented that the proposed 
Bayesian models were capable to predict the production throughput 
with accuracy of 98.3%. 
 

Keywords— Bayesian inference, Uncertainty modeling, Monte 
Carlo Markov chain, Gibbs sampling, Production throughput 

I. INTRODUCTION 

HROUGHPUT analysis is an important and efficient way 
to control and match the production output with the 

ordered demands. Mostly the throughput of production line 
does not meet the required demand on the shop floor of 
production especially in presence of product mix and multi 
stages of production line. Many variables can affect on the 
throughput degradation of each stage for example break down 
of machine, lead time of manufacturing, and scrap, which 
caused maybe by error of machines, material, and workers. 
Changes in demand in terms of type and volume also affect 
the throughput because of changing of customer needs and 
interests. On the other hand, the company requires having 
innovation on design of new products in order to survive in 
today’s competitive manufacturing world.                                                                                        

[10] Emphasized to have the right demand quantity 
estimating for surviving in a constantly fluctuating business 
environment. Managing random variables of production by 
making a robust estimating maximize the profitability. 
Production line uncertainty is taken to attention recently 
because of needs to handle the uncertainty using development 
of new methodology and computational approaches.  
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Study on production uncertainty is an opportunity for new 

research and development [6]. Analyzing and estimating 
throughput is being crucial because the efficiency of the 
production system is usually measured using throughput [14]. 
Managing production in terms of supply and demand requires 
forecasting of both time delivery and quantity [10], [11]. 
Different strategies and approaches are proposed to overcome 
the production uncertainties. However there is not a formal 
strategy or standard approach [10]. It is still under 
development and optimization. The empirical study on the real 
production line and actual data from industry are required 
overcoming to the production uncertainties. 

Discrete event simulation and stochastic planning are 
among the famous approaches. Simulation can be applied for 
any production system to estimate the throughput, however it 
is not robust and this becomes a computational chore when the 
number of alternatives to be examined is large [14]. Stochastic 
planning indeed is difficult to solve and impractical because it 
uses assumed scenarios. The main problem with the stochastic 
planning is how to make sure that the assumed scenarios will 
be exactly observed in future. This paper offers a robust 
procedure for modeling the throughput under popular 
production uncertainties. This paper is organized in five 
sections. Section II presents literature review. Section III 
presents the methodology of Bayesian regression modeling. 
Section IV shows the results and Bayesian model. Section VI 
shows the conclusion of this paper. 

II. LITERATURE REVIEW 

Throughput is considered for analysis and modeling as an 
important measure of production line performance [15]-[17]. 
[19] Provided a review paper of models under uncertainty for 
production planning. He highlighted that the models for 
production planning, which consider the uncertainty can make 
superior planning decisions compared to those models that do 
not present for the uncertainty. On the other hand, [22] have 
shown using simulation that ignoring uncertainty sources lead 
to wrong decisions. [3] categorized uncertainties into two 
groups: (1) environmental uncertainty and (2) system 
Uncertainty. Before 1990 focusing on uncertainty was more 
on environmental uncertainty [2]. Investigating about 
uncertainties on a production line is launched by [1].  [21] 
compiled all the uncertain factors through different sources, 
which are system uncertainty, lead time uncertainty, 
environmental uncertainty, supply uncertainty, operation yield 
uncertainty, interrelationship between levels, demand 
uncertainty, probabilistic market demand and product sales 
price, capacity, breakdown, changing product mix situation, 
labour hiring and lay-offs, quantity uncertainty, cost 
parameters, and quality. Many papers worked on throughput 
analysis using conventional approaches such as simulation and 
analytical methods [15].  
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Simulation method and approximation algorithm are 
applied for analyzing throughput under uncertainty such as 
unreliable machine and random processing times, for example 
studied by [23] & [24]. [18] provided an analytical equation 
for the general case where there are two workstations in a 
serial production line. In his model, the workstations have 
unequal processing time, downtime, and buffer size, while 
[15] considered a serial production line including two 
workstations with same speed and buffer size.  [18] and [17] 
demonstrated that the processing time and down time affect 
the throughput or production volume. [22] examined the 
effects of three uncertainties namely demand, manufacturing 
delay, and capacity scalability delay. They found that 
manufacturing delay has highest impact. A recent survey have 
been performed on material shortage, labor shortage, machine 
shortage, and scrap to show the association of these 
uncertainties on the product tardy delivery through analysis of 
variance, correlation analysis and cluster analysis [20].  

[4] proposed to use buffer to mange uncertainty in 
production system. However they did not make a robust 
decision by forecasting based on relationship of uncertainties 
and throughput.  Later, [5] studied on supply-demand 
mismatches. They believe that the long delivery time of 
throughput to supplier caused because of lead time uncertainty 
in production system, which leads to lost sales. However in 
their proposed methodology to manage lead time uncertainty, 
they did not consider other production uncertainties. And also 
the rate of demand is assumed to be constant in their work. 
Approximate method also is used for forecasting throughput, 
[14] presented an analytical algorithm to analyze and predict 
the production throughput under unbalanced workstations, 
where operation times of stations are random. A hybrid 
combination of autoregressive integrated moving average 
models and neural network for demand forecasting in supply 
chain management is presented by [11], [12]. They developed 
a replenishment system for a Chilean supermarket. The linear 
regression models for strategy, environmental uncertainty and 
performance measurement in New Zealand manufacturing 
firms are formulated by [7].  

Recently, a model using ANFIS has been developed for 
production throughput under uncertain conditions [40]. A data 
mining approach is utilized for cycle time prediction by [13]. 
A panel or longitudinal data sets for uncertain demand and 
price have been considered to evaluate the alternative capacity 
strategies using simulation [25]. Recently [26] proposed an 
autoregressive moving average model for throughput 
bottleneck prediction of a serial production line under 
production blockage and starvation times. Other new attempts 
have been carried out using ARIMA or other methods 
combined with RAIMA to develop the forecasting method in 
manufacturing area [27], [28]. ARIMA approach was 
proposed for modelling production uncertainties in a serial 
production line [38], [39]. 

Stochastic variables of production lines are studied 
separately for example on breakdown by [16] and on 
processing time by [14]. This study is considering more 
variability into the consideration. Variability can be measured 
by the coefficient of variation [14]. Therefore the economic 
uncertainty needs the mathematical Models [10].   

III.  BAYESIAN INFERENCE REGRESSION MODELING 

Bayesian inference use distribution-based approach where 
the prior probabilities were utilized to quantify uncertainty 
regarding the occurrences of events. Bayesian inference 
algorithm is illustrated in Fig. 1.  
 

 
Fig. 1 Flow diagram of computations in Bayesian inference 

A. Load data 

The data observed for input uncertainties and throughput of 
production was translated to the BUGS language by inserting 
them into the R software. The translated data was loaded by 
importing them to the model programmed in BUGS. A list 
from the vector of output and each uncertain variable was 
developed by using a command for reading the data.  

B. Selection of probability  

Problem formulation with predefined probability levels 
explicitly considered the stochastic property of the 
uncertainties. The selection of probability was divided into the 
prior distributions of inputs and the likelihood distribution for 
observed data. These two probability distributions were two 
main input components of Bayesian inference. 
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C.  Prior distribution 

Prior distribution refers to the historical behavior of the 
inputs. Its selection for inputs is done before observing the 
data. This behavior can be elicited from the experts [29]. The 
distribution of prior usually is defined in question by the 
normal distribution with mean of zero and low variance. 
Unfortunately, as the propagation of uncertainty may change 
with time, the prior information on the inputs cannot assume 
true. Therefore, the determination of prior probability 
distribution is done by the trial and error method. 

BUGS can modify the approximate prior by considering the 
sum of Gaussians cantered on each sample generated. The 
selection of prior probability distribution to express the 
uncertainty propagation of inputs can be examined with 
different distribution to see which one is more accurate based 
on lower error generated.  

One way to compare the models with different probability 
distributions is to use a criterion based on trade-off between 
the fit of data to the model and the corresponding complexity 
of the model. A Bayesian model [30] was proposed to 
compare criterion based on deviance information criterion 
(DIC). For each uncertain variable, three popular probability 
distributions were examined: uniform, exponential and 
normal. The posterior probability distribution function of the 
model parameters was computed from the defined prior 
probability distribution function. The best prior probability 
distribution was based on lower DIC comparison. 

D. Likelihood 

The purpose of selecting likelihood probability distribution 
is to identify the best probability function which can fit the 
observed data. The likelihood function for production 
throughput was computed using the conditional distributions 
given the data observed in a tile industry.  The probability 
distributions of normal, exponential, Weibull, and logistic 
function were tested. The procedure was to maximize the 
likelihood to fit the data better. Dependencies values between 
variables were also identified through the conditional 
probabilities. The predicted values were gained through the 
equations (1) and (2). 
 
p �y�|y� = � p �y�|x� p �x|y� dx                                         (1) 

 

⇒ for normal distribution =  p �y�|y� = �
�
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dx            (2) 

where 
y� � future observation, 
y � observed at given x. 

E. Compilation 

The compilation process utilizes both prior and likelihood. 
It synchronizes the information about the uncertainty before 
observation and the behavior of data after observation. The 
compiling is to multiply the prior distribution and likelihood 
probability.  

F. Sampling 

Various samplings were computed from the joint posterior 
distribution. Markov chain method is used to obtain sample 
from full conditional distributions. A vector of unknown 
parameter was considered to consist of n subcomponents. 
Then the sampling started choosing the value of unknown 
parameters from the conditional distribution to find the best 
value of the beta for the posterior distribution, where the 
posterior distribution was maximized. Gibbs sampling 
algorithm was utilized because it is the robust procedure of 
MCMC. The Gibbs sampling algorithm approximated the 
posterior distribution function by making random draws from 
the probability distributions of the input uncertainties and 
evaluating the model at the resulting values.  

G. Quantity of simulations 

Four simulation runs of 1000, 5000, 8000, and 10000 for 
drawing samples were examined to test the model based on 
DIC.  Simulation started from 1000 and was increased until it 
reached convergence. The amount optimal simulation run was 
determined by the higher level of convergence and the lower 
value of DIC.  

H. Generation of posterior  

The posterior is the product of observation probability 
(likelihood) and previous information (prior). Different 
samplings were performed to generate posterior of unknown 
parameters. Each kernel of the generated sample had weight in 
term of closeness to the posterior. Kernel is a function of the 
sample variance. Closer kernels dominated the posterior. Final 
posterior was obtained by weight-normalizing of sum of 
kernel products, which had the best posterior mean and 
variance.  

Fig. 2 shows a construction of Bayesian black box diagram. 
A processor of Bayesian inference engine including rules of 
probabilities and Bayesian theory to derive the posterior mean 
and variance of the model is at the centre of the diagram.  

 

 
Fig. 2 The construction of Bayesian inference model 

Two different sets of prior uncertainty were assigned for 
each uncertain variable. Two competing models were 
generated into two chains denoted by M1 and M2 as shown in 
equation (3). Bayesian inference engine used the Bayes factor 
(BF) to analyze the model proposed as shown in equations (4) 
and (5). The data observed for each uncertainty was denoted 
by X.  

(2)
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When the M1 is as the null model, the possibilities of BF 
results are as follows. 
 
If BF(x)  ≥ 1 => M1supported, 
If 1 > BF(x)  ≥ 10-1/2 => minimal evidence faced for M1, 
If 10-1/2 > BF(x)  ≥ 10-1 => substantial evidence faced for M1, 
If 10-1 > BF(x)  ≥ 10-2 => strong evidence faced for M1, 
If 10-2 > BF(x)   => decisive evidence faced for M1. 
 

The error of Monte Carlo (MC) for sampling procedures 
was calculated for each uncertain parameter by equation (6). 

MC error = 
*+

√,-./01 23 )40154)267�

I. Check the model validation 

The model validation was verified through two ways of 
checking. First checking was by visual inspection of 
trace/history plots to see if the model is convergence. The 
model convergence was achieved when the chains were 
overlapping. The second way of checking was to check the 
autocorrelation. The convergence graphically presents the 
distribution of uncertainty. Gelman Rubin statistic (GRS) 
showed the convergence ratio [31]. The autocorrelation is 
defined between zero and one. A slow convergence shows the 
high autocorrelation, indicating validity of model.  

IV. RESULTS 

A. Model programmed in BUGS 

Table I presents the BUGS model expressions. The sign ~ 
indicates a stochastic relationship, where Tau =1/variance 
showed precision level. The c function combines objects into a 
vector, where the variable x was collected by different values 
that were measured in different period of time.   

 
TABLE I 

DESCRIPTION OF THE BUGS MODEL EXPRESSIONS 
Expression Type Usage 

dnorm Normal distribution x ~ dnorm (mu, tau) 

c Vector of data set x = c (x1, x2, …, xn) 

B. Probability distribution test 

Four popular probability distributions including normal, 
Weibull, logistic, and exponential were tested. Fig. 3 shows 
the normal distribution is the best fit for production throughput 
and Fig. 4 presents the summary of the normal distribution 
function. 

 
Fig. 3 Testing four popular probability distributions 

 

 
Fig. 4 Anderson-Darling normality test 

C. Checking the programmed model  

After programming, the model was checked for any 
completeness and consistency with the data. The initial values 
were generated by sampling from the prior. The model 
programmed was proven syntactically correct and compiled.  

D. Convergence diagnostics test 

Computational results of the lowest MAPE were selected in 
this section for the Bayesian model. The convergence 
diagnostics were checked through two chains results. The 
convergence was achieved because both chains overlapped 
each other, according to [32]. The dynamic race plots of the 
stochastic parameters with 10,000 iterations were done to 
check the convergence on 95% credible interval. Fig. 5 
graphically shows the results.  

DIC is the summation of goodness of fit and complexity. 
Deviance is the average of the log likelihoods calculated at the 
end of iteration in Gibbs Sampler. The definition of deviance 
is - 2 × log (likelihood). Likelihood is defined as p (y|theta), 
where y comprises all stochastic parameters given values and 
theta comprises the stochastic parents of y - 'stochastic parents' 
are the stochastic parameters upon which the distribution of y 
depends, when collapsing over all logical relationships. 
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Fig. 5 Dynamic trace plots of uncertain parameters 

E. Kernel density 

Fig. 6 shows the value of Kernel density for each stochastic 
parameter was performed on 10000 samples. The diagrams 
indicated smoothed kernel density estimate. The trends 
indicated the posterior distribution of each stochastic 
parameter is normal like prior distribution, thus proving the 
estimations were robust and logical.  
 

 
Fig. 6 Kernel density of the uncertain parameters 

F. Running quartiles 

Running quantiles plot out the running was done for mean 
with running 95% confidence intervals where 10000 iterations 
were used. Results are presented in Fig. 7. 
 

 
Fig. 7 Running mean of the uncertain parameters 

G. Autocorrelation function 

The autocorrelation function for the chain of each parameter 
indicated the dimensions of the posterior distribution were 
mixing slowly before 20 lags in each case. Slow mixing is 
often associated with high posterior correlations between 
parameters.  

H. Gelman Rubin statistics 

Gelman Rubin statistic (GRS) was performed for all 
stochastic parameters, which were modified by [32] in 
equation (7). The idea was to generate the multiple chains 
starting at over dispersed initial values, and assesses the 
convergence by comparing within-chain and between-chain 
variability over the second half of those chains.  
 
GRS = A / W                                                                  (7) 
 
Where 
A= width of the empirical credible interval based on samples 
pooled together (2 chains × 10000 iterations). 
W= width average of the intervals across the two chains 
 

The GRS is to average the interval widths (shown in red 
color). It should be 1 if the starting values are suitably over 
dispersed and the convergence is approached.  The blue and 
green interval lines should be approximately stabilized to 
constant value (not necessarily 1). It is proven and shown for 
all five stochastic parameters in Fig. 8. 
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Fig. 8 Gelman Rubin statistic for the uncertain parameters 

 
Where 
Green = width of 80% intervals of pooled chains: should be 
stable 
Blue = average width of 80% intervals for chains: should be 
stable 
Red = ratio of pooled/within: should be near 1 

I. Box plot of posterior 

Box plot of posterior efficiency distributions are presented 
in Fig.9. The calculated baseline value was 
11595.7809089724. 
 

 
Fig. 9 Box plot of posterior efficiency distributions 

J. Model fit 

Fitted values were compared with actual values for 
production output, breakdown, demand, lead time, setup time, 
and scrap in 95% interval. The results showed production 
throughput and demand had similar upward trend while 
breakdown time, lead time, set up time, and scrap had similar 
downward trend. Fig.10 shows comparison between fitted 
values to actual value for production throughput, while Fig.11 
presents the similar comparison for breakdown time. 

 
Fig. 10 Fitted value compare with actual values over production 

throughput observed with 95 % interval 
 
Where 
Red = posterior mean of µi,  
Blue = 95% interval,  
Black dot = observed data 
 

 
Fig. 11 Fitted value compare with actual values over breakdown time 

observed with 95 % interval 

K. Posterior estimates  

The final set of posterior estimates using Gibbs sampling in 
95% credible interval was summarized in Table 2. The 
percentiles of 2.5% and 97.5% of posterior estimates produce 
an interval, which the parameter lies with probability of 0.95. 
 

TABLE II  
SUMMARIES OF THE POSTERIOR DISTRIBUTION 

Coefficient mean Std. Dev. MC error median 
β8 0.01343 3.179 0.0242 0.02376 
β� -0.0849 2.896 0.01872 -0.1016 
β� 0.9585 0.1596 0.001056 0.958 
β9 0.1268 0.6618 0.004444 0.1246 
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β: -0.0458 3.156 0.02213 -0.0614 
β; -0.1481 0.7179 0.005325 -0.1474 

Deviance 1939.0 2.383 0.01624 1939.0 

 
The value of MC error shows an estimate of (σ / √N� ). The 

batch means method outlined by [31] was used to estimate σ.  
 

Finally, the Bayesian model is formulated as presented in 
equation (8). 
 
P�t�~ 0.01343 D 0.0849 B�t� H 0.9585 D�t� H
0.1268 L�t� D 0.04589 Se�t� D 0.1481 S �t�                       (8) 

V. CONCLUSION 

This paper modeled the uncertain variables of a serial tile 
production line consist of demand, break-time, scrap, and 
lead-time. The contribution of this paper was to consider more 
uncertainties and propose Bayesian inference regression to 
model the five uncertain variables with the production 
throughput. The proposed model can be used to predict the 
production throughput efficiently, and presents the 
mathematical relationship between the main production 
uncertainties and throughput. It provides quick “what-if” 
comparisons. Other types of production systems and industries 
are recommended for future studies. The best simulations 
iterations of MCMC were 10000 and the best prior 
distributions for stochastic variables were normal distributions 
for the Bayesian model. The second model proposed was 
based on Bayesian inference. This approach utilized the prior 
knowledge on uncertainties and existing information based on 
data analysis of throughput and uncertainties. The robust 
Gibbs sampling is applied for MCMC to produces acceptable 
knowledge on prior events when analytical solutions were 
unavailable. The Bayesian model results generated the 
posterior information on propagation of uncertainties and 
relationship between them and the throughput with 95% 
credible interval and accuracy of 98.3%.  
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