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 
Abstract—Fructo-oligosaccharides (FOS) are produced from 

sucrose by Aureobasidium pullulans in yields between 40-60% 
(w/w). To increase the amount of FOS it is necessary to remove the 
small, non-prebiotic sugars, present. Two methods for producing 
high-purity FOS have been developed: the use of microorganisms 
able to consume small saccharides; and the use of continuous 
chromatography to separate sugars: simulated moving bed (SMB). It 
is herein proposed the combination of both methods. The aim of this 
study is to optimize the composition of the fermentative broth (in 
terms of salts and sugars) that will be further purified by SMB. A 
yield of 0.63 gFOS.gSucrose

-1 was obtained with A. pullulans using low 
amounts of salts in the initial fermentative broth. By removing the 
small sugars, Saccharomyces cerevisiae and Zymomonas mobilis 
increased the percentage of FOS from around 56.0% to 83% (w/w) in 
average, losing only 10% (w/w) of FOS during the recovery process. 
 

Keywords—Fructo-oligosaccharides, microbial treatment, 
Saccharomyces cerevisiae, Zymomonas mobilis. 

I. INTRODUCTION 

N the recent years the adoption of healthier lifestyles is 
being encouraged, and the demand of food with functional 

properties is increasing. Fructo-oligosaccharides (FOS) are 
non-digestible sugars, known to prevent and treat 
gastrointestinal disorders due to their prebiotic activity [1]. 
They have been used as low-calorie substitutes for sugar in 
dietetic and diabetic food and have also great technological 
properties as improving the organoleptic quality and shelf-life 
of the products [2], [3]. 

Industrially, FOS have been produced through sucrose 
fermentation by microorganisms’ fructosyltransferases 
enzymes (FTase), extracted from, for example, Aureobasidium 
sp. or Aspergillus sp. Industrially the process involves two 
stages, one for the production of enzymes followed by the 
other for the FOS synthesis by the extracted enzymes [4]. A 
more economical and fast process is being recently applied for 
FOS synthesis, involving a single step where the whole 
microorganisms’ cells, suspended or immobilized, are used 
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[5]. Maximum theoretical FOS yield achieved by fermentation 
process is however still limited due to glucose inhibition. By 
using Aureobasidium pullulans cells, a maximum of 64% was 
achieved [6], while for the two-stages fermentation, this yield 
varies between 40 to 60% based on the initial sucrose 
concentration [7]. 

During FOS synthesis by microbial enzymes, non-
oligosaccharides as fructose, glucose and sucrose are released 
in the mixture, decreasing the prebiotic activity of the final 
mixture. To include FOS produced into different dietetic and 
diabetic related foods, a downstream purification step is 
needed.  

Ultra or nanofiltration, activated charcoal systems, 
microbial treatment and ion-exchange chromatography are 
some of the techniques more used for sugars separation [8], 
[9]. At industrial scale, chromatographic processes such as 
Simulated Moving Bed (SMB) have been employed, with 
success, in difficult separations of sugars [10]. Compared to 
other separation techniques, SMB has the advantage of 
operating in continuous mode using water as eluent [11], [12]. 
FOS have been successfully separated from smaller sugars, 
when using cationic resins such as Diaion UBK535Ca in 
calcium form [10], [13]. Since these resins have cations as 
functional groups, it is important to demineralize the liquid 
mixture before feeding it to the SMB plant to avoid the ionic 
exchange between the mixture and the adsorbent. 

Obtaining high-purified FOS through SMB is stated in only 
few reports and it is still a challenge, mainly due to the 
physicochemical similarities between the different 
oligosaccharides and small saccharides [8]. In this context, 
different authors studied the impact of the continuous removal 
of the small saccharides from the medium during FOS 
synthesis [14], either using an extracted -fructofuranosidase 
for FOS synthesis and Pichia pastoris cells for removing the 
small sugars [15], or using a mixture of enzymes, one FOS 
producer and other able to consume small sugars without FOS 
hydrolyze activity [14], [16], [17]. In this work it is proposed 
the use of the whole cells of A. pullulans to produce FOS and 
Saccharomyces cerevisiae and Zymomonas mobilis able to 
ferment glucose, fructose and sucrose into alcohols and 
organic acids, with ethanol as the primary product [18], [19]. 

The present study is divided in two main tasks: 1) The 
optimization of salt composition in the fermentative broth for 
FOS production by A. pullulans cells; 2) The use of two 
different microorganisms, namely S. cerevisiae or Z. mobilis, 
for non-oligosaccharides reduction in the fermentative 
mixture. The process consists in two series fermentation where 
first FOS are produced by A. pullulans and secondly small 
sugars are reduced by S. cerevisiae or Z. mobilis. 
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The nutritional needs of S. cerevisiae and Z. mobilis were 
taken in consideration and the fermentative broth composition 
was also optimized for these cultures. 

II. MATERIALS AND METHODS 

A. Microorganisms and Culture Conditions 

Aureobasidium pullulans strain was kept on Petri plates 
containing Czapeck Dox Agar (Oxoid, UK) medium at 4ºC 
and was monthly subcultured. The spores suspension was 
prepared by growing the fungus in Petri plates at 28ºC and 
after 5 days spores were scraped down from the plates using a 
0.1% (w/v) solution of Tween 80 (Panreac, AppliChem, 
Spain). The suspension was diluted to a concentration of 1 x 
107 spores.mL-1, based on Newbauer chamber counts.  

Saccharomyces cerevisiae 11982 and Zymomonas mobilis 
ATCC 29191 strains were grown in YEG (yeast extract-
glucose) culture medium,  containing 5 g.L-1 yeast extract and 
20 g.L-1 glucose (both from Fluka, Germany), during 24 hours, 
at 30ºC and 150 rpm agitation. The strains were maintained by 
transferring every month to fresh YEG agar plates and stored 
at 4ºC after incubation at 30ºC for 5 days.  

B. Experimental Design for Fermentation Broth 
Optimization 

The salt composition of the A. pullulans fermentation broth 
was optimized. The impact of the reduction of two relevant 
salts, NaNO3 and KH2PO4, frequently used in increased 
concentrations, was studied using the Response Surface 
Method (RSM). Eleven independent assays were performed, 
regarding the impact on the maximization of FOS production. 

Superior, central and inferior concentrations were 
considered: 5.00, 12.50 and 20.00 g.L-1 for NaNO3 and 4.00, 
6.00 and 8.00 g.L-1 for KH2PO4. Significant positive effects 
were considered for the reported p-values lower than 0.05. The 
statistical experimental design was generated and evaluated 
using the JMPTM – The Statistical Discovery Software.  

C. Shaken-Flasks Fermentations for FOS Production 

Erlenmeyer flasks of 100 mL with test tube aluminum caps 
were used. An aliquot of 1 mL of A. pullulans spores 
suspension with 1 x 107 spores.mL-1, was transferred to 50 mL 
of fermentation medium, containing: 200 g.L-1 sucrose, 0.5 
g.L-1 KCl, 0.35 g.L-1  K2SO4, 0.5 g.L-1 MgSO4.7H2O, 0.01 g.L-

1 FeSO4.7H2O, and optimized concentrations of NaNO3 and 
KH2PO4. All salts were obtained from VWR (Belgium). 
Chemicals used were of analytical grade, except sucrose used 
for FOS synthesis, which was a commercial sugar obtained by 
Raffinerie Tirlemontoise, S.A., Belgium. 

The pH of the culture medium was adjusted for 5.5 before 
inoculation and fermentations were performed at 28°C with 
150 rpm agitation. Several samples were taken at different 
points in time to evaluate sugars profile. 

D.  Bioreactor Fermentations for FOS Production 

An aliquot of A. pullulans spores suspension with 1 x 107 
spores.mL-1 was transferred to 100 mL of inoculum medium 
containing 100 g.L-1 sucrose and the same salt concentrations 

as the ones used in shaken-flask fermentations for FOS 
production. The inoculum was grown at 28°C and 150 rpm 
and transferred after 3 days to a 5 L bioreactor – BIOSTAT® B 
module (Sartorius, Germany), using a working volume of 3 L 
of culture medium (200 g.L-1 sucrose and the same salt 
concentrations as the ones used in the inoculum). 
Fermentations were carried out at 32°C and 385 rpm with a 
fixed pH of 5.5.  

E. Non-Oligosaccharides Removal 

The ability of two microorganisms, S. cerevisiae and Z. 
mobilis, for mono- and disaccharides removal, was evaluated, 
using a two-stage process. FOS were synthesized in a first 
fermentation by A. pullulans, in a 5 L bio-reactor. The 
synthesis reaction was stopped in the maximum FOS 
concentration point and the biomass removed by filtration 
with cellulose acetate filters (VWR, Belgium) with a cut-off of 
0.2 m.  

The filtered broth was used for the subsequent fermentation 
and inoculated with 1 mL of S. cerevisiae or Z. mobilis cells 
(with an optical density of 1). Yeast extract was added to the 
second fermentation to obtain a final concentration of 5 g.L-1. 
Shaken-flask fermentations were carried out at 30°C and 150 
rpm agitation with an initial pH of 5.5.  

F. Sugars Analysis 

Samples were analysed by HPLC (Jasco) equipped with a 
refractive index detector working at 30ºC and a Prevail 
Carbohydrate ES 5u column (5 μm, 25 x 0.46 cm length x 
diameter) (Alltech). A mixture of acetonitrile (HPLC Grade, 
Carlo Erba, France) in pure-water (70:30 v/v), and 0.04% of 
ammonium hydroxide (HPLC Grade, from Sigma, Germany) 
was used as mobile phase. Elution was conducted at 1 
mL.min-1 flow rate and room temperature [20], [21]. The 
chromatographic signal was recorded and further integrated 
using the Star Chromatography Workstation software (Varian, 
USA). 

FOS standards, namely 1-kestose (GF2), nystose (GF3) and 
1-fructofuranosylnystose (GF4) were acquired from Wako 
(Chemicals GmbH, Japan). Sucrose (GF) and fructose (F) 
standards were obtained from Merck (USA) and glucose (G) 
from VWR (Belgium). All chemicals were of analytical grade. 

G. Statistical Analysis 

Fermentation experiments were carried out in triplicate. 
Statistical data analysis was performed using analysis of 
variance and Tukey’s HSD test at a 5% level of significance. 
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TABLE I 
RESPONSE SURFACE METHOD FOR STUDYING THE IMPACT OF THE INITIAL FERMENTATION BROTH COMPOSITION: THE EXPERIMENTAL CONDITIONS AND 

RESPONSES OBTAINED DURING SALT OPTIMIZATION 

A B Fermentation time (h) FOS (g.L-1) %FOS (w/w) Yield (gFOS.gSucrose
-1) Qp (gFOS.L

-1.h-1) 

A1 5.00 8.00 47.83 101.32 48.90 0.54 2.12 

A2 20.00 4.00 53.50 91.51 43.50 0.46 1.71 

A3* 12.50 6.00 53.50 103.67 48.10 0.53 1.94 

A4 5.00 4.00 47.83 95.42 50.80 0.50 1.99 

A5 5.00 6.00 53.50 95.05 49.60 0.48 1.78 

A6 12.50 8.00 53.50 101.85 49.80 0.51 1.90 

A7* 12.50 6.00 47.83 104.31 50.60 0.53 2.18 

A8 20.00 6.00 47.83 105.68 49.30 0.53 2.21 

A9 12.50 4.00 53.50 105.61 49.70 0.53 1.97 

A10 20.00 8.00 53.50 103.00 47.00 0.52 1.93 

A11* 12.50 6.00 53.50 99.89 49.00 0.50 1.87 

A – NaNO3 (g.L-1); B – KH2PO4 (g.L-1); *Central points 

 
III. RESULTS AND DISCUSSION 

A. Fermentation Broth Composition Optimization for FOS 
Production 

A microbial treatment to increase the amount of FOS in 
relation to other sugars in FOS mixtures obtained by 
fermentation is proposed in the present study. Mixtures are 
intended to be further fed in SMB chromatographic plant for 
refined purification. A two-stage fermentation strategy is 
herein proposed using a strain able to consume the remaining 
small sugars from the FOS mixtures, synthesized by 
fermentation with A. pullulans. 

To avoid the cation exchange between the liquid mixture 
and the adsorbent, the effect of decreasing salt amount in the 
fermentative broth composition for FOS production was 
evaluated. Different concentrations of two salts normally 
present in higher concentrations in the fermentative broth 
composition, adapted from [6], NaNO3 and KH2PO4, were 
tested. Results obtained for the study of the impact of different 
initial salt concentrations identified by an experimental design 
are shown in Table I.  

Based on the statistical analysis, the tested concentrations of 
NaNO3 (5.00, 12.50 or 20.00 g.L-1) and KH2PO4 (4.00, 6.00 or 
8.00 g.L-1) did not affect significantly FOS production (p< 
0.05).  

In average, the maximum concentration of FOS (102  3 
g.L-1) was obtained at 54  2 h of fermentation in shaken-
flasks. Average fermentation yield was 0.52 0.01 gFOS/gGF 
with an amount of 49  1% of FOS in total sugars. No 
statistical difference was found in FOS production when 
diminishing salts contained in the fermentative broth, the 
concentrations of 5.00 g.L-1 NaNO3 and 4.00 g.L-1 KH2PO4, 
were used in the two-stage fermentations for FOS production. 
The decrease of the NaNO3 and KH2PO4 amounts from 20 to 5 
g.L-1 and 7.89 to 4 g.L-1, respectively, will have a positive 
impact in costs and time associated to demineralization 
procedures needed before feeding in the SMB plant. Also, the 
use of lower salt amounts reduces costs associated to the 
fermentation itself, resulting in an improved FOS producing 
process. 

B. FOS Production in Bioreactor 

Fermentations were scaled up to a 5 L bioreactor using a 
concentration of 5.00 g.L-1 of NaNO3 and 4.00 g.L-1 of 
KH2PO4 since no statistical differences were found in FOS 
production when diminishing salts contained in the 
fermentative broth. Bioreactor fermentations results obtained 
are presented in Figs. 1 (a) and (b), and summarized in Table 
II.   

 
TABLE II 

BIOREACTOR FERMENTATION PARAMETERS USING THE OPTIMIZED 

FERMENTATION BROTH 

Average ± STD [5] 

Time (h) 20 43 

FOS (%) 54.0 ± 1.6 NF 

Yield (% wFOS/wSucrose) 63.0 ± 3.2 64.1 

Productivity (g/L.h) 4.8 ± 1.4 2.9 

FOS (g/L) 118.6 ± 1.6 123.0 

Yield (g1-kestose/gSucrose) 0.378 ± 0.078 0.436 

Yield (gnystose/gSucrose) 0.231 ± 0.053 0.206 

NF – Not found 
 

The maximum concentration of FOS was verified after 20h 
of fermentation, where GF2, GF3 and GF4 concentrations are 
71.6±12.6, 43.8±11.2 and 3.4±22.4 g.L-1, respectively (Fig. 1 
(b)). In Fig. 1 (b) it is possible to observe that the maximal 
concentration of GF2 is before 20h, and after this point, this 
sugars starts being transformed in GF3, through 
transfructosylation reaction, according to (1) [22].  

Under the optimized conditions used, the time needed to 
achieve the maximum FOS production was twice lower than 
in previous works, resulting in a process with much higher 
productivity (4.8  1.4 compared to 2.9 gFOS.L-1.h-1) (Table II). 

 

1)+(n1)-(nnn GF+GF GF+GF  , n=1, 2 or 3         (1) 

 
The yield and FOS concentration in bioreactor (Table II) 

are similar to those obtained in previous works using the 
whole cell of A. pullulans at analogous operational conditions 
of temperature, pH and agitation, though with higher 
concentrations of salts [6], [9]. Also, in the present work, a 
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