
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:8, 2013

1723

Abstract—To offer a large variety of products while maintaining

low costs, high speed, and high quality in a mass customization
product development environment, platform based product
development has much benefit and usefulness in many industry fields.
This paper proposes a product configuration strategy by similarity
measure, incorporating the knowledge engineering principles such as
product information model, ontology engineering, and formal concept
analysis.

Keywords—Platform, product family, ontology, formal concept

analysis.

I. INTRODUCTION
N a today’s highly competitive market, mass customization
is of great importance for companies to achieve greater

success as in Fortune Magazine declared that “mass
customization will do for manufacturers the 21st century [1].”
The challenge facing the realization of mass customization is to
offer a large variety of products while maintaining low costs,
high speed, and high quality. To cope with it, many companies
consider platform-based product development, sharing
components, modules, assemblies, or parts in a product family
or even similar product family groups. In general a product
family is a set of related products deriving from a platform to
satisfy the mass customization, and product family can be
defined as: “a set of common components, modules, or parts
from which a stream of derivative products can be effectively
developed and launched [2].”

The benefit and usefulness of platform-based product
development has been proved in many industry fields and a
considerable amount of platforms have been defined during the
decade, and the primary benefit in platform-based product
development is providing economical product variety, that is,
product and process excellence to achieve the cost advantage.
A platform-based product development approach, however,
looks like heavily dependent on the subjective experience and
skills of company’s individual designers and engineers due to
the intrinsic characteristics of platform design.

Therefore the purpose of this paper is to provide the designer
and engineers with the appropriate information and knowledge,
and takes the knowledge engineering methods to find the
correspondent modules between semantically related entities of
the products. These correspondences can be used for
leveraging product family and platform-based product
development.

Heejung Lee is with the Department of Applied Systems, Hanyang
University, South Korea (e-mail: stdream@hanyang.ac.kr).

II. THEORETICAL BACKGROUND

A. Product Platform
For many years companies have exploited opportunities to

create product families by developing and coordinating
modular components. The term “platform” can be reviewed in
three distinct fields: product development, technology strategy,
and industrial economics [3]. Product development researchers
introduced the term platform to describe the product family that
“meet the needs of a core group of customers for easy
modification into derivatives through the addition, substitution,
or removal of features [4]”, technology strategists used the term
platforms as valuable points of control in any industry [5], and
industrial economists used the term platforms to characterize
products, services or organizations solving the transaction
mediation problem [6]. Because the concept of platform has
been widely used in various fields, this paper adopts the
platform concept as product development flavor which has a
root in engineering design.

Simpson et al suggested two approaches to product family
design [7]: top-down and bottom-up approach. A top-down
approach means that the company will develop the core or
common product and its derivatives from the platform, while
the company will fix up similar products to standardize
components and modularize in a bottom-up approach. Both
approaches have effort to define the appropriate product
platform from which many products should be derived in an
efficient and effective way.

On the other hand, optimizing method to define appropriate
platform has been widely used for decades during product
development and there are also many methods for optimizing
product family and product platform design. There are not
appear to be a preferred algorithm, however, among classical
optimization algorithm – Branch and Bound, Simulated
Annealing, Genetic Algorithm, and Pattern Search [7], while
artificial intelligence techniques for product family and product
platform design have been relatively successfully employed.
Rosen developed the product module reasoning systems, which
reasons about product architectures and suggests the all
feasible module combinations [8]. Other researchers attempted
to develop the reasoning techniques or systems such as product
family reasoning systems [9], agent-based systems [10], and
case-based reasoning systems [11]. Recently, knowledge-based
approaches to infer platform design were attempted by
combination of formal concept analysis and ontology [12]. ,

Product Configuration Strategy Based On Product
Family Similarity

Heejung Lee

I

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:8, 2013

1724

B. Ontology
In today’s highly knowledge society, myriad of information

systems use many different individual schemas to represent the
product configuration. An ontology is the one of promising
solutions for represent product knowledge in a formal way. The
word ontology means a particular theory of the nature of being
or existence, and is used with different meanings in different
applications [13], [14]. Gruber originally defined an ontology
as a “explicit specification of a conceptualization [13],” Borst
defined an ontology as a “formal specification of a shared
conceptualization [15],” and Studer, Benjamin, and Fensel
merged these two definitions stating an ontology as a “formal,
explicit specification of a shared conceptualization [16].”

Therefore, an ontology specify the semantics of terminology
systems of a domain of interest and the meanings of domain
data formally and explicitly, thereby providing a shared
understanding of a domain of interest to support
communication among human beings and applications. One
main advantage of applying ontologies is the ability to support
the sharing and reuse of formally represented knowledge by
explicitly stating concepts, relations, and axioms in a domain.
Ontologies have been widely applied in a variety of domains to
represent information or knowledge models, such as product
data models, owing to the fact that its formal semantic can be
unambiguously interpreted by humans and machines.

In general, an ontology provides a taxonomy describing a
domain of interest of any things in a formal language. In
addition, ontologies can be practical means to represent and
conceptualize the product data models in a computer format of
today’s digital or internet era.

C. Formal Concept Analysis
Formal Concept Analysis (FCA) has been introduced by

Wille [17], and used for analyzing data and modeling semantic
structures in many different research areas. In this section, we
briefly describe important terminologies for FCA. Formal
Context is a triple (C, P, R), where C is a finite set of objects, P
is a finite set of properties and R is a binary relation between C
and P, i.e. R ⊑ C×P. given two sets C1 ⊑ C and P1⊑ P, we can
consider the dual sets C1’ and P1’ such as the sets defined by
the properties applying to all the objects belonging to C1 and
the objects having all the properties belonging to P1,
respectively, that is:

C1’ = {p∈ P |∀ c∈ C1: (c, p)∈ R}

P1’ = {c∈ C |∀ p∈ P1: (c, p)∈ R}

Formal Concept is a pair (C1, P1), such that C1 ⊑ C, P1 ⊑ P

and the following conditions holds: C1’ = P1, P1’ = C1. The
sets C1 and P1 are referred to as the extent and the intent of the
formal concepts (or briefly concept), respectively. Therefore, a
concept is a pair consisting of two parts, the extent and the
intent. In general, a concept (C1, P1) is a subconcept of a
concept (C2, P2) if the extent C1 is a subset of the extent C2 or
equivalently if the intent P1 is a superset of the intent P2.

III. PRODUCT PLATFORM DESIGN

A. Types of Heterogeneity
The first step of product platform design is to reduce

heterogeneity among the languages or terminologies for
engineering, marketing, and product functions. There have
been many different types of heterogeneity: i) syntactic
heterogeneity, which occurs when two or more product
concepts are not expressed in the same language, ii)
terminological heterogeneity, which occurs due to variations in
names when referring to the same entities in different products,
e.g., car vs. automotive, and iii) semantic heterogeneity, which
stands for the differences in product configuration or modeling
for the same concept or function. Ontology-based approach is a
promising solution to this heterogeneity situation problem by
finding correspondences among different products but having
semantically related modular components.

B. Product Information Model
In a heterogeneous environment, the collaborative product

development activities involve proprietary product information
and the major barrier to effective collaboration is the lack of
formal and explicit semantics in the product information model
(PIM) that would facilitate semantic interoperability. Over the
years, a wide range of researches have been conducted and the
ontology-based approach is likely to be the most suitable for
integrating diverse heterogeneous engineering applications, as
the semantic of the product structure data built in formal
logic-based ontology languages, such as Description Logic, can
be specified in a well-defined and unambiguous manner.

Description logic (DL) [18], restricted subsets of First
Order Logic, is one of the knowledge representation languages
that can be used to capture the knowledge of an application
domain in a structured and formally well-understood way. The
name description logic is motivated by the fact that the
important notions of the domain are described by concept
descriptions, i.e., expressions that are built from atomic
concepts (unary predicates) and atomic roles (binary
predicates) using the concept and role constructors provided by
the particular DL. In general, a concept denotes the set of
individuals that belongs to it, and a role denotes a relationship
between concepts.). Consider the main layers of the DL family
bottom-up, ALC is a basic and simple language, permitting
concept descriptions via C D, ¬ C, ∀ P.C, and ∃ P.C where C,
D are concepts and P is a property. Augmented by transitive
properties, ALC becomes ALC R+ in the following denoted by
S. SI is an extension to S with inverse properties, followed by
SHI with property hierarchies. It becomes SHIF if extended by
functional restrictions, SHIN if extended by cardinality
restrictions, and SHIQ if extended by qualified number
restrictions. Support for data type predicates (e.g., string,
integer) leads to the concrete domain of D, and using nominals
O allows to construct concepts from singleton sets.

On the other hand, the OWL (Web Ontology Language) [19]
is an ontology language designed for use by applications that
need to process the content of information instead of just
presenting information to humans. Notations or names of OWL

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:8, 2013

1725

about the same notions are different from DLs, although OWL
is mainly based on DLs. In OWL syntax, class is referred to
concept, individual to constant and property to role. Also, DL
inferences including concept classification, concept
satisfiability, and realization are implemented by DL reasoning
systems providing classification, consistency checking, and
realization. Therefore, this paper refers to them
interchangeably because originally the different names indicate
the same notion in both OWL and DL.

A PIM can be defined as a DL-based logical language
consisting of a set of concepts and their relations. The concept
Part is defined as Thing, and Product_Part is defined as the set
of something that is Part and has no isDirectComponentOf
relation with Part. Likewise, Primitive_Part is defined as the
set of something that is Part and has no hasDirectComp
relation with Part individual. In contrast, Assembly_Part is
defined as the set of something that is Part and has at least two
hasDirectComp relations with Part individual. Except the
previous three concepts, the rest just have has super-concept
relation because their definitions are not critical in this paper. In
Table I, there are some basic relations which account for
product structural information. In addition, the properties have
some typical axioms such as ‘transitivity’, ‘inverse(-)’,
‘symmetric’, ‘inclusion’, etc. The property hasComponent has
‘transitivity’ characteristics and the ‘inverse(-) property of
isComponentOf, and the property hasDirectComp has
‘inclusion’ relationship with is the sub-property of
hasComponent and the ‘inverse(-)’ property of
isDirectCompOf. The property isCompatibleWith is used when
two parts have compatible parts to each other so that they can
be assembled. The property isNotCompatWith has the opposite
meaning. The two properties, isCompatibleWith and
isNotCompatWith have ‘transitivity’ and ‘symmetric’. Table I
shows the above mentioned relations.

TABLE I

PRODUCT STRUCTURE RELATIONS
Name Domain Range Type

hasComponent Part Part Object
hasDirectComp Part Part Object
isComponentOf Part Part Object
isDirectCompOf Part part Object

isCompatibleWith Part Part Object
isDirectCompatWith Part Part Object

In addition to the product structure relations, we should also

consider the product attribute relations for each specific
product. The range of this product attribute relations can be
another class (e.g. a range of an attribute relation hasFeature is
a class Chipset), and also be a primitive data type (e.g. a range
of an attribute relation hasRAMSize is an Integer). We define
the following primitive datatypes: String, Integer, Float, and
Boolean.

C. Basic Techniques
An important success factor of a platform development

strategy is how effectively and efficiently new products can be

developed from the platform. The goal of this section is to
provide how to find the relations between different PIMs and
suggest the platform design and customization alternatives. For
this we present here the basic method for assessing the
similarity between different.

When analyzing similarities between PIMs, we examine at
the property levels that are directly related to these concepts.
The following is at the heart of the approach: Given a set (Class,
Property, Relation), we can consider that the classes and
properties are referred to as the product and specification in the
product development application, respectively. Therefore, a
product group can be defined as the concept consisting of a set
of products and a set of specifications.

For instance, consider a PIM set called Project X where,

C = {C1, C2, C3, C4}
P = {P1, P2, P3, P4, P5, P6, P7, P8, P9, P10}

and R is specified by Table II. In this set, four products are
provided, each corresponding to some of four specifications. A
sample product group is, for instance, the pair ((C3, C4), (P1,
P4, P8, P9)). We can also consider another product group ((C4),
(P1, P4, P8, P9, P10)), as a sub-set of pair ((C3, C4), (P1, P4,
P8, P9)). We can notice here that by adding the specification
P10 to the former product group, the cardinality of its extent
decreases, and by adding products to a product group the
cardinality of its intent also decreases.

For this example, the following description logic formulae
can be derived from the Project X.

C1 ≡ ∃ hasFeature.P1 ∃ hasFeature.P2 ∃ hasFeature.P3

 ∃ hasFeature.P5 ∃ hasFeature.P6 ∃ hasFeature.P7.
C2 ≡ ∃ hasFeature.P1 ∃ hasFeature.P2 ∃ hasFeature.P5.
C3 ≡ ∃ hasFeature.P1 ∃ hasFeature.P4 ∃ hasFeature.P8

 ∃ hasFeature.P9.
C4 ≡ ∃ hasFeature.P1 ∃ hasFeature.P4 ∃ hasFeature.P8

 ∃ hasFeature.P9 ∃ hasFeature.P10.

These formulae were implemented in Protégé 3.5

(http://protege.stanford.edu), which is a widely used ontology
development tool. Ontology classification reasoning is one of
the most commonly performed activities and Pellet is a built-in
reasoner in Protégé 3.5. There are many tools implementing
algorithms for Formal Concept Analysis and we can obtain the
same FCA solution by doing the classification with a Pellet
reasoner. Using the running example, Fig. 1 shows the
ontology classification reasoning results, which are the same as
FCA solutions, that is, C1 ⊑ C2 and C4 ⊑ C3.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:8, 2013

1726

TABLE II
PRODUCT-PROPERTY RELATIONS EXAMPLE

Products
Properties

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

C1 ⅹ ⅹ ⅹ ⅹ ⅹ ⅹ

C2 ⅹ ⅹ ⅹ

C3 ⅹ ⅹ ⅹ ⅹ

C4 ⅹ ⅹ ⅹ ⅹ ⅹ

Fig. 1 FCA reasoning using Protégé 3.5

Given this, we apply the product family similarity [20]

between two product groups such as:

Sim(PGi, PGj) = w* |Ci ∩ Cj| / a + (1-w)*|Pi ∩ Pj| / b.

where the PGi stands for the two different PIM sets such as PGi
= (Ci, Pi), PGj = (Cj, Pj), Ci and Cj are extents of PGi and PGj,
Pi and Pj are intents of PGi and PGj, respectively, and a is the
greatest number of cardinalities of the Ci or Cj, and b is greatest
number of Pi or Pj. Finally w is a weight such that 0 ≤ w ≤ 1,
that can be established by the user.

For instance, take two PGs of our running example and
assume that w = 1/2. Let us start by evaluating the Sim
randomly, that is, PG1 = ((C3, C4), (P1, P4, P8, P9)) and PG2
= ((C4), (P1, P4, P8, P9, P10)). Since a = 2, b = 5, Sim(PG1,
PG2) = 0.5*1/2 + 0.5*4/5 = 13/20.

Now we consider another product family, PG3 = ((C1, C2),
(P1, P2, P5, P6)). Since a = 2, b = 5, Sim(PG2, PG3) = 0.5*0/2
+ 0.5*1/5 = 1/10.

This result shows that PG1 and PG2 groups are more directly
related each other than PG2 and PG3. Note that Sim is always a
value between zero and one and, for any pair of product groups,
PGi and PGj, and Sim(PGi, PGj) = Sim(PGj, PGi). Of course,
Sim increases in the case of product groups that are related, and
vice versa, Sim decreases in the case of product groups that are
not directly related.

D. Determining Product Configuration
From the basic techniques we will have the similarity

database for platform configuration strategy. Now questions
that need to be answered are: what is the optimal configuration
of product group? And what criteria should be used to decide
on product configuration design?

The underlying idea in answering this problem is to
maximizing the average of total product family similarity. The
product group is considered as product context, thus the
average for our configuration will be: ∑ Sim(PGi, PGj) /
number_of_context.

IV. CONCLUSION
This paper incorporates the knowledge engineering

principles, which provide product configuration guideline
based on formal semantics, and proposed method of measuring
similarity for assessing product families will be often the
starting point when designing the new product (families or
groups) or when analyzing the existing family. The
well-designed product family will improve the design to
achieve better similarity in the family and reduce costs and
lead-times. This works provides the guidelines on designing the
better product family.

ACKNOWLEDGMENT
This research was supported by the National Research

Foundation of Korea funded by the Korea government
(NRF-2010-0022827)

REFERENCES
[1] D. J. Gardner, http://masscustomization.wordpress.com/
[2] M. H. Myer and A. P. Lehnerd, The Power of Product Platforms: Building

Value and Cost Leadership, Fress Press, 1997.
[3] A. Gawer, Platforms, Markets and Innovation, Edward Elgar, MA, 2009.
[4] S. C. Wheelwright and K. B. Clark, “Creating project plans to focus

product development”, Harvard Business Review, 70(2), 67-83, 1992.
[5] T. F. Bresnahan and S. Greenstein, “Technological competition and the

structure of the computer industry”, Journal of Industrial Economics,
47(1), 1-40, 1999.

[6] J. C. Rochet and J. Tirole, “Platform competition in two-sided markets”,
Journal of the European Economic Association, 1(4), 990-1029, 2003.

[7] T. W. Simpson, “Product platform design and customization”, Artificial
Intelligence for Engineering, Design, Analysis and Manufacturing, 18,
3-20, 2004.

[8] D. W. Rose, “Design of modular product architectures in discrete design
spaces subject to life cycle issues”, Advances in Design Automation, No.
96-DETC0DAC-1485, 1996.

[9] Z. Siddique and D. W. Rosen, “ On combinatorial design spaces for the
configuration design of product families”, Artificial Intelligence for
Engineering Design, Analysis and Manufacturing 15(2), 91–108, 2001.

[10] W. Shen, D. H. Norrie, and J. –P. A. Barthès, Multi-Agent Systems for
Concurrent Intelligent Design and Manufacturing, New York: Taylor &
Francis, 2001

[11] D. Sabin and R. Weigel, “Product configuration frameworks—A survey”,
IEEE Intelligent Systems 13(4), 42–49, 1998.

[12] J. Nanda, H. J. Thevenot, T. W. Simpson, R. B. Stone, M. Bohm, and S. B.
Shooter, “Product family design knowledge representation, aggregation,
reuse, and analysis”, AI EDAM: Artificial Intelligence for Engineering
Design, Analysis, and Manufacturing, 21(2), 173-192, 2007

[13] T. R. Gruber, “A Translation Approach to Portable Ontologies”,
Knowledge Acquisition, 5(2), 199-220, 1993

[14] N. Guarino and P. Giaretta, Ontologies and Knowledge Bases: Towards a
Terminological Clarification. In N. Mars, editor, Towards Very Large
Knowledge Bases: Knowledge Building and Knowledge Sharing, 25-32.
IOS Press, Amsterdam, 1995

[15] W. Borst. Construction of Engineering Ontologies. PhD thesis, Institute
for Telematica and Information Technology, University of Twente,
Enschede, The Netherlands, 1997.

[16] R. Studer, R. Benjamins, and D. Fensel. “Knowledge engineering:
Principles and methods”, Data & Knowledge Engineering,
25(1–2):161–198, 1998

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:8, 2013

1727

[17] R. Wille, Restructuring lattice theory: an approach based on hierarchies of
concepts. In: Rival, I. (ed.) Ordered Sets. Dordrecht-Boston, Reidel, 1982

[18] F. Baader and W. Nutt, Basic description logics in The Description Logic
Handbook: Theory, Implementation, and Applications. Cambridge, U.K.:
Cambridge Univ. Press, 2003.

[19] D. L. McGuinness and F. V. Harmelen, OWL Web Ontology Language
Overview, Available from: http://www.w3.org/TR/owl-features/, 2004

[20] J. C. Lee and H. Lee, An Ontological Approach to Measure Similarity
between Different Product Information Models, Proceedings of the Asia
Pacific Industrial Engineering & Management Systems Conference 2012
V. Kachitvichyanukul, H.T. Luong, and R. Pitakaso Eds.

