
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:1, 2012

132

Abstract—Many problems in computer vision and image

processing present potential for parallel implementations through one
of the three major paradigms of geometric parallelism, algorithmic
parallelism and processor farming. Static process scheduling
techniques are used successfully to exploit geometric and algorithmic
parallelism, while dynamic process scheduling is better suited to
dealing with the independent processes inherent in the process
farming paradigm. This paper considers the application of parallel or
multi-computers to a class of problems exhibiting spatial data
characteristic of the geometric paradigm. However, by using
processor farming paradigm, a dynamic scheduling technique is
developed to suit the MIMD structure of the multi-computers. A
hybrid scheme of scheduling is also developed and compared with
the other schemes. The specific problem chosen for the investigation
is the Hough transform for line detection.

Keywords—Hough transforms, parallel computer, parallel

paradigms, scheduling.

I. INTRODUCTION

PPLICATIONS are decomposed into processes to exploit
the parallelism inherent in an application. There are many

ways to exhibit this parallelism, but the most commonly used
parallel paradigms in scientific applications are: geometric
parallelism, algorithmic parallelism and processor farming.
Processor scheduling determines which and when processes
are assigned to specific processors. There are different
techniques of processor scheduling that can be used to
optimize performance in parallel computer systems. Static
process scheduling techniques are used successfully to exploit
geometric and algorithmic parallelism, while dynamic process
scheduling is better suited to dealing with the independent
processes inherent in the process farming paradigm.

The work presented in this paper, investigates the
performance of scheduling techniques for the parallel
implementation of grid-type applications on a MIMD machine.
The specific problem chosen for the investigation is the Hough
transform for line detection. Several algorithms are developed
for this application and are executed on a Networked
Processor Linear Array (NPLA) consisting of 10 processors.
Experiments are performed and compared in terms of total
processing times, speedup and efficiency using varying
number of processors.

M. S. Laghari is with the Electrical Engineering Department, Faculty of

Engineering, United Arab Emirates University, P.O. Box: 17555, Al Ain,
U.A.E. (phone: 00971-50-6625492; fax: 00971-3-7623156; e-mail:
mslaghari@uaeu.ac.ae).

G. A. Khuwaja is with Department of Computer Engineering, College of
Computer Sciences & Information Technology, King Faisal University, Al
Ahsa 31982, Kingdom of Saudi Arabia. (e-mail: khuwaja@kfu.edu.sa).

Processor scheduling determines which processes are

assigned to specific processors. There are many different
techniques of processor scheduling that can be used to
optimize performance in parallel computer systems [1].

 Processors operating in such an environment will in general
perform two functions; computations and communications. A
suitable balance between these functions is required to ensure
efficient use of the processing resources. When the time taken
to perform the computation of a given sub-problem is less than
the time associated with the communications of the data and
results, then the communication bandwidth is likely to limit the
performance. An appropriate scheduling technique can keep
the processors as busy as possible and help achieve optimum
performance.

The problem chosen for the investigation relates to the
scheduling techniques for the parallel implementation of the
Hough transform [2], [3].

The detection of straight lines in digital images is a
recurring problem in computer vision and image processing.
The Hough transform is an efficient method of detecting lines
and curves. It is used to extract global features from shapes.
The technique is robust in the presence of noise, missing
points, and occlusions. Due to its computational complexity
the Hough transform is not easily implemented for real-time
applications. However, by using parallel paradigms, near real-
time implementation of Hough transforms can be achieved on
a network of multi-computers [4]-[7]. The Hough transform
exhibits a regular structure of computation and may be
considered best suited to static scheduling. However, by using
dynamic and a hybrid (statistic) scheduling technique, the
MIMD structure of NPLA is effectively exploited. A
comparison of the investigated scheduling techniques is given
in terms of total processing times, speedup and efficiency.

II. A BRIEF REVIEW

Since their invention in the 1940's, computers based on the
John von Neumann architecture have been built around one
basic plan; a single processor, connected to a single store of
memory, executing one instruction at a time. The processor
fetches instructions from a program stored in the memory, then
fetches operands for those instructions from the same memory,
performs a calculation, and writes the results back to the
memory.

The von Neumann architecture was popular for several
reasons. It was conceptually simple, von Neumann machines
were simpler to build and machines were economical. The idea
of parallelism was originated at the same time by von
Neumann to use many processors to solve a single problem.

Mohammad S. Laghari and Gulzar A. Khuwaja

Processor Scheduling on Parallel Computers

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:1, 2012

133

The idea was to build a cellular automata machine in which
a very large number of simple calculators work simultaneously
on small parts of a large problem. However, it did not become
reality because of the hardware and software capabilities of
that time.

Things began to change in 1960's when the vacuum tubes
were switched to solid state components. Instead of using one
arithmetic logic unit, multiple functional units were
incorporated in a machine resulting in the CDC 6600
computer, which is a state of art machine of that time operating
at a clock speed of 100 nanoseconds.

In the early 1970's, the first vector computer called Cray 1
was developed. The multiple functional units of CDC 6600
were based on the idea of replication. This vector computer
was based on overlapping of operations. In vector computers,
the arithmetic-logic unit is divided into stages. If two long
vectors of numbers are being added together, successive
additions are overlapped to increase the overall throughput.

Development in the field of parallel processing continued
for all these years. Then, in the late 1970's, four things made
the parallel processing possible. The first was the development
of the VLSI (Very Large Scale Integration) technology, which
allowed hundreds of thousands of transistors to be integrated
on a single integrated circuit. The second was in the
development of better concurrent programming methods. The
third was the actual construction of parallel computers.
Example is the C.mmp (computer with multiple mini-
processors) from Carnegie-Mellon University. Lastly, the
continued development in the field of high speed vector
computers.

By the early 1980s, parallel computers were being
manufactured commercially. The main advantage was the cost.
Most of the parallel computers at that time were cheaper than
their serial counterparts. The speed of the parallel computers is
limited by the speed of light, therefore, the way of performing
a computation more quickly is to move more bits of
information at once, which is parallelism. These computers
contain several processors together in order to solve a single
problem. The questions remaining are how many processors
should be used, how big they should be, and how should they
be organized.

Multiple processor systems have a number of potential
disadvantages, probably the most important being the very real
problem of being able to use the processing power efficiently.
For example, if a problem is solved by a processor in some
particular time, then it is very difficult for the same problem to
be solved in exactly half the time when two processors are
used. This involves a number a factors; the ability to
decompose a problem into an optimum number and size of
modules, to define these modules in such a way that
communications between processors may be carried out with
the absolute minimum of waiting time, and with a minimal
delay, across the communication network.

Present day real time problems tend to involve large
amounts of data received at varying times and rates and yet

requires responses to be generated instantly. To create a
system which is totally general and yet provides maximum
efficiency poses great problems.

III. CLASSIFICATION OF COMPUTERS

Computer systems can be classified into a number of
collective groups determined by the type of processing which
is required, together with the method by which the processing
elements communicate, use memory and operate with
efficiency.

All computer systems, sequential and parallel can be divided
according to the following schemes:

Feng's Scheme: based on serial versus parallel processing.
Handler's Classification: determined by the degree of

parallelism and pipelining at various subsystem levels.
Shore's Taxonomy: based on how the computer is organized

from its constituent parts (six machines).
Skillicorn's Taxonomy: based on the functional structure of

the architecture and the data flow between its component parts.
Flynn’s Classification: based on the multiplicity of

instruction streams and data streams in a computer system.
Most of the serial and parallel computers are classified
according to Flynn's taxonomy. Therefore, it is discussed in
detail. Four schemes of Flynn's classification are:

A. SISD (single instruction stream / single data stream)

This is the conventional serial John von Neumann computer
as shown in Fig. 1 (a). Most serial computers fall into this
category. Although instruction execution may be pipelined,
computers in this category can decode only a single instruction
in unit time. A SISD computer may have multiple functional
units, but are under the direction of a single control unit.

B. SIMD (single instruction stream / multiple data streams)

These computers involve multiple processors
simultaneously executing the same instruction on different
data. These are the systems with multiple arithmetic-logic
processors or units and a control processor as shown in Fig. 1
(b). Each arithmetic-logic unit processes a data stream of its
own, as directed by the single control unit. SIMD machines are
also called array processors.

C. MISD (multiple instruction streams / single data stream)

These computers involve multiple processors applying
different instructions to a single data stream. There is no
realization of this kind of architecture.

D. MIMD (multiple instruction streams / multiple data
streams)

This consists of processing elements linked by an
interconnection network or by accessing data in shared
memory units. Each processing elements stores and executes
independent instruction streams, using local data as shown in
Fig. 1 (c). MIMD computers support parallel solutions that
require processors to operate in a largely autonomous manner.
Thus MIMD architectures are asynchronous computers,
characterized by decentralized hardware control [8].

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:1, 2012

134

Fig. 1 (a) SISD computer

Fig. 1 (b) SIMD computer

Fig. 1 (c) MIMD computer

With the aid of Flynn's classification, a structural taxonomy

of both serial and parallel computers is formulated. The basic
division is made according to the instruction streams. The
single instruction computers consist of SISD and SIMD
machines. The SISD computers include single-unit serials,
multiple-unit scalars, and pipelined computers. The SIMD
computers include processor arrays and associative processors.

In the multiple instruction stream, the MIMD architectures
are divided into subgroups of multiprocessors and multi-

computers. The multiprocessors are classified in terms of
loosely coupled, which is sharing the local memory of the
processors, and tightly coupled, which is that all the processors
share a global memory through a central switching mechanism.
The switching mechanism determines the processor
organization and can be a common bus, a crossbar switch or a
multistage switched network.

Multi-computers are characterized by distributed memory.
Every CPU (Central Processing Unit) has its own memory,
and all communications (point-to-point) and synchronization
between processors are via message passing. The CPU's are
inter-connected to form a processor organization, referred to as
`topology'.

Dedicated computers were further divided into three basic
types based on the ideas from MIMD computers: Array
Processors, Pipeline Computers, and Very Large Scale
Integration Computers. DSP Parallel architectures are another
concept of hierarchical classification initiated in the early
1990s [9].

Parallel systems based on geometrical decomposition of
applications are divided into three categories of a) computer
based dedicated systems, b) computer based general systems,
and c) digital signal processing systems. The first category
includes array processor, pipeline computers, multiprocessor
systems, very large scale integration, whereas the second one
includes Distributed Shared Memory (DSM), Massive Parallel
Processing (MPP), and Clusters, and the third one shares the
combined capabilities of the first two categories [10]-[12].

IV. HOUGH TRANSFORMS

Hough transform technique allows discovering shapes from
edges. It attempts to combine edges into lines where a
sequence of edge pixels in a line indicates that a real edge
exists. It is a popular procedure to detect lines and circles.

The simplest characterization of the Hough transform is to
convert a difficult global detection problem in one space
(image space) into a more easily solved local peak detection
problem in another space (parameter space). A popular
parameterization of a straight line is via the equation of the
normal vector from the origin of the straight line,

)sin()cos(θθρ yx +=

where, ρ is the length of the normal to the line from the origin,
and θ is the angle that the normal makes with the x-axis.

The ρ and θ parameters of a line are unique if 0º ≤ θ ≤ 180º.
Points which are collinear in an image space all intersect at a
common point in a parameter space and the coordinates of this
parameter point characterizes the straight line connecting the
image points. Using this parameterization each image point
(x, y) generates a sinusoidal locus in (ρ, θ) space and thus lines
are identified by the intersection of many of these sinusoids.

The Hough transform has been used in many applications in
the field of medicine, character recognition, industrial
inspection, military, shape recognition, geology, etc. [13].

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:1, 2012

135

V. PARALLEL PARADIGMS

In order to efficiently utilize the computational potential of
a large number of processors in a parallel processing
environment it is necessary to identify the important parallel
features of the application. There are several simple paradigms
for exploiting parallelism in scientific and engineering
applications, but the most commonly occurring types fall into
three classes. These three paradigms are described in more
detail in [14], [15].

A. Algorithmic Parallelism

Is present where the algorithm can be broken down into a
pipeline of processors in such a way that each processor
executes a small part of the total algorithm. The parallelism
inherent in the algorithm is exploited. In this decomposition,
the data flows through the processing elements and is
sometimes referred as Data Flow parallelism. The
communication loads on each processor is increased and the
communication bandwidth problems can degrade the
performance.Therefore, for algorithmic parallelism to be
successful the work load must be balanced uniformly across
the processors. The advantage of this decomposition is that
little data space is required per processor. The computer
systems based on the algorithmic parallelism gives acceptable
efficiency. Fig. 2 shows an example of algorithmic parallelism.

Fig. 2 Example algorithmic parallelism – a language compiler

B. Geometric Parallelism

Is present where the problem can be broken down into a
number of similar processes in such a way as to preserve
processor data locality and each processor operate on different
subset of the total data to be processed. All the data required
by a processor are arranged to be on that processor or one of
its immediate neighbors.

In this decomposition, parallelism inherent in the data is
exploited. This type of parallelism requires only a fraction of
the total data on each processor, and is sometimes referred as
Data Structure parallelism.

Processors communicate with the neighboring processors.
The communication loads are proportional to the size of the
boundary of the element, while the computational loads are
proportional to the volume of the element. Each processor has
an almost complete copy of the whole program, therefore
moderate memory requirements. The computer systems based
on the geometric parallelism gives very good efficiency.

C. Processor Farm

Is present where a program must be run large number of
times with different parameters. It is often most efficient to
run these independent tasks concurrently on different
processors. The typical architecture for this type of
applications is a farm of processors where each processor is
executing the same program with different initial data in
isolation from all the other processors. Large amounts of
storage are therefore required on each processing element.
Because of the very limited communication requirements, this
method is very efficient, but the memory costs may be
significant. Fig. 3 shows an example of data structure
parallelism. Fig. 4 shows an example of processor farming
[16], [17].

Fig. 3 Example geometric structure

Fig. 4 Example processor farm

VI. PERFORMANCE MEASURE

Two important measures of the quality of parallel
algorithms implemented on multiprocessors and multi-
computers are speedup and efficiency. The speedup achieved
by a parallel algorithm running on n processors is the ratio
between the time taken by that parallel computer executing
the fastest serial algorithm and the time taken by the same
parallel computer executing the parallel algorithm using n
processors. The speedup ‘S’ is given by:

nTTnS += 1)(

Efficiency is defined as the average utilization of the n
allocated processors. The efficiency of a single processor
system is 1. The relationship between efficiency ‘E’ and
speedup is given by:

nnSnE /)()(=

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:1, 2012

136

VII. THE HARDWARE

In order to meet the high speed and performance, a scalable
and reconfigurable multi-computer system (NPLA) is used.
This networked multi-computer system is a bit similar to the
NePA system used to implement Network-on-Chip [18].

The system used is a linear array of processors. It includes
RISC processors and memory blocks. Each processor in the
array has a compactOR, internal instruction memory, internal
data memory, data control unit, and registers. One of the
processors is used as a master or main processor and the
remaining as slaves. The system has a network interface with
the main processor having four and others equipped with two
port routers. Routers can transfer both control as well as
application data among processors.

VIII. TOPOLOGY

The algorithms are executed on a total of 10 processor 8 of
which constitute the processing elements. The remaining two
are used for connection to the local host and for graphics
display. The processing elements are connected in a linear
array. The first processor in the chain of processors is known
as the “master” processor. This interacts with the user through
the local host, directs the operation of the graphics processor
and the remainder of the processing elements, known as
“slaves”. The chain is connected by a bidirectional
communication system, allowing data and results to be
transferred from master to other processors and vice versa, see
Fig. 5.

Fig. 5 Computer network for the topology

The implementation has two phases: computing ρ and θ for

all the points in image space, then finding the peaks that
identify the lines. The image space used is of a regular grid of
192 x 192 pixels. The range of values for θ is restricted to
(0, π) to speed computation.

A. Static Scheduling:

In static scheduling, processes are allocated to processors at
compile time. The master processor inputs the image from the
host memory and stores it in a 2-dimensional image array.
Then it divides the image space into regions according to the
number (#) of slave processors and communicates the data
from each region to the slave processors by doing a raster scan
in such a way that slave # 1 receives data of the image points
from region 1 and so on as shown in Fig. 6.

In all calculations a lookup table is used to replace calls to
‘sin’ and ‘cos’ library functions. Each slave processor holds an
array of the table to avoid excessive communication
overheads. For each (x, y) in the appropriate region, it then
computes the values of ρ for each θ ranging from $0º to 180º
and stores a vote in an accumulator array. The accumulator
array of (ρ, θ) grid has a dimensionality of 464 x 180. The
maximum value of ρ that can be computed for the chosen
image space is from the range of 272 and -192. Therefore, the
ρ index of the accumulator array is the addition of the above
two values. When all the points for a region are computed, a
lower threshold is applied to remove noise values in the form
of lonely votes and the array is communicated back to the
master processor.

Fig. 6 Data distribution in static scheduling

The master accumulates all values returned by the slaves in

another local accumulator array. After all the results are
received and votes incremented, peaks are detected by
scanning the array using an upper threshold. Peaks with
maximum votes identify lines.

Experiments are performed on the proposed scheme with
varying network sizes. Timings for 1 through 7 slave
processors are obtained.

Table 1: shows the time taken in seconds, speedup and the
efficiency to recognize few lines appearing in an image space.

B. Dynamic Scheduling:

In this implementation of the Hough transform, processes
are allocated to processors at run time. The topology used is
the same as in the static scheduling, which is a master
processor and from 1 to 7 slaves. The slaves operate as a
processor farm with the code replicated on each of them. The
master processor distributes image points from the image
space to the farm of processors.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:1, 2012

137

TABLE I
RESULTS FROM STATIC SCHEDULING

Each slave processor executes two main processes in
parallel. One is a work process where actual computation takes
place and is run in low priority with the other which is a
task_schedular as shown in Fig. 7.

Fig. 7 Task_schedular in dynamic scheduling

In order to keep the slave processors busy in computing the

image points, the task_schedular buffers an extra item of work
so that when the work process completes the current
computation for an image point it can immediately start
computation on the next point rather than having to wait for
the master processor to send another item of work.

The work process computes the Hough transform (ρ, θ) in
the same way as for the static allocation explained earlier.
After computing all the points associated for the particular
processor, noise is removed and the resultant arrays are
communicated back to the master processor where the peak
values detect the lines.

Experiments are performed on the dynamic scheme using
varying number of processors. Timings for 1 through 7 slave
processors are obtained. Table 2: shows the time taken in
seconds, speedup and the efficiency for the same image space
as used for the static scheduling.

C. Statistic Scheduling:

In this implementation of the Hough transform, the master
processor raster scans the image space and counts the number
of the foreground points, and then divides the points equally
among the slave processors. Distribution is done statically in
the form of data arrays corresponding to the number of

processors. Therefore, this scheduling scheme is statistically
balanced and avoids communicating the entire image or
regions to the slave processors.

TABLE II

RESULTS FROM DYNAMIC SCHEDULING

The slave processors receive an array of equal number of
image points. Compute the results and store votes in the
accumulator array, remove noise and send the results back to
the master processor. Communication is buffered and
prioritized. The master processor operates the same way as for
the other two techniques to detect lines.

Experiments are performed on the statistically balanced
scheme by varying the network size. Timings for 1 through 7
slave processors are obtained. Table 3: shows the time taken in
seconds, speedup and the efficiency for the proposed scheme.

TABLE III

RESULTS FROM STATISTIC SCHEDULING

IX. COMPARISON

The results for the static, dynamic and statistic schemes are
compared for the same image space and over the range of
varying network sizes.

Fig. 8 shows time taken in seconds for the 3 schemes when
from 1 to 7 slave processors are used. Time taken is nearly the
same when only one slave processor is used for all the
schemes. The timings improve for dynamic and statistic when
7 slave processors are used.

A 4 fold speedup is achieved for the dynamic scheme when
the number of slaves is increased from 1 to 7, see Fig. 9.
However, this level of speedup is not maintained for the other
2 schemes.

For static allocation, the speedup does not rise
monotonically with the increase in the network size. This is
due to the fact that additional processors may be allocated
sparse areas of the image.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:1, 2012

138

Fig. 10 shows the efficiency of the system when from 1 to 7
slave processors is used for the proposed schemes. The
dynamic scheme shows an efficiency of nearly 60 percent.

Fig. 8 Timing diagram for scheduling schemes

Fig. 9 Speedup graph for the scheduling schemes

Fig. 10 Efficiency graph for the scheduling schemes

X. CONCLUSION

In this paper we have considered scheduling techniques for
straight lines detection in digital images using the Hough
transform method. The spatial and independent data
characteristics, but a regular structure of computation for each
image point of this algorithm is a representative of an
important class of algorithms in computer vision and image
processing. With the help of paradigms of parallel processing,
the paper investigated the performance of static, dynamic, and
statistic scheduling techniques for the parallel implementation

of this type of algorithms on computer networks. Performed
experiments suggest that dynamic scheduling can outperform
its rivals in terms of speedup and efficiency, and is well suited
to the MIMD structure of computer networks.

REFERENCES

[1] T. L. Casavant and J. G. Kuhl, “A Taxonomy of Scheduling in General-
Purpose Distributed Computing Systems,” IEEE Trans. on Software
Engineering, vol. 14, no. 2, Feb. 1988.

[2] P. V. C. Hough, “Method and means for recognising complex patterns,”
U.S. Patent No.3069654, 1962.

[3] R. O. Duda and P. E. Hart, “Use of the Hough Transformation to Detect
Lines and Curves in Pictures,” CACM, vol. 15, no. 1, Jan. 1972.

[4] Z. Zivkovic, R. Kleihorst, A. Danilin, and H. Corporaal, “Real-time
implementations of Hough Transform on SIMD architecture,” in Proc.
2nd ACMIEEE Int. Conf. on Distributed Smart Cameras, Palo Alto,
California, 2008, pp. 1-8.

[5] A. Epstein, G. U. Paul, B. Vettermann, C. Boulin, and F. Klefenz, “A
Parallel Systolic Array ASIC for Real-Time Execution of the Hough
Transform,” IEEE Trans. on Nuclear Science, vol. 49, no. 2, pp. 339-
346, Apr. 2002.

[6] R. Strzodka, I. Ihrke, and M. Magnor, “A Graphics Hardware
Implementation of the Generalized Hough Transform for fast Object
Recognition, Scale, and 3D Pose Detection,” in Proc. 12th Int. Conf. on
Image Analysis and Processing, Mantova, Italy, 2003.

[7] S. S. Sathyanarayana, R. K. Satzoda, and T. Srikanthan, “Exploiting
Inherent Parallelisms for Accelerating Linear Hough Transform,” IEEE
Trans. on Image Processing, vol. 18, no. 10, pp. 2255-2264, Oct. 2009.

[8] M. J. Flynn, “Very high-speed computing systems,” in proc. of the
IEEE, vol. 54, no. 12, pp. 1901-1909, 1966.

[9] M. Dongdong, L. Jinzong, Z. Bing, and Z. Fuzhen, “Research on the
Architectures of Parallel Image Processing Systems,” in proc.2nd Int.
Symp. on Intelligent Information Technology Application, Shanghai,
China, Dec. 2008, pp. 146-150.

[10] N. Zhang and J. Wang, “Image parallel processing based on GPU,” in
proc. 2nd Int. Conf. on Advanced Computer Control, Shenyang, China,
2010, pp. 367-370.

[11] Y. Krishnakumar, T. D. Prasad, K. V. S. Kumar, P. Raju, and B.
Kiranmai, “Realization of a parallel operating SIMD-MIMD
architecture for image processing application,” in proc. Int. Conf. on
Computer, Communication and Electrical Technology, Tirunelveli,
Tamilnadu, India, 2011.

[12] H. Liu, Y. Fan, X. Deng, and S. Ji, “Parallel Processing Architecture of
Remotely Sensed Image Processing System Based on Cluster,” in proc.
2nd Int. Congress on Image and Signal Processing, Tianjin, China,
2009, pp. 1-4.

[13] A. G. Vicente, I. B. Muñoz, P. J. Molina, and J. L. L. Galilea,
“Embedded Vision Modules for Tracking and Counting People,” IEEE
Trans. on Instrumentation and Measurement, vol. 58, no. 9, pp. 3004-
3011, Sep. 2009.

[14] D. J. Pritchard, “Transputer Applications on Supernode,” in proc. Int.
Conf. on Application of Transputers, Liverpool, U.K., Aug. 1989.

[15] M. S. Laghari and F. Deravi, “Static vs. Dynamic Scheduling in Cellular
Automaton,” in proc. of Fall meeting # 4, North American Transputer
User Group, Ithaca, New York, October 1990.

[16] A. S. Wagner, H. V. Sreekantaswamy, and S. T.
Chanson, “Performance Models for the Processor Farm Paradigm,”
IEEE Trans. on Parallel and Distributed Systems, vol. 8, no. 5, pp. 475-
489, May 1997.

[17] A. Walsch, “Architecture and Prototype of a Real-Time Processor Farm
Running at 1 MHz,” Ph.D. Thesis, University of Mannheim, Mannheim,
Germany 2002.

[18] Y. S. Yang, J. H. Bahn, S. E. Lee, and N. Bagherzadeh, “Parallel and
Pipeline Processing for Block Cipher Algorithms on a Network-on-
Chip,” in proc. 6th Int. Conf. on Information Technology: New
Generations, Las Vegas, Nevada, Apr. 2009, pp. 849-854.

