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Abstract—Many problems in computer vision and image 

processing present potential for parallel implementations through one 
of the three major paradigms of geometric parallelism, algorithmic 
parallelism and processor farming. Static process scheduling 
techniques are used successfully to exploit geometric and algorithmic 
parallelism, while dynamic process scheduling is better suited to 
dealing with the independent processes inherent in the process 
farming paradigm. This paper considers the application of parallel or 
multi-computers to a class of problems exhibiting spatial data 
characteristic of the geometric paradigm. However, by using 
processor farming paradigm, a dynamic scheduling technique is 
developed to suit the MIMD structure of the multi-computers. A 
hybrid scheme of scheduling is also developed and compared with 
the other schemes. The specific problem chosen for the investigation 
is the Hough transform for line detection. 

 
Keywords—Hough transforms, parallel computer, parallel 

paradigms, scheduling.  

I. INTRODUCTION 

PPLICATIONS are decomposed into processes to exploit 
the parallelism inherent in an application. There are many 

ways to exhibit this parallelism, but the most commonly used 
parallel paradigms in scientific applications are: geometric 
parallelism, algorithmic parallelism and processor farming. 
Processor scheduling determines which and when processes 
are assigned to specific processors. There are different 
techniques of processor scheduling that can be used to 
optimize performance in parallel computer systems. Static 
process scheduling techniques are used successfully to exploit 
geometric and algorithmic parallelism, while dynamic process 
scheduling is better suited to dealing with the independent 
processes inherent in the process farming paradigm. 

The work presented in this paper, investigates the 
performance of scheduling techniques for the parallel 
implementation of grid-type applications on a MIMD machine. 
The specific problem chosen for the investigation is the Hough 
transform for line detection. Several algorithms are developed 
for this application and are executed on a Networked 
Processor Linear Array (NPLA) consisting of 10 processors. 
Experiments are performed and compared in terms of total 
processing times, speedup and efficiency using varying 
number of processors. 
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Processor scheduling determines which processes are 

assigned to specific processors. There are many different 
techniques of processor scheduling that can be used to 
optimize performance in parallel computer systems [1]. 

 Processors operating in such an environment will in general 
perform two functions; computations and communications. A 
suitable balance between these functions is required to ensure 
efficient use of the processing resources. When the time taken 
to perform the computation of a given sub-problem is less than 
the time associated with the communications of the data and 
results, then the communication bandwidth is likely to limit the 
performance. An appropriate scheduling technique can keep 
the processors as busy as possible and help achieve optimum 
performance. 

The problem chosen for the investigation relates to the 
scheduling techniques for the parallel implementation of the 
Hough transform [2], [3]. 

The detection of straight lines in digital images is a 
recurring problem in computer vision and image processing. 
The Hough transform is an efficient method of detecting lines 
and curves. It is used to extract global features from shapes. 
The technique is robust in the presence of noise, missing 
points, and occlusions. Due to its computational complexity 
the Hough transform is not easily implemented for real-time 
applications. However, by using parallel paradigms, near real-
time implementation of Hough transforms can be achieved on 
a network of multi-computers [4]-[7]. The Hough transform 
exhibits a regular structure of computation and may be 
considered best suited to static scheduling. However, by using 
dynamic and a hybrid (statistic) scheduling technique, the 
MIMD structure of NPLA is effectively exploited. A 
comparison of the investigated scheduling techniques is given 
in terms of total processing times, speedup and efficiency. 

II.   A BRIEF REVIEW 

Since their invention in the 1940's, computers based on the 
John von Neumann architecture have been built around one 
basic plan; a single processor, connected to a single store of 
memory, executing one instruction at a time. The processor 
fetches instructions from a program stored in the memory, then 
fetches operands for those instructions from the same memory, 
performs a calculation, and writes the results back to the 
memory. 

The von Neumann architecture was popular for several 
reasons. It was conceptually simple, von Neumann machines 
were simpler to build and machines were economical. The idea 
of parallelism was originated at the same time by von 
Neumann to use many processors to solve a single problem.  
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The idea was to build a cellular automata machine in which 
a very large number of simple calculators work simultaneously 
on small parts of a large problem. However, it did not become 
reality because of the hardware and software capabilities of 
that time. 

Things began to change in 1960's when the vacuum tubes 
were switched to solid state components. Instead of using one 
arithmetic logic unit, multiple functional units were 
incorporated in a machine resulting in the CDC 6600 
computer, which is a state of art machine of that time operating 
at a clock speed of 100 nanoseconds. 

In the early 1970's, the first vector computer called Cray 1 
was developed. The multiple functional units of CDC 6600 
were based on the idea of replication. This vector computer 
was based on overlapping of operations. In vector computers, 
the arithmetic-logic unit is divided into stages. If two long 
vectors of numbers are being added together, successive 
additions are overlapped to increase the overall throughput. 

Development in the field of parallel processing continued 
for all these years. Then, in the late 1970's, four things made 
the parallel processing possible. The first was the development 
of the VLSI (Very Large Scale Integration) technology, which 
allowed hundreds of thousands of transistors to be integrated 
on a single integrated circuit. The second was in the 
development of better concurrent programming methods. The 
third was the actual construction of parallel computers. 
Example is the C.mmp (computer with multiple mini-
processors) from Carnegie-Mellon University. Lastly, the 
continued development in the field of high speed vector 
computers. 

By the early 1980s, parallel computers were being 
manufactured commercially. The main advantage was the cost. 
Most of the parallel computers at that time were cheaper than 
their serial counterparts. The speed of the parallel computers is 
limited by the speed of light, therefore, the way of performing 
a computation more quickly is to move more bits of 
information at once, which is parallelism. These computers 
contain several processors together in order to solve a single 
problem. The questions remaining are how many processors 
should be used, how big they should be, and how should they 
be organized. 

Multiple processor systems have a number of potential 
disadvantages, probably the most important being the very real 
problem of being able to use the processing power efficiently. 
For example, if a problem is solved by a processor in some 
particular time, then it is very difficult for the same problem to 
be solved in exactly half the time when two processors are 
used. This involves a number a factors; the ability to 
decompose a problem into an optimum number and size of 
modules, to define these modules in such a way that 
communications between processors may be carried out with 
the absolute minimum of waiting time, and with a minimal 
delay, across the communication network. 

Present day real time problems tend to involve large 
amounts of data received at varying times and rates and yet 

requires responses to be generated instantly. To create a 
system which is totally general and yet provides maximum 
efficiency poses great problems. 

III.  CLASSIFICATION OF COMPUTERS 

Computer systems can be classified into a number of 
collective groups determined by the type of processing which 
is required, together with the method by which the processing 
elements communicate, use memory and operate with 
efficiency. 

All computer systems, sequential and parallel can be divided 
according to the following schemes: 

Feng's Scheme: based on serial versus parallel processing. 
Handler's Classification: determined by the degree of 

parallelism and pipelining at various subsystem levels. 
Shore's Taxonomy: based on how the computer is organized 

from its constituent parts (six machines). 
Skillicorn's Taxonomy: based on the functional structure of 

the architecture and the data flow between its component parts. 
Flynn’s Classification: based on the multiplicity of 

instruction streams and data streams in a computer system. 
Most of the serial and parallel computers are classified 
according to Flynn's taxonomy. Therefore, it is discussed in 
detail. Four schemes of Flynn's classification are: 

A. SISD (single instruction stream / single data stream) 

This is the conventional serial John von Neumann computer 
as shown in Fig. 1 (a). Most serial computers fall into this 
category. Although instruction execution may be pipelined, 
computers in this category can decode only a single instruction 
in unit time. A SISD computer may have multiple functional 
units, but are under the direction of a single control unit. 

B. SIMD (single instruction stream / multiple data streams) 

These computers involve multiple processors 
simultaneously executing the same instruction on different 
data. These are the systems with multiple arithmetic-logic 
processors or units and a control processor as shown in Fig. 1 
(b). Each arithmetic-logic unit processes a data stream of its 
own, as directed by the single control unit. SIMD machines are 
also called array processors. 

C. MISD (multiple instruction streams / single data stream)  

These computers involve multiple processors applying 
different instructions to a single data stream. There is no 
realization of this kind of architecture. 

D. MIMD (multiple instruction streams / multiple data 
streams) 

This consists of processing elements linked by an 
interconnection network or by accessing data in shared 
memory units. Each processing elements stores and executes 
independent instruction streams, using local data as shown in 
Fig. 1 (c). MIMD computers support parallel solutions that 
require processors to operate in a largely autonomous manner. 
Thus MIMD architectures are asynchronous computers, 
characterized by decentralized hardware control [8].
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Fig. 1 (a) SISD computer 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1 (b) SIMD computer 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 1 (c) MIMD computer 
 
With the aid of Flynn's classification, a structural taxonomy 

of both serial and parallel computers is formulated. The basic 
division is made according to the instruction streams. The 
single instruction computers consist of SISD and SIMD 
machines. The SISD computers include single-unit serials, 
multiple-unit scalars, and pipelined computers. The SIMD 
computers include processor arrays and associative processors. 

In the multiple instruction stream, the MIMD architectures 
are divided into subgroups of multiprocessors and multi-

computers. The multiprocessors are classified in terms of 
loosely coupled, which is sharing the local memory of the 
processors, and tightly coupled, which is that all the processors 
share a global memory through a central switching mechanism. 
The switching mechanism determines the processor 
organization and can be a common bus, a crossbar switch or a 
multistage switched network. 

Multi-computers are characterized by distributed memory. 
Every CPU (Central Processing Unit) has its own memory, 
and all communications (point-to-point) and synchronization 
between processors are via message passing. The CPU's are 
inter-connected to form a processor organization, referred to as 
`topology'. 

Dedicated computers were further divided into three basic 
types based on the ideas from MIMD computers: Array 
Processors, Pipeline Computers, and Very Large Scale 
Integration Computers. DSP Parallel architectures are another 
concept of hierarchical classification initiated in the early 
1990s [9]. 

Parallel systems based on geometrical decomposition of 
applications are divided into three categories of a) computer 
based dedicated systems, b) computer based general systems, 
and c) digital signal processing systems. The first category 
includes array processor, pipeline computers, multiprocessor 
systems, very large scale integration, whereas the second one 
includes Distributed Shared Memory (DSM), Massive Parallel 
Processing (MPP), and Clusters, and the third one shares the 
combined capabilities of the first two categories [10]-[12]. 

IV. HOUGH TRANSFORMS 

Hough transform technique allows discovering shapes from 
edges. It attempts to combine edges into lines where a 
sequence of edge pixels in a line indicates that a real edge 
exists. It is a popular procedure to detect lines and circles. 

The simplest characterization of the Hough transform is to 
convert a difficult global detection problem in one space 
(image space) into a more easily solved local peak detection 
problem in another space (parameter space).  A popular 
parameterization of a straight line is via the equation of the 
normal vector from the origin of the straight line, 

 
)sin()cos( θθρ yx +=  

 
where, ρ is the length of the normal to the line from the origin, 
and θ is the angle that the normal makes with the x-axis. 

The ρ and θ parameters of a line are unique if 0º ≤ θ ≤ 180º. 
Points which are collinear in an image space all intersect at a 
common point in a parameter space and the coordinates of this 
parameter point characterizes the straight line connecting the 
image points.  Using this parameterization each image point 
(x, y) generates a sinusoidal locus in (ρ, θ) space and thus lines 
are identified by the intersection of many of these sinusoids. 

The Hough transform has been used in many applications in 
the field of medicine, character recognition, industrial 
inspection, military, shape recognition, geology, etc. [13]. 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:1, 2012

135

 

 

V.   PARALLEL PARADIGMS 

In order to efficiently utilize the computational potential of 
a large number of processors in a parallel processing 
environment it is necessary to identify the important parallel 
features of the application. There are several simple paradigms 
for exploiting parallelism in scientific and engineering 
applications, but the most commonly occurring types fall into 
three classes. These three paradigms are described in more 
detail in [14], [15]. 

A. Algorithmic Parallelism  

Is present where the algorithm can be broken down into a 
pipeline of processors in such a way that each processor 
executes a small part of the total algorithm. The parallelism 
inherent in the algorithm is exploited. In this decomposition, 
the data flows through the processing elements and is 
sometimes referred as Data Flow parallelism. The 
communication loads on each processor is increased and the 
communication bandwidth problems can degrade the 
performance.Therefore, for algorithmic parallelism to be 
successful the work load must be balanced uniformly across 
the processors. The advantage of this decomposition is that 
little data space is required per processor. The computer 
systems based on the algorithmic parallelism gives acceptable 
efficiency. Fig. 2 shows an example of algorithmic parallelism. 
 

 
 
 
 
 
 
 

 
Fig. 2 Example algorithmic parallelism – a language compiler 

B. Geometric Parallelism 

Is present where the problem can be broken down into a 
number of similar processes in such a way as to preserve 
processor data locality and each processor operate on different 
subset of the total data to be processed. All the data required 
by a processor are arranged to be on that processor or one of 
its immediate neighbors.  

In this decomposition, parallelism inherent in the data is 
exploited. This type of parallelism requires only a fraction of 
the total data on each processor, and is sometimes referred as 
Data Structure parallelism.  

Processors communicate with the neighboring processors. 
The communication loads are proportional to the size of the 
boundary of the element, while the computational loads are 
proportional to the volume of the element. Each processor has 
an almost complete copy of the whole program, therefore 
moderate memory requirements. The computer systems based 
on the geometric parallelism gives very good efficiency.  

 

C. Processor Farm 

Is present where a program must be run large number of 
times with different parameters. It is often most efficient to 
run these independent tasks concurrently on different 
processors. The typical architecture for this type of 
applications is a farm of processors where each processor is 
executing the same program with different initial data in 
isolation from all the other processors. Large amounts of 
storage are therefore required on each processing element. 
Because of the very limited communication requirements, this 
method is very efficient, but the memory costs may be 
significant. Fig. 3 shows an example of data structure 
parallelism. Fig. 4 shows an example of processor farming 
[16], [17]. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3 Example geometric structure 

 
 

 
 
 
 
 

 
Fig. 4 Example processor farm 

VI. PERFORMANCE MEASURE 

Two important measures of the quality of parallel 
algorithms implemented on multiprocessors and multi-
computers are speedup and efficiency. The speedup achieved 
by a parallel algorithm running on n processors is the ratio 
between the time taken by that parallel computer executing 
the fastest serial algorithm and the time taken by the same 
parallel computer executing the parallel algorithm using n 
processors.  The speedup ‘S’ is given by: 

nTTnS += 1)(  

Efficiency is defined as the average utilization of the n 
allocated processors. The efficiency of a single processor 
system is 1. The relationship between efficiency ‘E’ and 
speedup is given by: 

 
nnSnE /)()( =
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VII.  THE HARDWARE 

In order to meet the high speed and performance, a scalable 
and reconfigurable multi-computer system (NPLA) is used. 
This networked multi-computer system is a bit similar to the 
NePA system used to implement Network-on-Chip [18].  

The system used is a linear array of processors. It includes 
RISC processors and memory blocks. Each processor in the 
array has a compactOR, internal instruction memory, internal 
data memory, data control unit, and registers. One of the 
processors is used as a master or main processor and the 
remaining as slaves. The system has a network interface with 
the main processor having four and others equipped with two 
port routers. Routers can transfer both control as well as 
application data among processors. 

VIII.    TOPOLOGY 

The algorithms are executed on a total of 10 processor 8 of 
which constitute the processing elements. The remaining two 
are used for connection to the local host and for graphics 
display. The processing elements are connected in a linear 
array. The first processor in the chain of processors is known 
as the “master” processor. This interacts with the user through 
the local host, directs the operation of the graphics processor 
and the remainder of the processing elements, known as 
“slaves”. The chain is connected by a bidirectional 
communication system, allowing data and results to be 
transferred from master to other processors and vice versa, see 
Fig. 5. 
 

 
 
 
 
 
 
 
 
 
 

Fig. 5 Computer network for the topology 
 
The implementation has two phases: computing ρ and θ for 

all the points in image space, then finding the peaks that 
identify the lines. The image space used is of a regular grid of 
192 x 192 pixels. The range of values for θ is restricted to     
(0, π) to speed computation. 

A. Static Scheduling:  

In static scheduling, processes are allocated to processors at 
compile time. The master processor inputs the image from the 
host memory and stores it in a 2-dimensional image array. 
Then it divides the image space into regions according to the 
number (#) of slave processors and communicates the data 
from each region to the slave processors by doing a raster scan 
in such a way that slave # 1 receives data of the image points 
from region 1 and so on as shown in Fig. 6.  

In all calculations a lookup table is used to replace calls to 
‘sin’ and ‘cos’ library functions. Each slave processor holds an 
array of the table to avoid excessive communication 
overheads. For each (x, y) in the appropriate region, it then 
computes the values of ρ for each θ ranging from $0º to 180º 
and stores a vote in an accumulator array. The accumulator 
array of (ρ, θ) grid has a dimensionality of 464 x 180. The 
maximum value of ρ that can be computed for the chosen 
image space is from the range of 272 and -192. Therefore, the 
ρ index of the accumulator array is the addition of the above 
two values. When all the points for a region are computed, a 
lower threshold is applied to remove noise values in the form 
of lonely votes and the array is communicated back to the 
master processor. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6 Data distribution in static scheduling 

 
The master accumulates all values returned by the slaves in 

another local accumulator array. After all the results are 
received and votes incremented, peaks are detected by 
scanning the array using an upper threshold. Peaks with 
maximum votes identify lines. 

Experiments are performed on the proposed scheme with 
varying network sizes. Timings for 1 through 7 slave 
processors are obtained.  

Table 1: shows the time taken in seconds, speedup and the 
efficiency to recognize few lines appearing in an image space. 

B. Dynamic Scheduling: 

In this implementation of the Hough transform, processes 
are allocated to processors at run time. The topology used is 
the same as in the static scheduling, which is a master 
processor and from 1 to 7 slaves. The slaves operate as a 
processor farm with the code replicated on each of them. The 
master processor distributes image points from the image 
space to the farm of processors. 
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TABLE I 
RESULTS FROM STATIC SCHEDULING 

 
 
 
 
 
 
 
 
 
 

Each slave processor executes two main processes in 
parallel. One is a work process where actual computation takes 
place and is run in low priority with the other which is a 
task_schedular as shown in Fig. 7. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 Task_schedular in dynamic scheduling 
 
In order to keep the slave processors busy in computing the 

image points, the task_schedular buffers an extra item of work 
so that when the work process completes the current 
computation for an image point it can immediately start 
computation on the next point rather than having to wait for 
the master processor to send another item of work. 

The work process computes the Hough transform (ρ, θ) in 
the same way as for the static allocation explained earlier. 
After computing all the points associated for the particular 
processor, noise is removed and the resultant arrays are 
communicated back to the master processor where the peak 
values detect the lines. 

Experiments are performed on the dynamic scheme using 
varying number of processors. Timings for 1 through 7 slave 
processors are obtained. Table 2: shows the time taken in 
seconds, speedup and the efficiency for the same image space 
as used for the static scheduling. 

C. Statistic Scheduling: 

In this implementation of the Hough transform, the master 
processor raster scans the image space and counts the number 
of the foreground points, and then divides the points equally 
among the slave processors. Distribution is done statically in 
the form of data arrays corresponding to the number of 

processors. Therefore, this scheduling scheme is statistically 
balanced and avoids communicating the entire image or 
regions to the slave processors. 

 
TABLE II 

RESULTS FROM DYNAMIC SCHEDULING 

 
 
 
 
 
 
 
 
 
 

The slave processors receive an array of equal number of 
image points. Compute the results and store votes in the 
accumulator array, remove noise and send the results back to 
the master processor. Communication is buffered and 
prioritized. The master processor operates the same way as for 
the other two techniques to detect lines. 

Experiments are performed on the statistically balanced 
scheme by varying the network size. Timings for 1 through 7 
slave processors are obtained. Table 3: shows the time taken in 
seconds, speedup and the efficiency for the proposed scheme. 

 
TABLE III 

RESULTS FROM STATISTIC SCHEDULING 
 
 
 
 
 
 
 
 
 

IX.  COMPARISON 

The results for the static, dynamic and statistic schemes are 
compared for the same image space and over the range of 
varying network sizes.  

Fig. 8 shows time taken in seconds for the 3 schemes when 
from 1 to 7 slave processors are used. Time taken is nearly the 
same when only one slave processor is used for all the 
schemes. The timings improve for dynamic and statistic when 
7 slave processors are used. 

A 4 fold speedup is achieved for the dynamic scheme when 
the number of slaves is increased from 1 to 7, see Fig. 9. 
However, this level of speedup is not maintained for the other 
2 schemes. 

For static allocation, the speedup does not rise 
monotonically with the increase in the network size. This is 
due to the fact that additional processors may be allocated 
sparse areas of the image. 
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Fig. 10 shows the efficiency of the system when from 1 to 7 
slave processors is used for the proposed schemes. The 
dynamic scheme shows an efficiency of nearly 60 percent. 

 
 

 
 
 
 
 
 
 
 
 
 

 
Fig. 8 Timing diagram for scheduling schemes 

 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 9 Speedup graph for the scheduling schemes 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10 Efficiency graph for the scheduling schemes 

X.   CONCLUSION 

In this paper we have considered scheduling techniques for 
straight lines detection in digital images using the Hough 
transform method. The spatial and independent data 
characteristics, but a regular structure of computation for each 
image point of this algorithm is a representative of an 
important class of algorithms in computer vision and image 
processing. With the help of paradigms of parallel processing, 
the paper investigated the performance of static, dynamic, and 
statistic scheduling techniques for the parallel implementation 

of this type of algorithms on computer networks. Performed 
experiments suggest that dynamic scheduling can outperform 
its rivals in terms of speedup and efficiency, and is well suited 
to the MIMD structure of computer networks. 
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