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Abstract—The requirement for consistency in physics can 

sometimes offer a common ground between disciplines such that 
their fundamental equations share a common parameter set and 
mathematical method for equation extraction. The parameter set 
shared by Relativity and Quantum Wave Mechanics enables an 
analysis which will be seen to be very straightforward, primarily 
classical in nature using linear algebra concepts, yet deriving a 
theoretical estimate of the value of the Gravitational Constant along 
with dependencies never before known. 

 
Keywords—Gravitational Constant, Physical Consistency, 

Quantum Mechanics, Relativity. 

I. INTRODUCTION 
HIS document describes a unique and novel approach 
applied to the simplest of cases directed toward 

establishing basic formulations that are length centric in order 
to bridge the disciplines of Relativity and Quantum Wave 
Mechanics in a manner consistent with both. Our particular 
aim is to formulate the Gravitational Constant so as to enable a 
first order view of its internal dependencies. The approach is 
shown to derive the quantum wave equation and others while 
also deriving General Relativity’s (GR) cosmic expansion 
case. So we would expect the derivation and result of the 
space contraction case to also be correct within the confines of 
our models. No similar or directly related analysis has been 
found in the literature. 

With this end in mind, we develop a covariant equating 
parameter set. The equations sought for each case are 
developed by the equating of a particular pair of those 
parameters. In order to develop a generally applicable set 
inclusive of both Quantum Mechanics and Relativity, it was 
necessary to establish an adequate way to relate to both 
intrinsic and ordinary (non-intrinsic) characteristics of 
particles. 

II. PRINCIPAL COVARIANT CORRELATIONS 

A. The Common Denominator of Length 
The principal facets of our reality are: (1) breadth, (2) time, 

(3) mass, and (4) energy. Energy here will be that of 
electromagnetic (E/M) waves, but representing the total of the 
energy of radiation, kinetic, and potential forms. The facet 
descriptor in common is the parameter "length" if mass (via 
momentum) and energy are represented by their characteristic 
wavelengths. We'll call a 3 vector spatial line length "breadth" 
= x  of 2 2, 1 3jx x j= Σ = −  

and establish the time length as " ct
". The parameter correlation, we’ll define here as an invariant 
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based relation, has one example in: x = ct . Here and 
throughout, a subscript zero will denote at rest values while 
length contracted values will be assumed without notation. 
The equating of these two lengths, as well as those following, 
presupposes a valid defining action, e.g., here an observer 
measures the length and travel time of a light beam made to 
transverse a length segment contained within an inertial frame 
possibly separate from the observer’s. The Bohr 
Correspondence Principle extends this concept so as to include 
particle intrinsic parameters as well. Because of the choice 
made of the disciplines to be bridged, we’ll seek an invariant 
connecting the intrinsic to the ordinary characteristics of 
particles. 

Any four vector representation will be noted as such. All 
four of the facet length descriptors are subject to GR 
compressions and expansions of the spatial scale factor ( R ) 
of the universe (given /c Rx Rt= ). At this point we've only 
defined covariance between two lengths of an inline ordinary 
reality, that is, all lengths lie in the same specific direction of 
the 3 dimensional spatial part of space time reality. We'll 
represent the reality facets through the scale factor as:

( , ) ( , )x tR L L R x ct= , in which the scale function is a simple 
“holder” of the forms of length. 

B. Additional Ordinary Lengths 

Since we’re lacking the EL  invariant link to x  and ct , 
we'll use ⇔  instead of an equal sign and define an expanded 
inline ordinary reality as: 

 
( xR L , tL , EL ) ⇔ ( , , /R x ct hc ε ) . 

 
For an E/M wave, 
 

pε / Ec hf c hε λ= / = = /  
 

Defining v  by the invariant ( •v v 1/2) ( / )x tcL L= , then by 

analogy: /h mvλ = , and so: ( xR L , tL , EL , pL )
( , , / , / )R x ct hc h mvε⇔ , not including the singularity of 

case v = 0 . The pL  length is the wavelength of a matter 
wave form. In the nomenclature we’ve adopted, R contains an 
inline ordinary reality of four lengths. 

C. Intrinsic Parameter Inclusion 
Fundamental properties of elementary particles are facets of 

an extraordinary reality that is intrinsic to the particle. Chief 
among these properties are mass, electric charge, spin, 
magnetic moment, and location probability determinate. This 
latter property can be addressed most directly by postulating 
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that elementary particles have structural level characteristics 
corresponding to the ordinary matter wave form. This form, 
being of structural origin, must itself be consistent with its 
energy representation: 2/ / /h p hc hc mcε= = , so p mc= . 
The evidence for the /h mc  form is found in this paper’s 
derivation of particle constant pxJ , subsequently shown to be 

central to Quantum Wave analysis. The intrinsic topic 
demands a separate reality view of a particle's structural 
properties. So we'll define the momentum p mc=  as part of 
a reality view of intrinsic structure characterized as being of 3 
dimensional space κ , separate yet connected to the non-
intrinsic directly observable ordinary reality characterized as 
being of 3 dimensional space χ . So in conjunction with this, 

we write: p mc= with pL = mλ /h p= , the κ  part of an 

expanded reality: (R χ; κ) ( , , / ; / )x ct hc h mcε⇔ . 
A connection between the two realities is seen in Special 

Relativity (SR): 
 

2 2 1/2
0 / (1 / )m m v c= − , or: 2 2 2

0( ) ( ) ( )mc m c mv= + . 
 

Using the mathematical artifice of complex numbers, we 
can model this relationship as if 0m c lies on the imaginary 
axis: 

0mc im c mv= + . If we also represent the imaginary axis as 
an axis kof the κ  reality view above, this relation is seen to be 
modeled in a manner consistent with Fig. 1: 
 

2p = 0m c mv+k χ          (1) 

2p = 2 2{SqRt(c )}m v mv− +k χ       (2) 

in which the relationship between ( )mc κ and ( )mv χ  is: 
 

( ) sin ( )mc mvθ =         (3) 
 
and their correspondence will be seen in (5A) and (5B). 

Here then, Fig. 1, technically a “relationship diagram” with 
“implied momentum magnitudes,” has momentum mv 
resulting from, or “derived”, from mc. 

Here particle velocity can be any value less than c, 
including zero. If the latter: 1p = 0m ck . But in the v > 0 

instance the resulting momentum vector must equal: 1p + vp , 
as in (1), giving reason for the dot product invariance of the 4 
vector momentum: 2p v−p 0m c= k  . Here vp is the 3 vector, 
being one of the two fully defined vectors in the diagram. The 
Stress Energy Tensor can be defined through the 4 vector 
momentum relationship as seen through the prism of Fig. 1, 

2 vp p−κ χ  in applicable densities per unit time: ttT = mcρ
(Mass density) or its equivalence /ttT cρ=  (Energy density) 

crossing a surface of unit time. So this is 2p density. it
vT p=

Momentum density in the i  direction crossing a surface of 
unit time. tiT = K.E. representation of vp density. ;ij

i jT PA=  
The ith component of pressure as seen by the surface jA , i.e.

( / )i j iF A A . But this is per unit time, so 
i iF t pΔ =  , i.e. vp  

momentum ( K = 0 value) in the ith direction resulting from a 
unit time impulse, as seen by jA . So, ignoring constants:

ii it tiT T T= = . 

 

 
Fig. 1 Momentum Space of R(χ;κ) 

 

p2 = κmc 

χε/c 

pv = mvχ 

θ 

km0c 
mkSqRt(c2-v2) 

Angle of observation = π/2 
k to χ 
 

=κTtt 

θ 
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We have covariant equating elements between breadth and 
time, and separately between the energy and mass elements 
from conservation, so we may write: 

 
( , , / ; /R Qx Qct hc h mcεχ; κ) = ( 0, 0)mε > >   (4) 

 
Here Q  is a presently undefined interface function between 

the pairs. But the κ space of Fig. 1 has non-zero lineal 
momentum magnitudes despite its stated applicability even to 
particles fixed in space. Given that all the implied momentum 
magnitudes of Fig. 1 are correct, the indication is that the κ 
momentums are true but not literal in direction, while the χ
momentums are both true and literal. So we can say that a 
particle of mass m has an inherent ability to provide inline 
momentum of mc to the ordinary reality of χ . For example, 
with a valid defining action, its conversion to E/M radiation 
would have that literal momentum which in turn could be 
imparted to the space metric. Also, a particle’s intrinsic spin 
can result in angular momentum having the value mcr with 
that same imparting ability. 

In this latter case, for the sake of completeness, we'll 
speculate regarding one possible background for this κ to χ  
momentum transfer process. The inline χ  axis is assumed 
fixed, so Fig. 1 definition must begin by establishing the 
particle inline angular momentum Jχ . In connection with 
this, the axis k (toward top of figure), and a dimensionϕ
 representing the direction of k axis rotation (-π/2 to +π/2) 
around the inline χ axis, establishes the Jχ equivalent body κ
plane ( )ϕk . The θ  skew direction and meaning are defined 
by the particulars of the transfer process. Considering Fig. 1 
with its complex conjugate space directly beneath it (not 
shown), the dual space vector mc with a generalized linear 
operator (sin θ) yield an identical transformation: 

 

( )sin si( )n .mc mv mcθ θ> <  

D. Particle Constants 

A κ rotating body equivalence to particle Jχ  can be 

derived from 0m ck and a corresponding perpendicular 0R of
κ , each defined through the moment of inertia: 2

j jj
I m R= ∑  

by which we define the angular momentum 0 0im cR . Our use 
will be analogous to the utility of “ c ” in Relativity. GR’s 
fourth dimension “ ict ” enables ( v c<< ) spacetime interval 
invariance with its resulting ease of transformations. Our “ i

0m c ” of κ enables Fig. 1 with its intrinsic parameter 
correlations. 

With the restriction 0θ = , we can write:  
 

2
0 0 0 0( )(2 )px mJ im cR iI i m R fω π= = =

2 2
0 0 0 0 0( )(2 / ) (2 )( / )mi m R c im R c m c hπ λ π= =  

which reduces to: / 2pxJ ih π= . In order for the Fig. 1 “particle” 
to be hadron, lepton or photon, we add the spin quantum 
number: / 2pxsJ ih iJσ π= = . So 0| | / 2pxs pJ h m crσ π= =  

in which we now define the parameter pr  as a non-specific 
radial line segment of a χ  spherical coordinate system with 

origin at the 0( )im c axis (i.e. particle location) So:

0/ (2 )pr h m cσ π= . 
We now impose the inline condition and include the 

contraction factor (ρ) of SR on the lengths of χ . As we 
remove the 0θ =  restriction, we can write: 

0| | / 2pxs p pJ h m cr mc r mcxσ π ρ= = = =  in which we've now 
defined this specific inline breadth " x " of χ  as being coupled 
with mc of κ  such that magnitudes mcx J= and since this 
is post defining action, J is an invariant relative to that particle 
velocity magnitude. Also, from (3): 

( / sin ) ( / sin )J mv x mv x mvXθ θ= = =  (a "derived" form). 
With " x " accepted as a variable name in either case, the 
px J=  invariant yields (5), linking intrinsic κ spin to its 

ordinary χ  angular momentum: 
 

(Structural): (2 / ( / ) mx h mcπ σ λ) = =      (5A) 

And (Derived): (2 / ) ( / )x h mvπ σ λ= = , 0v > .  (5B)  

E. The Principle of Length Equivalence (PLE) 
So Fig. 1 has defined a px  invariant for our subject 

particles which we now take to be a fundamental relationship 
through which both forms of (5) define permissible active 
p x↔  transfer functions through their representative length 

equivalences (i.e. an “LE process”), but in which conservation 
of momentum requires all relevant ordinary lengths to be 
inline. The length equivalences are not the transformation 
operators, but the definition of their required result by virtue 
of the (5A) and (5B) correlations. The structural form (5A) 
equates the first and fourth terms in (4). And if we multiply 
this equation by / pc v , with pv  a velocity defined as equal

/ pε , we get: (2 / ) ( / )ct hcπ σ ε= , equating its second and 

third terms. But in structural form, or if θ = π/2, pv c= , so 

( / )pc v  is a unity multiplier. So with function Q  of (4) equal to 

(2 /π σ ) , we can now establish the principle that any of the 
four terms in (4) are covariant in equating with any other and 
that, due to the natural requirement for consistency between 
disciplines, they define the result of a particular LE process, 
and its correlated relationships between parameters. Then: 

 
( , , ; ) {(2 / , (2 / ) ,x t E pR L L L L R x ctπ σ π σ= ) / ; / }hc h mcε  (6)

 
 
We’ll find that the scalar σ can be different for some 

processes. Here it is spin quantum number for mc or mv 
transfer. Later it will be the fine structure constant γ for 
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processes operating through the electric potential, and it will 
be shown to be μ, a mass related constant in Quantum Field 
analysis. 

While (5) and (6) define active px  transfer functions via 
length equivalences, a passive space-time extension can be 
established, e.g. / 2x h pσ π> . So the transfer process is 
always related to the relevant LE, but a passive extension does 
not. Generally speaking, the following transfer details have 
results which are not surprising, but their derivations are 
important because they are unique and demonstrative of PLE 
validity. 

 
III. DETAILS OF (5) & (6) LENGTH EQUIVALENT ACTIONS 

(σ =1/2 UNLESS NOTED OTHERWISE) 

A. Fundamental Correlations 

: / /E pL L hc h mcε= = or 2mcε = , 
 
as also seen in Special Relativity. 
 

: / 4p xL L h p xπ= = Or: / 4x p h πΔ Δ =      (7)  
 
valid in both forms of (5). 
 

: / 4E tL L hc ctε π= =  Or: / 4t hε πΔ Δ =     (8)  
 
also valid in both structural and derived forms since (7)/ pv  = 

(8). 
Spacetime extensions of the derived forms lead to the 

Heisenberg relations. Quantum Mechanic's Schrodinger 
probability wave equation derives from (5B). For comparison, 
in structural form we expand (5A) as: 

 
2 / / mx h mcπ σ λ= =  

 
Dividing this equation by c  we get: 

 
2 / / mt h fπ σ ε= = 1/  ; m mf cλ =  

 
With a particle characteristic angular frequency of:  

 
22 / 2 /m h mc hω πε π= =  

 
For a single particle in lineal motion, the derived form (5B) 

expands as: 
 

2 / /x h pπ σ λ= =  
 

 Dividing this equation by pv  we get: 
 

2 / / 1/t h E fπ σ = = ; / pf E p vλ = = ,  
 

with characteristic frequency: 2 /E hω π= . 
Eigenvalue total energy " E " of χ  is composed of kinetic 

energy K  and potential energy P . So: E K P= + .And, 
using the expanded (5B): 
 

2 2 2/ 2 / 2 (1/ 2 )( / 2 ) (1/ )h t p m P m h x Pσ π σ π= + = +   (9)  
 
an inline equation. We'll define a probability function, a 
sinusoidal wave ( , ) ( ) i t

j jx t x e ωψ β −=  where subscript j  =1,2,3 

automatically implies summation over the ordinary spatial 
coordinates. With inline / 2J hσ π= , (9) becomes: 
 

2 2/ (1/ 2 ) ( / )J t m J x Pψ ψ ψ= +       (10) 
 

The classical equation for transverse sinusoidal waves is: 
 

2

2
jx

ψ∂
∂

2
2

2(1/ )( )pv
t
ψ∂

=
∂

. 

 
Application to our probability function yields:  

 
2

2
2 ( / )p

j

v
x
ψ ω ψ∂

= −
∂

        (11) 

 

The forms 2/ xψ  and / tψ  in (10) suggest a change in 
representation using replacements: 
 

2
2 2

2(1/ 2 )( / 2 ) (1/ ) ( )K
j

m h x
x
ψσ π ψ ∂

→ Α
∂  

and: 

( / 2 ) Eh t A
t

ψσ π ψ ∂
→

∂
 

 
where KA  and EA  are constants to be determined. 

Using (11):  
2

2
2 (2 / )K K p

j

A A f v
x
ψ π ψ∂

= −
∂  

  
But 

/ 1/ / 2pf v xλ σ π= =  
 
from the expanded (5B).So: 
 

KA 2

2
jx

ψ∂
∂

 = 2 2( / )KA xσ ψ−  

 
and from (10): 

2 2 2 2( / ) (1 / 2 )( / 2 ) (1/ )KA x m h xσ ψ σ π ψ− =  
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So: 

KA = − 2 2(1/ 2 )( / 2 ) (1/ 2 ) pxm h m Jπ =  , 

 
recall that / 2pxJ ih π= =iћ 

Now: 
 

( 2 )E EA A i f
t

ψ π ψ∂
= −

∂
, 

 
and, from the expanded (5B):  
 

/ 2f tσ π= . 
 
So: 

( / )E EA A i t
t

ψ σ ψ∂
= −

∂
 

 
and then from (10): 
 

( / ) ( / 2 )EA i t h tσ ψ σ π ψ− =  
So:  

/ 2E pxA h i Jπ= − =  
 
Then we can rewrite (10) as:  
 

2 2( ) (1/ 2 )iћ t m ћ Pψ ψ ψ∂ / ∂ = − ∇ +  
 

This is the Schrodinger probability wave equation with 
transforms:  
 

( )pxE J
t

ψ∂
→

∂
and ( )n n n

pxp J ψ→ − ∇      (12)  

 
Comparing this equation with (10), we see that σ  and the 

inline vector χJ have become irrelevant. The Quantum Wave 
equations have forced the transfer angular momentum of 
analysis: pxJ J→ . 

The Dirac Equation follows from these transforms as 
applied to (1): 
 

2 2 2 2 2 2
0 0( ) / ( ) ( )vmc E c m c p m cβ= = + = + • vpα  

 
This latter squared parenthesis is made true by the α and β 

 4 X 4 matrices. So:  
 

2
0E m c cβ= + • vpα  

 
and with transforms (12) applied:  
 

( )jiћ tψ∂ / ∂ = ( 2
0m c cβ − •α iћ∇ ) jψ j =1 to 4. 

 
( 1)p tL L σ= =  

Consider an E/M field in close contact with an accelerating 
object. Let mN be that portion of object mass m connected to 
an E/M field such that both equally contain a momentum 

Nm c  in the inline direction defined by the object’s 

acceleration. Then: effective θ = π/2 and: / 2Nh m c ctπ= ,or:  
 

/ (2 )Nm c h ctπ=         (13)  
 

Here 2 ctπ is the time length correlated with Nm c . We 
define p as that E/M field momentum. Applying the length 
equivalence to this momentum, we can write: 
 

2h ctpπ= . 
 

Differentiating with respect to : 2 2 0dpt cp ct
dt

π π+ =

But cpε = and the χ reaction force in the E/M field due to 

the accelerating object is: N
dp m a
dt

= − , so this becomes: 

 
E/M ( )( )Nct m aεΔ = − − Nctm a=      (14) 

 
with Bk  = the Boltzmann Constant, (13) and (14) yield: 
 

Nm c = / / (2 )Bk T at h ctπΔ = , So: / (2 )BT ah ckπΔ =  
 
which is Unruh's Law. 

This process is contained within χ . The efficiencymN/mof 
the transfer of acceleration force to the E/M field is dictated by 
the intimacy of their connection. 

B. General Relativity 

:x tL L x ct= =  

: / 4E xL L hc xε π= =  
 
Note that all the lengths of (6) have the linearity associated 

with the ability to equate to the flat metric reference x ct= . 
We now define the grid as a function '( )x x  in which both x  
and 'x are inline lineal, i.e. parameters defined within the 
context of a single dimension (i.e. lineal) and a particular 
direction (i.e. inline), but 'x  lacks the time linearity of (6). 

In our simplest of cosmological models, with x and 'x seen 
as increasing in the direction " r " of spherical coordinates, we 
will see the equivalence between spatial curvature and grid 
expansion or compression for a given curvature constant K . 

0K > →  Spherical curvature = expansion of grid, 'x x>  
0K = →  Flat space ( abη ) = no change in grid, 'x x=  

0K < →  Saddle like curvature = compression of grid,
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'x x<  
Here then our LE equations will define the result of energy 

transfer into the 'x  grid in the direction " r " of a non-viscous 
universe. So any point within r is defined by both the flat 
metric x and a generally different number 'x . Note that for the 
general case of inline χ  axis in any direction relative to its 
basis vectors, that basis would have to be orthonormal with LE 
equations defining column vectors and lineal transformation 
matrices. 

C. GR K>0 ( 1)σ =  

We have: 
 

/ 2x hcε π= . 
 

Differentiating with respect to 
 

t : ''( ) ( ) 0d dxx
dt dt
ε ε+ = . 

 
Having left the linearity of (6), we've attached the prime 

indicator to x .  
 

'( / 2 )( ) '( )dx dhc x x
dt dt

επ = − or ' (2 ')( / )dx dxx hc
dt dt

επ= −
 
 (15) 

 
Implying positive spherical spatial curvature, an increasing 
'( )x t in conjunction with a decreasing χ  E/M ( )tε . 
We will look at the GR conservation equations for 

correlation to basic energy to space relationships. These can 
be derived from: 0ab

bTΛ =  where bΛ  is the covariant 
derivative. For energy conservation, this becomes: 
 

0
a

a a b b at
a t ab t at b

dTT T T
da

= Λ = + Γ − Γ , 

 
where Γ  are the Christoffel symbols. We define χρ  as 

energy density equivalent to electromagnetic pressure ( vP ) 

per unit area of iiT . For radiation: 
 

3 vPχρ = . 
 

So: abT is diagonal as  
 

( / 3, / 3, / 3)r θ ϕρ ρ ρ ρ+ , − − − . 
 
and so for the Robertson - Walker metric: 
 

ttT ρ= and / 3r
rT T Tθ ϕ

θ ϕ χρ= = = − , 
 

and its affine corrections are: 0t
ttΓ = , and  

(1/ )( )r
rt t t

dRR
dt

θ ϕ
θ ϕΓ = Γ = Γ =  , 

 
the Hubble constant (H). With this, the conservation equation 
simplifies to:  
 

[(3 ) (3 )( / 3)] 3( / 3)
t

tt
t

dT d H T H H
dt dt χ χ

ρ ρ ρ ρ= = − − − = − +

  
Combining energy densities:  

 

( ) / ( ) / 4dR dR
dt dt

ρ ρ= −       (16)  

 
Here, fractional energy density loss per unit time translates 

to a fractional gain in R. Compare this with (15): 
 

' (2 ')( / )dx dxx hc
dt dt

επ= −  .
 

 
Energy loss per unit time translates to an actual 'x  gain. 

But we can change the form of this Length Equivalent 
equation to match the GR form: From above: 

: / 2EL L x hcχ ε π= =  so (15) becomes: 
 

'( ) / ' (2 )( ) / (2 ) ( ) / ) /dx d d dx x x
dt dt dt dt

ε ε ρπ πε ε ρ= − = − = (−

 

(17) 

 
The parameters x  and 'x  refer to the same point “R”. 

However, comparing (16) and (17), we see that (17) yields a 
Hubble constant four times greater than GR for any given

( ) /d
dt
ρ ρ . But this is understandable since 'x is an inline lineal 

parameter representing a transfer of energy only into the single 
dimension of r , while GR is seen to adiabatically translate 
energy from an expansion in the three dimensions of κ, plus a 
pressure loss equivalent to a fourth dimensional loss of energy 
related to the red shift of χρ . Note that why the field is 

created is discernable in this GR derivation – expansion 
requires energy and results in an obvious source energy loss. 
Specifically, E/M radiation energy loss clearly and directly 
translates to metric expansion. 

For the large scale metric curvature, K = 0. This does not 
result in a transfer function, but rather a boundary condition 
which leads to the equation: 

 
1/2(8 / 3)m

dR HR R G
dt

π ρ= = . 

 
There are three 0K >  cases to consider (" ∝ " means 

proportional): 

1. Inflation, ρ is constant, but d
dt
ε 0<  (State changes 

replenish ρ ) (Class I) 
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dR R
dt

∝           (18) 

 
2. Radiation dominated, therefore including red shift and 

volume related
d
dt
ρ

. (Class II) 

 
3 1/2[(1/ )(1/ )] 1/dR R R R R

dt
∝ =  => 1/2R t∝     (19) 

 
3. Matter dominated, therefore including only volume 

related κ md
dt
ρ . (Class III) 

 

3 1/2 1/2(1/ ) (1/ )dR R R R
dt

∝ =  => R ∝ 2/3t      (20) 

 
We can set ' ,x R=  and determine (18) to (20) grids. H is 

constant in the inflation case and we can characterize the grid's 
consumption of momentum impulse using a half-life constant

xt , that is: 
 

(1/ 2) '( ) '( )xx t t x t+ = . 
 

With La unit length, these Class I equations are satisfied by 
the expansion:  
 

Grid '  ( / )x exp x= L L , 
 
with x Ht= L , and (  2) / xH NatLog t= . Class II and III 

expansions are additive to the spacetime extension ( 0)x t = . 
So: 
 

Grid ' ( 0) ( / ) , 1/ 2  2/3nx x t x n or= = + =L L , x ct= . 

D. GR K<0 (σ =1/2) 
In contrast to section C, in this section expected metric 

compression defines dε/dtwhose availability is a given. 
Gravity's compression of grid requires the use of the reciprocal 
length replacement 2 / 'x x→ L  in order to accomplish its 
characterization. In the following, the structural form of (7) is 
used in (21A) and the derived form in (23). mL  = the length 

2/GM c with G as the Gravitational Constant. 
 

2/ 4 ( / ')hc xε π= L  Or: 2' 4hcx π ε= L      (21) 

or:
2 2 2( / 4 ) '/ '/

( / )
m m L m

L

h L cL x m c L x
m GM x

ε π= =
=

L L
   (21A) 

 
 
 

But going back to (21): 
 

2'( / 4 )( ) ( / )( )dx dh c
dt dt

επ = L
      

(22) 

 
Dividing by the derived form of x: 
 

2'( / 4 )( ) ( / )( )dx dh x cx
dt dt

επ = L  so: 

2' ( / )( )v
dp v cx
dt
ε

=R L R       (23) 

 
This defines an LE process repeated R times. 

Now the spherically symmetric, time independent metric of 
vacuum space, influenced by the gravitational field of a 
centrally located spherical mass, defines the Schwarzschild 
Solution: 

 
2 2 2 2 2 2 2 2(1 2 / ) / (1 2 / ) sinm mds L r dt dr L r r d r dθ θ φ= − − − − −

 
There are no terms explicitly dependent on the time, so the 

Killing vector (1,0,0,0)ξ =  defines the conservation of 
energy associated with this independence. The conserved 
energy per unitmass is this vector's dot product with the four 
velocity:  

So:  
 

2= -g ( / 2)(1 2 / ) /a b
ab mu c L r dct dε ξ ξ τ= − • = − −u

 
 
(with units added).  

Because particle velocities are c<< , ds d dctτ= =  and 
we may write this as: 2 /mc L rε =  in which ε  now 
represents the delta energy from the flat basis. Later we’ll 
show that the metric's 0r x= =  geometrical singularity is 
void. Now instead of energy per unit mass we'll use the 
equally valid mass Lm of (21A), so: 2 /L mm c L rε =

/Lm GM r= which is identical to LE (21A). 
That the metric is modified by the forces of both Coriolis 

and centrifugal source is explicit in the Stress Energy Tensor. 
In particular, the ( 0K = ) momentum dynamic of Tii can 
relate centrifugal force to it’s ( 0K < ) effect on the metric. 
The 1918 Thirring – Lense Cartesian (TLC) analysis [1] 
quantitatively defined this (weak field, slow motion) effect 
which results from a z axis rotating spherical shell of mass 
withinχ. Here, 

 
gab ab abhη= + , 

 
with  

0 0( , , 0) (4 / 3)( / ) |ab x yh h M r cross= = −h  x |ω  
 
in which ω  is angular velocity and x is a vector in the xy



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:8, No:2, 2014

482

 

 

plane. This is essentially: 0 /h M rχ = − V . In the following 

analysis we add the effective impulse time as seen in the 
equivalent terms for our rotating shell:  
 

/ ( ) ( )
( r) = / (r / )

p t Ma M d dt M
M M

ωΔ Δ = = = =V / V
V V / V V

 

 
Although the (TLC) is a non-intrinsic analysis, we can 

include the intrinsic Ttt by first looking at two related cases. In 
the case of a spinning bucket of water, the centrifugal force 
acting on peripheral water is balanced by the pull of lower 
level water at its center resulting in a concave surface with 
analog to the curved space of gravitation. The (TLC) analysis 
is a variant of this. A second consideration is that of a man 
swinging a rope with a ball at its end so that it goes in a 
circular fashion. The balance to the centrifugal force on the 
ball is provided by the man’s hand. But if the rope is long 
enough and the man’s hand is used only as a guide for that 
rope, the rope itself provides the balance if it’s allowed to be 
pulled along (at velocity v) with the ball’s increasing diameter 
of circular movement. The pulled rope has an analog to the 
compressed metric grid of gravitation. 

We define “ S ” as a scale, and IS as a point on that scale, 
measured from the gravitational mass edge and equivalent to 
S ct=  but a constant of time (i.e. a fixed ruler). In (23), the 
flat metric parameter x  is time linear and we know that the 
gravitational field is static, so: (K=0) | / |dx dt v= , a static 
velocity at any specific point measured by S  along x. With 
inline v gp M v= , we define the active Ix S vt= − , IS  and

0x > . Although a product of 3 vector χ , we can define the 

metric mass equivalent gM as a fixed static inline lineal 

parameter despite its being subject to variable compression 
along its length. 

Centrifugal force is given by:  
 

2 / / / ( / )M r p t M r= Δ Δ =V V V . 
 
From particle spin related angular momentum (see section II 
D.), we have 0pxs piJ J im cr= = . So we reason that 

0( )M particle m= Σ  and the centrifugal force applied to 
 

gM is / ( / ) /pMc r c p t= Δ Δ . 
 
Then: 

2 3( ) / ( / ) /p p
d Mc r c Mc r
dt
ε

= − = − . 

 
So within the gravitational mass the centrifugal momentum 

originates as Mc . Equating the transformed 0K =  lineal 
momentums: / /gMc S M v= L  establishes the 0K <  

metric potential well encompassing particles in their 
formation, as then also in any mass of particles. It is important 
to note that this ( )v S of 0K =  is consistent with the  

 
( ,pv c v c= < ): / 2, ( / 4 ) vh x pθ π π= =  

 
correlations of (23) and therefore with the Fig. 1 transfer 
momentum of particle mc. Here the transformation operator is 
the conductance of spin related force to the space metric. 

Upon reaching balance between centrifugal force and 
resulting grid compression, 0d

dt
ε

= , source of the field then 

only being the grid potential gradient, which derives from the 
energy balance of (23): 

 
2 2' ( / ) /g pM vv x Mc r= − L Or: 

2 2' ( / )( / )(1/ )p g
dx c r M M x v
dt

= − L , K = 0. 

 
and the K=0 accelerating field is: 
 

2
2 2 2

2

' ( / )( / )(1/ )p g
d x dxc r M M x v
dt dt

= L , but dx/dt = -v . 

 
Now then, for K < 0 (and K=0):  

 
2

2 2 2
2

' ( / )( / )p g
d x c r M M x
dt

= − L      (24) 

 
and the gravitational constant  
 

2 2( / )p gG c r M= L
      

 (25) 
 
For 0K < , we now have the passive steady state x ct= . 

So the compression grid supporting (24) is defined by the 
equation:  

 
Grid '   (x/ )mx L NatLog= L , 

 

with mL  as the length 2/GM c . The formational 0K =  
centrifugal force was  

 

2 2 2' ( / )( / )g g p
dvF M Mc r x
dt

= = − L
 

 
using (24). So in terms relative to acceleration, this radial 
transmission of defining force was reduced by the factor 

2 2( / )TRF x= L  and the 0K <  grid is only a regional static 

metric curvature. We also see that the 0K < '( )x x
minimum grid defines the x  value as L, which is >0. The 
grid’s blend into flat is seen in its derivative: 
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'( ) (1 / )m
dx dx t ct L x
dt dt

− = − . 

 
The Einstein equivalence principle that the gravitational 

field is identical to local acceleration, lets us use (24) to define 
a flat metric inline lineal tether mass 0gM in a field w/o the

TRF , as it relates to gM in that same field but with the

TRF . Although neither 0gM nor gM are defined as variable 

parameters along any length x, for the moment we’ll suspend 
that independence for gM only and write:  

 
2 2 2( / )( / )(1/ )p gMc r x M =L 2

0( / )(1)(1/ )p gMc r M . 
 
So locally: 
 

2 2
0( )( / )g gM x M=L , 

 
 

again reflecting the diminished extent of the 0K <  grid 
compression of 'x . So while 0gM  refers to the entire metric, 

gM must refer only to a portion.  

IV. COMPARISONS 

A. An Estimation of the Gravitational Constant 

So 0gM  is a flat metric parameter encompassing the entire 

grid in any analysis regardless of K value. This allows us to 
estimate it, and thereby the constant G defined by (25), by 
means of a one dimensional model treating the 0K >  
expansion of the universe as a single event of momentum and 
energy gain. We'll choose an expansion starting point after the 
inflationary period so that we can use horizon length to more 
accurately define the energy’s effect on universe size. That is, 
we'll intentionally exclude the energy associated with the 
excess of actual over horizon size in order to more closely tie 
photon temperature decline to the class II & III expansionary 
momentum (see Fig. 2). 

…  

Fig. 2 Idealized Cosmic Expansion 
 

 The expansion of the universe has extended the radial 
distance to Mx . With Mx now a specific radius, the energy 

imparted is: 0g M BFx k T Vε η= =  where F is the effective 

average force, V is present ( Mx ) volume, 0T is the expended 

background energy temperature, Bk = the Boltzmann constant, 

and η  is present photon density. The total metric mass 0gM
has experienced an increase in lineal momentum such that: 

0 /gF M v t= , where velocity v = MHx , and t  is the 

"Hubble time" age of the universe which we define as 
1 / 15.75 9H E= years ( H  = 71 (km/sec)/Mpc). Then: 

 
2 2

0 0g M BM H x k TVε η= =   (26) 
 
We’ll choose slightly minimal H and 0T values in order to 

exclude the Class I/II transitional energy from both sides of 
(26). So: 

 

  
R    

  Class I 

(Time)1/2  

Not to Scale 

Actual R

Class II/III 

T0 3000 deg

xm 

2.726 deg 

Thick Thin

3E5 
years 
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2
0 0(4 / 3)g B MM t k T xη π=   (27) 

 
Now, since the point of decoupling of matter and energy, 
Vη  has remained essentially constant in an optically thin 

universe. At that point, the horizon length x  = 300,000 light 
years and T  = 3E3 degrees [2]. T is a photon temperature 
determined from the cosmic background frequency spectrum  
( Bk T hf= ). The red shift factor ( /IR R ) leads to the scale 

factor to photon temperature relation: 2 1 1 2/ /R R T T= . 

Presently T = 2.726 so Mx = (3E3/2.726)x = 3.3 E8 light 
years.  

After the inflationary epoch, at photon temperatures 
dropping to about 10E12 degrees, electromagnetism became 
effective, leptons acquired mass, and the atomic mass 
formations of the Hadron era began [2]. Since Fig. 1 now has 
definition, we can calculate our effective expansion starting 
point from: 2

0Bk T mc= , which for neutron quark 

confinement yields: 0T = 10.9E12 deg K. We’ll use (27) to 

calculate 0gM .Let S  = sec./year = 3.15E7.  

Presently, η  = 4E8 photons/m3 [2]. Then, in MKS values: 
 

0gM  = [(15.75E9)S]
2
(4E8)(1.38E-23)(10.9E12)(4π/3) * 

(3.3E8)(3E8)S = 1.942 E59 kg. 
 
Independent of K, the gM effective radius of influence is 

given by: 
 

3 2 2 2(4 / 3) [(4 )( / ) ]ME M M Mx x x dxπ π= ∫ L , 

 
where the right hand parentheses are surface area times the 
TRF . So 2 1/3(3 )ME Mx x= L . This integral defines the 

relation between MEr x= of gM and 1, MTRF r x= = of 0gM , 

so the ratio between our model’s inline lineal parameters is:  
 

2 1/3 2 2 1/3
0/ / (3 ) / (3 / )ME M g g M M Mx x M M x x x= = =L L = 6.75E-17. 

 
So: gM  = 1.31E43 kg.  

The now specific pr = 0/ 4h m cπ = 1.05E-16 meters, with 

0m  = proton mass, the effective value for an atomic mass. So 

from (25): G  = 2(3 8) /E (1.05E-16 * 1.31E43) = 6.54E-11 

m3/kg s2, compared to the empirical value 6.67E-11 m3/kg 
s2. 

Reasonable values have been assigned to all parameters. 
Nevertheless, the lack of generally accepted precision 
regarding these parameters prevents definitive precision in our 
final result. In particular, the important Hubble Constant has 

measured values from 2001 through 2013 of 71.1 +/- 1.9 
(km/sec)/Mpc. Regardless, these calculations remain a 
significant indication of the validity of the LE analysis. 

Additional comparisons are: 
• The radius of the universe is estimated to be 1.8E10 Light 

years. Mx above = 3.3E8 LY. 

• Its age is estimated as = 13.7E9 years. Our 1t H −= = 
15.75E9 years. 

• Its total visible mass is 6E51 kg (+ ten times more as 
"dark matter”?). 

• gM
and 0gM

 = 1.3E43 kg and 1.9E59 kg respectively 
• Atomic diameters are about 1E-8 cm, 2rp = 3.9E-11 cm 

for an electron. 
• Nucleus diameters are 1E-13 to 1E-12 cm, 2rp = 2.1E-14 

cm for proton or neutron.  
From (26), the energy of grid modification is 

3
0(4 / 3)( ')g Bk T xε η π= = 7.7E72 joules for the expansion 

to Mx or the grid compression energy in the K = 0 balance. 
Both the standard GR view and the LE view agree on the 

static nature of the gravitational field after its formation. But 
in the LE analysis, due to the dynamic of field formation as 
having its source in the summed centrifugal forces of its 
particle content of mass, we are led to the summation:  

 
2 2/ /pMc r mc r= Σ

 
 
over all particles. At the macro level, M equals the total mass 
and pr effectively equals that of the proton. But at the single 

particle level, m  is actual and 0/ 4pr h m cπ=
 

for the 

specific particle of mass. So electron to proton gravitational 

fields would be of ratio 2( / )e pm m not ( / )e pm m . This 

provides a definitive means of proof of the LE analysis. 
Our field equation is applicable along a radius emanating 

from its center of gravitational mass, effectively beginning at 
its edge + L. The particle’s formational radius is pr . As 

measured from its classical radius, that particle’s potential 
would be at 10% of its (2 pr ) reference value at about

(2 10)f px r= + . This value is approximately the Compton 

wavelength 0( / )h m c , in agreement with [3]. For fermions, 
both electromagnetic and Pauli exclusion forces are typically 
present. So absolute electron gravitational measurement is 
difficult but, at particle level, an electron vs. proton 
comparative experiment is believed to be feasible. 

In considering whether pr dependence on atomic 

composition violates Equivalence Principles, we must 
distinguish between types of processes we are considering. 
The acceleration of a test mass (m) toward Earth (M) is 
defined by (24), and the force of attraction between the test 
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mass and Earth is m times (24) if we stipulate for both 
statements that M >> m to the degree that m does not 
perceptively modify the gravitational metric potential between 
them. This force has been said to show a greater degree of 
attraction if the test mass baryon to total mass ratio is higher 
[4], but its evidence of this has seemingly been contradicted in 
other experiments [5]. But note that the pr dependence of (24) 

is that of gravitational source M alone and so does not alter the 
free fall acceleration independence from test mass m, or the 
inverse square gravitational field relation.  

The definition of terms in F = ma differ according to 
process. A specific applied force (F) applied to an inertial test 
mass defines a resulting acceleration (a). On the other hand, 
an existing gravitational acceleration defined by (24) applied 
to a gravitational test mass defines an equivalent force (F). 
But without the M>>m stipulation, this latter equivalent force 
is smaller due to the effective gravitational mass being less 
than its inertial value. In this case, a greater baryon to total 
mass ratio would decrease this difference and might be 
interpreted as a “new force addition” [6]. The fact is that the 
electron contribution to the gravitational attractive force of m 
is very small, on the order of 2( / )e pm m  versus unity, and 

therefore difficult to determine in atomic masses. 

B. Variability and Dependencies 
We first review the essential points of GR’s gravitational 

field derivation. We relate surface integrals of field to volume 
integrals of source. In Electrostatics: 

 

4  d
S V

da vπ ρ• =∫ ∫E n 
 

 
where n  is the volume’s surface normal. By analogy in GR: 
 

4  dmS V
da G vπ ρ• = −∫ ∫g n 

 
 

where g = 2 2'/d x dt  
In contrast to the GR K>0 case, why the gravitational field 

is created is not discernable through this equation, and what 
follows are only changes in representation. Using the 
divergence theorem:  

 

 d
S V

da v• = ∇ •∫ ∫g n g 
 

 
So: 

(  )d 0mV
vπ ρ∇ • =∫ g  + 4 G . 

 
and: 

 mπ ρ∇ • g = - 4 G . 
 
But g is a conserved field so with Φ  as its scalar potential, 
 

 = −∇Φg and ( ) 4 mGπ ρ∇ • −∇Φ = −  

or:  
2 4 mGπ ρ∇ Φ =  . 

 
Through analogy, with the metric as potential, we use 

substitutions:  
 

2( )abR∇ Φ →  and (4 8 )ab
mG GTπ ρ π→  

 
and to maintain conservation we add the additional term to  
 

abR  : 8 (1/ 2)ab
ab abGT R g Rπ = − . 

 
This metric curvature is generally “read” with the 

substitution:  
 

( )a
tt∇ → Γ  e.g. a

tt ttg g= Γ  . 
 
As regards field creation, the LE analysis begins at a 

fundamental level in describing a discernable compression of 
metric by means of the intrinsic momentum mc  and suggests 
dependencies beyond knowing through only the Stress 
Momentum Tensor’s simple declaration of the existence of 
momentum transfer. For example: 
(1) Particle Constituency pr variability. Mass/energy ratio in 

stars also becomes a factor -- With  
 

1 2M M M= +  and 2
1 ( / ) , 1M c Vρ σ= =

2 ( ) , 1/ 2mM Vρ σ= = , 
 

We can derive a composite gravitation. Here there is an 
implied view of the photon as being of κ coincident with its 
E/M wave of χ. 
(2) κ Overlay Field. Mass to Photon generation within stars 

represents continual κtoχ momentum transfer. If the 
intrinsic reality extends beyond the particle itself, a 
concept never proven but suggested by Quantum 
Entanglement, Bernoulli’s Theorem would suggest the 
necessity of balance to this κ momentum depletion (with
TRF ). Consider a solid angle of a steradian with origin 
at a star’s center. With Sη  equal to the number of photons 
per second passing through that angle beyond the star’s 
outermost photon generational region, the energy flow in 
χ  is S Shf η , and with /t r c= , the balancing κ  
potential would be: 

 

2 2( / )( / )S Shf r c rη− L = 2( / )S Sh f rcη− L , 
 
an additive potential to that driving the gravitation of (24). 
Now:  = −∇Φg  so, per unittest mass:  
 

Δg = 2 2( / )S Sh f r cη− L  
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which is in the direction consistent with the star luminosity to 
gravitational field strength correlation which indicates a 
stronger field than mass equivalency alone indicates [7]. 

C. Length Equivalence Process Screens 

The length equivalent process of E xL L→  requires that a 
quantum energy packet defines a corresponding quantum 
length 0x  (Subscript zero denotes quantum values in this 
section). A process quantum 

 

0/hc ε 0(2 / )EL xπ σ= =  
 

has what could be called a screen of ( 2 /π σ ) defining the 
energy length to spatial length transformation (or vice versa). 

The process rate defines 2 dimensional screens. For cosmic 
expansion/compression: 

For 0 :K > (15) is:  
 

[ '/ ] [(2 / )( ')][( / ) / ]dx dt xx d dt hcπ σ ε= −  
 
energy loss --> x’ expansion  
For 0K < : (22) is:  
 

2[ '/ ] [(2 / )( ) ][( / ) / ]dx dt d dt hcπ σ ε= L  
 
energy loss--> x’ compression 

Per unit time, the process rate has these corresponding 
brackets: 

 
[Expanded or compressed lengths] <--- [screen] <-- [energy 
quanta].  
 

So: A volume of "N" photons of inverse wavelength 1
0L− , over 

unit time, becomes a length modification of:  
 

1' [(2 / ) ][ ]s Ex a NLπ σ −Δ =        (28) 
 

with sa ( '), 0,xx K= > or 2 , 0sa K= <L . Process rate 

translates to force. The difference in sa  shows why 
gravitational forces are generally significantly less than that of 
the expansion forces evident in the universe and also why that 
expansionary rate increases as the scale factor increases, given 
a constant mc  transfer rate. 

D. Quantum Electrodynamics (QED) 
Each fundamental type of Length Equivalent process 

defines its own applicable screen. In QED, electric potential 
defines the exchange coupling factor which, with sa , reflects 
the strength of a given interaction. Its fundamental Fine 
Structure Constant (γ ) is defined over a catalyst length of x
through which the repulsion energy between two electrons is 
assumed to occur by means of an exchange of a virtual photon 

which we here relate to that x  length through the applicable 
screen. In MKS units, with the usual 1

0 0(4 )C kπ −= , an 

electron creates a potential gradient 0 /C e x  in which " e ” is 
an electron charge. The mutual electric potential energy of this 
electron and a second a distance x  apart is: 2

0 /C e xε = . 
Then 

 
2

0( 1) : 2 ( / ) ( ) / ( / )x EL L x hc hc C e xγ σ π γ ε γ= = = =  
 
and so: 

2
02 /C e hcγ π= , 

 

as defined, and equal to the pure number (137)-1. Note that the 
so called virtual photon is equivalent to the metric 
compression 'xΔ as seen in the following: 
 

) / (2 )hc xε γ π= (        (29) 
 
and so: 

2( / 2 ) 'hc xε γ πΔ = ΔL . 
 

The general and specific views embodied in the PLE here 
are: 
 
[Intrinsic prop.]<----> [Energy field] <----> [Length Comp.] 
[Charge] <---------> [Electric Potential] <---> [Photon Equiv.] 
 

But note that particle/antiparticle annihilation would be 
expected to result in a residual spin 0 metric potential energy 
well leading to subsequent particle formation (or its energy 
equivalent). 

Rearranging (29) to match the L.E. process quantum form 
above: 

 

0 0/ (2 / )hc xε π γ= , 
 
an invariant based relation for this QED process type. And in a 
parallel to (28):  
 

2' [(2 / ) ][ ]x hcπ γ εΔ = Δ /L  
 
As seen in Section III, parameter correlations of (6) still 

hold although often centered on changes in representation and 
its interpretation rather than energy driven changes in form. 
Our final example of length consistency across disciplines is 
of this former type which is found within the spontaneous 
symmetry search that seeks the true minimum potential energy 
(Φ) of a system. With φ  as the quantum field, we analyze 

/ φ∂Φ ∂ = 0  points to find these minimums since expansions 
will converge there. In order to determine whether the fields 
found have mass, the field terms are often compared to the 
Klein-Gordon (KG) equation. This equation also derives from 
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(1) and the Wave Equation transforms (12), as did the Dirac, 
and thereby brings in the parameter correlations of (6). 

Per unit volume, the following terms are in 2−L  
dimensions: 
The KG equation is:  
 

2
2 2 2 2 2

2(1/ ) / )c m c
t
φ φ φ∂

= ∇ − (
∂

 

 
 with Lagrangian spatial density (summed over index j): 
 

2 2 2 2 2 2(1/ ) (1/ 2)( ) (1/ 2)( / )
j

c L m c
x
φ φ∂

= −
∂

 . 

 
So if L, or its series expansion, contains the term 

2 2(1/ 2)μ φ  (in which μ  is an inverse length), comparison 
with the KG equation indicates that it describes a mass density 
of /m cμ=  . But note that this also comes directly from 
the LE parameter correlation of (7) for this particular process 
type: / (2 / )h mc π μ=  per unit volume. 
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