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 
Abstract—Model updating method has received increasing 

attention in damage detection structures based on measured modal 
parameters. Therefore, a probability-based damage detection 
(PBDD) procedure based on a model updating procedure is 
presented in this paper, in which a one-stage model-based damage 
identification technique based on the dynamic features of a structure 
is investigated. The presented framework uses a finite element 
updating method with a Monte Carlo simulation that considers the 
uncertainty caused by measurement noise. Enhanced ideal gas 
molecular movement (EIGMM) is used as the main algorithm for 
model updating. Ideal gas molecular movement (IGMM) is a multi-
agent algorithm based on the ideal gas molecular movement. Ideal 
gas molecules disperse rapidly in different directions and cover all 
the space inside. This is embedded in the high speed of molecules, 
collisions between them and with the surrounding barriers. In IGMM 
algorithm to accomplish the optimal solutions, the initial population 
of gas molecules is randomly generated and the governing equations 
related to the velocity of gas molecules and collisions between those 
are utilized. In this paper, an enhanced version of IGMM, which 
removes unchanged variables after specified iterations, is developed. 
The proposed method is implemented on two numerical examples in 
the field of structural damage detection. The results show that the 
proposed method can perform well and competitive in PBDD of 
structures. 
 

Keywords—Enhanced ideal gas molecular movement, ideal gas 
molecular movement, model updating method, probability-based 
damage detection, uncertainty quantification. 

I. INTRODUCTION 

TRUCTURAL systems in civil engineering are subjected 
to deterioration and damage during their service life. 

Damage is characterized as a weakening of the structure 
which may cause undesirable displacements, stresses, strain 
or vibrations to the structure leading to sudden and disastrous 
results. Damage can severely affect the safety and 
functionality of the structure and identification of it at early 
stage can increase safety and extend its serviceability. Thus, 
identification of damage is one of the most important factors 
in maintaining the safety and integrity of structures [1]. 

The structural damages are usually detected by the modal 
parameters of the structure [2], because not only are modal 
parameters (modal frequencies and mode shapes) functions of 
the physical parameters (mass and stiffness) and the existence 
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of damage may lead to changes in the modal properties of the 
structure, but also modal parameters can be measured 
conveniently and accurately. In most applications of model 
updating on damage detection, the experimentally measured 
modal parameters are considered to be exact and deterministic 
[3]. In reality, however, there are always uncertainties in the 
measured modal parameters, which may lead to unreliable 
and false prediction of structural damage, and, as a result, it is 
necessary to consider the uncertainties in the damage 
detection of structures [4], [5]. In general, there are two 
sources for the uncertainties in measured modal parameters. 
First, uncertainties are introduced in modal parameters by the 
inherent variability or randomness in structural parameters 
(physical material properties, geometric parameters), which 
cannot be reduced or eliminated by the knowledge or 
techniques available [6]. 

Second, uncertainties in modal parameters arise from the 
measurement noise and modal identification techniques. 
These kinds of uncertainties in modal parameters can be 
hopefully reduced, not certainly eliminated though, even by 
more precise measurement instrumentation and more 
appropriate modal identification techniques. In the case of 
uncertain measured modal parameters, the probabilistic 
approaches are frequently used for incorporating structural 
uncertainties and measurement noise in the damage detection 
by generally describing the uncertainties as random variables 
characterized by mean values and standard deviations [7]. 

The objective of this paper is to study the influence of 
uncertainty on damage identification using a combination of 
frequency and mode shape as the input variables. To consider 
the uncertainties in the measurement data, an approach 
introduced by Wang et al. [4] is applied. Using this method, 
the uncertainties in the measured modal data are assumed as 
independent normally distributed random variables with zero 
means and particular covariance. The statistics (mean value 
and standard deviation) of the elemental stiffness parameter 
(ESP) will be calculated by the Monte Carlo simulation. 

Recently, an efficient and simple continuous optimization 
algorithm, so-called IGMM, for optimization problems, is 
developed by the present authors [8], [9]. In this study, the 
performance of IGMM has been enhanced by removing 
unchanged variables after specified iterations. This feature 
makes the approach more versatile for a wider range of 
practical applications, while preserving the attractive 
characteristics of the basic IGMM. 
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A numerical steel frame model and 31-bar planar truss are 
used to demonstrate the robustness of the developed 
procedure. Some parametric calculations are also performed 
to investigate the influences of using different noise levels 
and damage severities on the damage identification results. In 
this study, only random errors are considered. The systematic 
errors which may also exist, especially in the FE model is not 
considered in the present study. Therefore, the main 
contribution of this study is to introduce an effective approach 
based on modal updating method and EIGMM to implement a 
damage detection procedure on structure considering 
uncertainty. 

The article is structured as follows. Section II presents the 
statement of damage detection problem for a truss structure. 
Probability based model updating is described in Section III. 
The fundamental basis of IGMM and proposed enhanced 
version will be described in Section IV and V. Section VI 
presents the main steps for the proposed damage detection 
method. In Section VII, the merits of the algorithms are 
assessed by solving the Damage Detection (DD) problems. 
Some concluding remarks are provided in Section VIII. 

II. MULTIPLE DAMAGE LOCATION ASSURANCE CRITERION 

(MDLAC) 

Structural DD techniques are generally classified into two 
main categories. They include the dynamic and static 
identification methods requiring the dynamic and static test 
data, respectively. Furthermore, the dynamic identification 
methods have shown their advantages in comparison with the 
static ones. Among the dynamic data, the modal analysis 
information of a structure such as the natural frequencies and 
mode shapes were widely used for DD [10]-[12]. 
Determination of the level of correlation between the 
measured and predicted natural frequencies or mode shapes 
can provide a simple tool for identifying the location and 
severity of structural damages. When the natural frequencies 
are employed to identify the damage, two parameter vectors 
may be determined. One parameter vector consists of the 

ratios of the first fn  natural frequency changes F  due to 

structural damage, i.e.: 
 

h d

h

F F
F

F


   (1) 

 

where hF  and dF  denote the natural frequency vectors of 

the healthy and damaged structure, respectively. Another 
parameter vector can be similarly defined as: 

 

   h

h

F F ESV
F ESV

F



  (2) 

 

where  F ESV  is a natural frequency vector that can be 

predicted from an analytic model and elemental stiffness 

vector (ESVs)  1,..., ,...,T
i nESV E E E  which represents 

a damage variable vector containing the elasticity modulus of 
structural elements ( , 1,..., )iE i n  of all n  structural 

elements. 
Given the pair of parameter vectors, one can estimate the 

level of correlation in several ways. An efficient way is to 
evaluate a correlation index called the MDLAC, which is 
expressed in the following form [12]: 

 

 
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The MDLAC compares two frequency change vectors, one 

of which is obtained from the examined structure and the 
other from an analytical model of the structure. The MDLAC  
varies from a minimum value 0 to a maximum value 1. It will 
be maximal when the vector of analytical frequencies equates 
to the frequency vector of damaged structure, i.e.: 

 

  dF ESV F (4) 

III. MONTE CARLO SIMULATION FOR PBDD 

Since that uncertainties (noises) inevitably exist in the 
measured vibration data, the updated ESV ( E ) is subjected 
to uncertainty as well. As mentioned before, the uncertainties 
in the measured modal data are assumed as independent 
normally distributed random variables with zero means and 
particular covariance. Accordingly, the eigenvalues and mode 
shapes can be expressed as [4]: 

 

,0 (1 )E E
i i iX   , 

1,2,..., mi n   

 

(5) 

,0 (1 )E E
i i iX   , 

1,2,..., mi n   
(6) 

 

where 0  represents the true values, iX   and iX   indicate 

relative random noises in the measured frequencies and mode 
shapes, respectively. The mean value of vector X  is zero 
and the standard deviation indicates the noise level. 

The statistics (mean value and standard deviation) of E
can then be calculated by the perturbation method [13] or 
Monte Carlo simulation. The second method can also give 
statistical samples of the updated ESVs, from which the 
statistical distribution can be obtained. Studies have 
demonstrated that the statistical distribution of the ESVs in 
the updated model is also normal [14], verified by the 
goodness-of-fit test [15]. Again, when the measured modal 
data in both undamaged and damaged states are available and 
the two-step model updating [14] is employed, the statistics of 

ESVs in both states ( hE and dE ) can be respectively 
computed. 
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IV. IDEAL GAS MOLECULAR MOVEMENT 

The behavior of gas molecules in an isolated medium 
shows that they disperse rapidly in different directions and 
cover all the space inside. The essence of such manner lies on 
two factors; the high speed of ideal gas molecules and their 
collisions. Recently the conventional IGMM was introduced 
by the authors and its application in solving engineering 
problems was assessed then [8], [9]. The algorithm utilizes 
the governing equations for speed and collision of molecules 
in order to determine their new location. The speed of 
molecules thus is proportional to the temperature and 
inversely proportional to its mass. Besides they collide with 
each other with a certain probability, increasing gradually 
with their motions. Ideal gas molecules have fully elastically 
collisions and elastic collision governing equations can be 
used to determine the new position of gas molecules after 
collision [9]. The different steps of the IGMM algorithm can 
be summarized as follows [9]: 
Step1. Generate the initial population of gas molecules with a 

uniform distribution from the allowable range of 
design variables. 

Step2. Evaluate each molecule and assign them a mass 
according to its fitness using the following relation: 

 

 
2

1 1

( ) ( ( ))
im

fit i fit i



  

(7) 

 

where im  shows the mass of the i -th molecule and ( )fit i  

reflects the fitness of the i -th molecule with regard to the 
objective function for the problem. 
Step3. Pairing molecules without repetition. In this stage, 

based on the governing equations of the ideal gases 
assumed that there are no simultaneous molecular 
collisions. 

Step4. Determine collision probability (CP) based on (8): 
 

 1 exp( 0.63 )CP iter      (8)

 
Step5. Generate a random number between 0 and 1 and 

compare it with CP to determine whether collision 
occurs or not. According to this phenomenon, the 
following steps will proceed to calculate the new 
velocity and position of each molecule. 

Step5.1 In the collision phase, new post-collision velocities 
are obtained using (9) and (10). In using these 
equations, the molecule with a larger mass is assumed 
stationary and the lighter molecule moves according 
to the hypotheses about the elastic collision between 
gas molecules. The initial velocity of the moving 

molecule is obtained using relation x t    (for 

1t  ) by subtracting the positions of the two 
molecules. 

 

 1 2
1 1

1 2

( )
( )d dm Em

m m
   


  (9) 

1
2 1

1 2

(1 )
( )d dE m

m m
   


 (10) 

 

where, d  indicates the dimension of the optimization 
problem. As stated, in the event of elastic collisions parameter 
E  is equal to 1, but in (9) and (10) this parameter is defined 
as a variable to guarantee the convergence in the algorithm. 
Therefore, in the first few steps of the optimization process, 
this variable has a value near 1 but with an increase in the 
number of optimization cycles its value declines dynamically 
based on the following linear equation. 
 

1 ( )
max

iter
E

it
    (11) 

 

where iter  and max it  indicate current and the maximum 
iterations of optimization procedure, respectively. Having 
computed the new velocity of each molecule, its new position 
can be computed using (12) and (13): 
 

 1 2 1( ) ( )d d dx x rand      

 

(12) 
 

2 2 2( ) ( )d d dx x rand      (13) 

 

where 2
dx  shows the position of a stationary molecule before 

impact, and accordingly, 1( )dx   and 2( )dx   indicate the new 

positions after the impact, respectively. rand  represents a 
random normal distributed value in the range [0,1]. 

Step5.2 In a no collision phase, the new velocity of the i -th 
molecule is determined using (14). 

 

1.7d i
i

i

kT

m
    (14) 

 
The Boltzmann constant value (k) in (14) is assumed 

opposite to the number of molecules in the optimization 
process. The velocity of each molecule accords with the mass 
and temperature of that molecule. Hence, in this phase it is 
necessary to calculate the new temperature of each molecule. 
To this end, a subtractive equation is defined as follows. The 
initial temperature is set to 1000 in the original IGMM. 

 

1/i i iT T m    (15) 

 
Finally, after determining the new velocity of each 

molecule using (14), the new position of each molecule is 
obtained and given as: 

 

2( ) ( )d d d
i ix x rand      (16) 
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Step6. The convergence criterion will be checked and if the 
algorithm does not converge, steps 2 to 4 will be 
repeated. 

V. ENHANCED IDEAL GAS MOLECULAR MOVEMENT 

In this paper, an enhanced version of IGMM is proposed. 
In some optimization problems, the number of variables that 
must be considered is very large. For example, in an 
optimization based DD problem, damaged elements and 
damage extents are searched through an optimization process 
until the response of hypothesized damaged structure equals 
those of a real damaged structure. When a real structure is a 
large-scale structure, the number of elements (variables) will 
increase [16]. Hence, when the optimization method tries to 
minimize the objective function, it must handle a huge bunch 
of variables which decreases the convergence speed of the 
algorithm. Therefore, a method is presented in this paper to 
resolve this problem. In the DD problem, in first stage when 
the initial population is generated, each molecule has a 
velocity vector that represents its speed in an n-dimensional 
space. Each variable of this vector represents the elasticity 
modulus of the structural elements. In the proposed method, 
first, the number of variables in each stage of the IGMM 
algorithm is considered as the total number of elements. 
Then, all the intact elements are eliminated in each stage and 
the algorithm converges to the exact locations and severity of 

damages. Zero values for the variables signifies that the i -th 
element of the structure is intact and a non-zero value refers 
to the damaged element. If the variables with near zero values 

( 0.05iSRF  ) do not alter for 10 iterations, this variable 

will be eliminated. 
As far as the objective function is concerned, it is defined 

here as an unconstrained optimization problem as: 
 

 1 2 3

2

min max

: , , ,....,

: ( ) 1

:

i nFind ESV E E E E

Minimize F ESV MDLAC

Where E E E



 

 

  (17) 

 

where ( )F ESV  is that minimization problem and minE  and 

maxE  are the lower and upper bounds of the damage vector, 

respectively. The bounds are required to meet the physical 
behavior of the structure. By using an optimization algorithm 
and solving (17), the damage variables are determined. 

VI. MAIN STEPS FOR PROPOSED DD METHOD 

The main steps for the proposed DD method using the 
EIGMM algorithm are summarized as follows: 
a) Setting the initial number of design variables equal to the 

total number of elements. 
b) Employing the EIGMM to find the optimal solution. 

c) Finding i  as 0iX   for all components of the damage 

vector and determining the total number of intact 
elements. 

d) Removing the intact elements from the damage vector 
and thus reducing the number of variables from the 
optimization problem. 

e) Performing EIGMM once again based on the new 
optimization size from d). 

f) Checking the convergence by computing 1 MDLAC
from (17). If two response vectors are almost indifferent, 
save the results and terminate the optimization process, 
otherwise, go to the step c). 

VII. NUMERICAL RESULTS OF DD 

In this study, two structures are selected as the numerical 
examples to reveal the robustness and the degree of accuracy 
of the proposed DD method. These structures are: 
1) 31-Bar planer truss, and 
2) Five-story and four-span frame. 

The mass matrix is assumed to be constant and damage in 
the structure is simulated as a relative reduction in the 
elasticity modulus of an individual element. The stiffness 
reduction ratio (SRF) is defined as: 

 

, 1,...,i
i

E E
SRF i n

E


   (18) 

 

where E  is the original modulus of elasticity and iE  is the 

final modulus of elasticity of the i -th element. For the 
optimization process, the number of molecules for EIGMM 
was fixed to 50 for each run along a maximum of 200 
iterations. 

A. Thirty One-Bar Planar Truss 

The 31-bar planar truss shown in Fig. 1 is modeled using 
the conventional finite element method without internal nodes 
leading to 25 degrees of freedom [12]. In this example, the 
first five vibrating modes are utilized for DD. The material 
density and elasticity modulus are 2770 kg/m and 70 GPa, 
respectively. Two different damage scenarios given in Table I 
are induced in the structure and the proposed method is tested 
for each case. 

In this section, the influence of the noise in the accuracy of 
structural DD based on modal data is investigated. Generally, 
the uncertainties of the measured mode shapes are larger than 
those of the frequencies in the modal testing. In this study, the 
uncertain frequencies are considered as the normal distributed 
random variables in (5). The mean values of the relative 

random noises iX   are zeros, and standard deviations   

indicate the noise level. The mean values and standard 
deviations of SRFs are calculated from 500 samples, based on 
the Monte Carlo simulation framework. 

Figs. 2 and 3 show the mean value and standard deviation 
of SRFs for damage scenario 1, respectively. The noise level 
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is set as 1%  . Figs. 4 and 5 show the statistics of SRFs 

for damage scenario 2. 
 

 

Fig. 1 The 31-bar planar truss 
 

TABLE I 
DIFFERENT DAMAGE SCENARIOS FOR PLANAR TRUSS 

Case 1 Case 2 

Element Number SRF 
Element 
Number 

SRF 

11 0.25 1 0.30 

25 0.15 2 0.20 

 

 

Fig. 2 Mean value of SRF for damage scenario 1 ( 1%  ) 

 
In both damage scenarios, the mean values of SRFs using 

the proposed method perform accurate results. Moreover, the 
standard deviations of SRFs using the MDLAC index are 
small, denoting that the damaged elements can be detected 
reliably. On the contrary, if the standard deviations of SRFs 
being significant it will show that the damage cannot be 
identified reliably. 

For a larger noise level, that is 10%  , the statistics of 

SRF for damage scenario 2 are drawn in Figs. 6 and 7. In 
comparison with the lower uncertainty level, the proposed 
method having larger errors, but can still acquire accurate 
mean values and small standard deviations of the SRFs. All 
these figures demonstrate that the one stage method for 
damage identification using EIGMM algorithm is robust to 
the measurement noise. Also, these figures represent that the 
proposed method is very efficient for multiple structural 
damages; even though the damage severity is low. 
 

 

Fig. 3 Standard deviation of SRF for damage scenario 1 ( 1%  ) 

 

 

Fig. 4 Mean value of SRF for damage scenario 2 ( 1%  ) 

 

 

Fig. 5 Standard deviation of SRF for damage scenario 2 ( 1%  ) 
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Fig. 6 Mean value of SRF for damage scenario 2 ( 10%  ) 

 

 

Fig. 7 Standard deviation of SRF for damage scenario 2( 10%  ) 

B. Five-Story and Four-Span Frame 

The second example is a five-story and four-span frame, as 
illustrated in Fig. 8 [17]. The sections used for the beams and 
columns are (W12×87) and (W14×145), respectively. The 
material density is 7780 kg/m3 and the modulus of elasticity 
is 210 GPa. Different damage scenarios are considered, as 
shown in Table II. Figs. 9 and 10 show the performance of the 
proposed method on this regard. 
 

TABLE II 
DIFFERENT DAMAGE SCENARIOS FOR PLANAR FRAME 

Case 1 Case 2 

Element Number SRF Element Number SRF 

10 0.25 14 0.35 

30 0.20 28 0.30 

40 0.25 38 0.35 

 
The results demonstrated the fact that EIGMM could 

effectively find the correct locations and severity of the 
damages. 

For a larger noise level, that is 10%  , the statistics of 

SRF for damage scenario 2 are drawn in Figs. 11 and 12. 
 

 

Fig. 8 A four-span five-story frame 
 

 
Fig. 9 Mean value of SRF for damage scenario 2 ( 1%  ) 

 

 

Fig. 10 Standard deviation of SRF for damage scenario 2                    

( 1%  ) 
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Fig. 11 Mean value of SRF for damage scenario 2 ( 10%  ) 

 

 

Fig. 12 Standard deviation of SRF for damage scenario 2                    
( 10%  ) 

 
The numerical results reveal the high performance of the 

proposed method for an exact detecting of the location and 
severity of various damage scenarios. The PBDD methods 
give the higher SRF values at the damaged elements and give 
lower SRF values at the undamaged elements. 

VIII. CONCLUDING REMARKS 

In this paper, a novel method was developed for DD at a 
solely one-stage procedure, using the most recently defined 
optimization algorithm, introduced by the authors. In real 
problems, there are always uncertainties in the measured 
modal parameters, which may lead to unreliable and false 
prediction of structural damage. Hence, uncertainties are also 
considered in the DD process. For this purpose, an IGMM 
algorithm is modified to improve its performance in handling 
the problem with a large array of variables. The numerical 
results reveal the high performance of the proposed method 
for an exact detection of the location and severity of various 
damage scenarios. It shows that the proposed PBDD 
procedure can obtain accurate mean values and small standard 
deviations of the ESPs and can provide robust damage 
identification results. 
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