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Abstract—In this paper, a method for deriving a group priority 
vector in the Fuzzy Analytic Network Process (FANP) is proposed. 
By introducing importance weights of multiple decision makers 
(DMs) based on their experiences, the Fuzzy Preferences 
Programming Method (FPP) is extended to a fuzzy group 
prioritization problem in the FANP. Additionally, fuzzy pair-wise 
comparison judgments are presented rather than exact numerical 
assessments in order to model the uncertainty and imprecision in the 
DMs’ judgments and then transform the fuzzy group prioritization 
problem into a fuzzy non-linear programming optimization problem 
which maximize the group satisfaction. Unlike the known fuzzy 
prioritization techniques, the new method proposed in this paper can 
easily derive crisp weights from incomplete and inconsistency fuzzy 
set of comparison judgments and does not require additional 
aggregation producers. Detailed numerical examples are used to 
illustrate the implement of our approach and compare with the latest 
fuzzy prioritization method. 
 
Keywords—Fuzzy Analytic Network Process (FANP); Fuzzy 

Non-linear Programming; Fuzzy Preferences Programming Method 
(FPP); Multiple Criteria Decision-Making (MCDM); Triangular 
Fuzzy Number. 

I. INTRODUCTION 

HE Analytic Hierarchy Process AHP [1], is used widely 
in Multiple Criteria Decision-Making (MCDM) 

environment for dealing with complex decision making 
problems. It is especially appropriate for complex decision 
problems which involve the evaluation of decision elements 
(criteria, sub-criteria, or alternatives) which are difficult to 
measure. The most significant phase of the AHP is modeling 
problems as a hierarchy containing a decision goal and 
decision elements. It assumes that each element in the 
hierarchy is considered to be independent of all the others [1]. 
However, many decision making problems cannot be 
structured as a linear top-to-bottom form of hierarchy nor do 
they involve intersection and dependency of elements [2]. 

In order to overcome these limitations, the Analytic 
Network Process (ANP) was proposed by Saaty in 1996. The 
ANP deals with the decision making problems without 
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assuming independencies among decision elements which 
might be useful in many real-world cases. To demonstrate this, 
consider a simple decision making problem regarding buying 
a car. Both AHP and ANP provide a helpful process for a 
decision maker (DM) for buying the car from different 
options. Assume that the DM wants to make the final decision 
based on three decision elements: comfort, purchase price, and 
fuel economy. The AHP assumes that the three elements are 
independent of one another, while the ANP allows 
consideration of the interdependence of comfort, purchase 
price, and fuel economy. So, when the DM desires to pay 
more for the car in order to obtain more comfort or fuel 
economy, or pay less to get less comfort or fuel economy, the 
ANP could allow that by taking into account intersections and 
dependencies among the decision elements.  

The ANP uses a network without the need to specify levels 
as in the hierarchy. It is also called a super-matrix technique 
and it is a generalization of the AHP where the hierarchies are 
replaced by networks enabling the modeling of feedback 
loops. It uses a network without a need to specify levels and 
the levels are replaced by clusters. Paired comparison 
judgments in the ANP are similar to the AHP, and it uses 
some fixed preference scales which allows the DMs to identify 
how many times a decision element dominates another one. In 
order to construct Paired comparison judgments, the DM is 
asked to compare pairwisely any two decision elements and 
provide a numerical / linguistic judgment for their relative 
importance. Thus, the DM gives a set of ratio judgments to 
indicate the strength of his/her preferences by using some 
fixed preference scales. Then, the weights of criteria and the 
score of alternatives are derived by using DMs’ assessments 
for decision elements.  

However, in many practical cases the DMs’ judgments 
might be uncertain, due to the subjective nature of DM’s 
judgments, lack of data or incomplete information. The 
traditional ANP may not reflect human preferences properly 
when the DMs (experts, judges...) are unable to provide crisp 
values for comparison ratios. Suppose that the comparison 
ratios are expressed as fuzzy numbers in order to deal with the 
subjective uncertainty.  There have been many attempts to 
modify the ANP in order to increase the capabilities of the 
ANP for deriving priority vectors  (weights) from uncertain 
judgments by introducing fuzzy numbers in the pair-wise 
comparison of the ANP by converting linguistic judgments 
into fuzzy numbers [3]- [8].  
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The ANP can be used for both individuals and group 
decision making problem [9]. Furthermore, there have been 
attempts to integrate the fuzzy set theory and the group ANP 
for expressing the uncertain preferences in fuzzy group 
decision making problem [10] - [12]. 

Several fuzzy prioritization methods in the Fuzzy Analytic 
Network Process (FANP) have been developed for deriving 
the priority vectors (weights): Fuzzy Preference Programming 
(FPP) [3], the logarithmic least square method [4], the 
Chang’s extent analysis method [5], [6], and a fuzzy Eigen-
value method [7], [8]. However, the previous prioritization 
methods provide a fuzzy priority vector or multiple crisp 
priority vectors, so they cannot directly be used in the FANP. 
Therefore,   they require an additional aggregation method or a 
fuzzy ranking method.   Using different ranking methods, for 
converting fuzzy numbers into crisp numbers, might lead to 
different ranking results [13]. Additionally, in the previously 
mentioned methods for solving fuzzy group prioritization 
problems in the FANP, the methods are assumed that all the 
DMs have the same weight of importance and have equal 
experience to assess all decision elements. Nevertheless, in the 
real group decision making problems, sometimes there are 
important experts, such as the executive managers of the 
organization. Also, some experts are more experienced than 
others; therefore the final decision should be influenced by the 
degree of importance of each expert. 

Reference [3] shows that the FPP can be applied for fuzzy 
group prioritization problem in order to derive priorities from 
fuzzy comparison judgments.  In this method all individuals’ 
fuzzy judgments for group decision makers (DMs) combine 
into a linear programming method model by using different 
values of an alpha-cuts concept. However, the model assumes 
that all DMs have the same weight of importance. Besides, the 
FPP needs an additional aggregation procedure to obtain the 
final crisp vector at the different values of alpha-cuts.  

In order to overcome some of the drawbacks of the existing 
fuzzy prioritization methods, a modification of the non-linear 
Fuzzy Preference Programming (FPP) method is proposed by 
introducing importance weights of decision makers (DMs). 
The proposed method has some attractive features. It does not 
require any fuzzy ranking procedure or any aggregation 
procedure. Moreover, it provides a priority vector from an 
incomplete and inconsistent set of fuzzy judgments and can 
easily be modified for handling the fuzzy group prioritization 
problem.   

The organization of this paper is as follows. The next 
section summaries steps of the FANP. Section III discusses 
the version of the FPP method. Section IV presents the new 
modified FPP method, which is further transformed into a 
single non-linear optimization problem. Numerical examples 
are in section V which illustrates the proposed method 
applicability. Finally, the conclusion is in section VI. 

 
 
 

II.  FUZZY ANALYTIC NETWORK PROCESS (FANP) 

In this section the algorithm of FANP, that combines the 
ANP and the FPP, is summarized in steps as follows: 

Step 1: Structuring a network model which includes 
decision elements (alternatives, criteria, sub criteria, clusters, 
and actors).  

Step 2: Identifying dependences among all elements of the 
prior network model. 

Step 3: Establishing pair-wise comparison matrices with 
fuzzy individual/group ratio judgments.  

Step 4: Determining the consistency index.  
Step 5: Applying the FPP method to obtain relative 

importance weights (individual/group priority vectors) from 
each matrix, which should model the uncertain judgments.  

Step 6: Checking the consistency index. If it is acceptable 
(less than 10%), continue to Step 7, otherwise, return to Step 
3. 

Step 7: Forming an un-weighted super-matrix by filling a 
super-matrix with the obtained relative importance weights 
(the priority vector). For more details see Appendix A.  

Step 8: Producing a weighted super-matrix by adjusting the 
un-weighted super-matrix to column stochastic so that the sum 
of the elements in each column is equal to one. 

Step 9: Limiting the weighted super-matrix by raising itself 
to power 1+C  , where C  is an arbitrarily large number, until 
the row elements converge to the same value for each column 
of the matrix. The resulting matrix is called a limiting super-
matrix 

Step 10: Aggregating the weights of criteria and the score 
of alternatives into a final priority vector.  

The estimation of the priority vectors from pair-wise 
comparison judgments matrices is the major phase of the 
FANP. Thus, this paper focuses on the problem of deriving the 
group priority vector (crisp weights of decision elements) 
from fuzzy group comparison judgments. 

III. DERIVING GROUP PRIORITIES FROM UNCERTAIN 

JUDGMENTS  

A. Fuzzy Group Pair-Wise Comparison Judgments 

Consider a group of K  decision makers (

KkDM k ,...,2,1, = ) evaluate n  elements (clusters, criteria, 

sub-criteria, or alternatives).  

Suppose that each DM provides a set }~{ ijk

k
aA = of 

21)/n(nmk −≤  , incomplete fuzzy comparison judgments, 

kknjni ,.,2,1  ,,..3,2  ,1,..,2,1 ==−=  and  ij ≻  represented 

as Triangular Fuzzy Numbers (TFNs) ),,(~
ijkijkijkijk umla = , 

where 
ijkl ,

ijkm and 
ijku  are the lower, mode and upper 

bounds, respectively.  
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Fig. 1 shows the TFN ijkijkijkijk umla ,,(~ = )
 
: 

 
 

Fig. 1 Triangular Fuzzy Number ),,(~
ijkijkijkijk umla =  
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Then, a group prioritization problem is to determine a 

priority vector (weights) T

nwwww ),...,,( 21= from  
k

A , such 

that iw  represents the relative importance weight of n  

elements. 

B. Fuzzy Preferences Programming Method (FPP) 

The FPP method [13] proposed to derive crisp priority 
vectors from fuzzy numbers by applying alpha-cuts (or α -
level sets) before comparisons and hence avoiding the final 
fuzzy scores that other methods obtain.  

The judgments are represented by TFN numbers with 
applying the alpha-cuts which expresses the degree of 
confidence of the DMs in the judgments they make. The 
alpha-cut is used in this method in order to transform the 
initial fuzzy judgments into an interval judgments series. Then 
the fuzzy prioritization problem is transformed into an 
optimization problem that maximizes the DMs’ overall 
satisfaction with the final optimal solution where there are 
missing or inconsistent judgments in the fuzzy pair-wise 
comparison matrices.  

For a given α -level, each fuzzy judgment ijka~  can be 

decomposed into an interval sets )](),([~ αα ijkijkijk ula = , 

where: 

ijkijkijkijk llml +∗−= αα )()( , 

ijkijkijkijk umuu +∗−−= αα )()( .  

 
If the interval pair-wise comparison judgments are 

consistent, the FPP derives a priority vector  
T

nwwww ),...,,( 21= , which satisfies: 

)()( αα ijk

j

i
ijk u

w

w
l ≤≤                                                           (2) 

For inconsistence judgments, the FPP method tries to find 
the crisp priority vector which satisfies: 

0
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                                                          (3) 

where ≤~  implies ‘fuzzy less or equal to’. If m denotes the 
overall number of fuzzy group comparison judgments. Thus, a 
set of m2 fuzzy constraints of the type (3) are obtained.  

The m2 fuzzy constraints in (3) can be represented in a 
matrix form as: 

0
~≤RW                                                                                  (4) 

The q -th fuzzy inequality in (4) can be indicated by

0
~≤qRW , mq 2,...2,1= .  

For a given priority vectorW , the degree of satisfaction of 
this fuzzy inequality is measured by a linear membership 
function as below:  









≥

≤−
=

qq

qq

q

q

qq

dWR

dWR
d

WR

WR

,            0

,  1
)(µ                                       (5) 

where qd is a deviation parameter, specified by the k -th DM, 

denoting the allowed range of approximate satisfaction of the 
soft inequality constraints (3).  

The solution to the prioritization problem by the FPP 
method is based on two assumptions [14]. The first on requires 

the existence of a non-empty fuzzy feasible area P
~

 which is 
defined as an intersection of all fuzzy constraints, described by 
the following membership function: 

 

W)}(R..µW(RW),µ(RMin{µ(W)µ mmP 222211~ ),..=                      (6) 

where the normalization condition, ∑ =
=

n

i
iw

1
1 , is satisfied.  

According to [14], the second assumption identifies a 
selection rule, which determines a priority vector, having the 
highest degree of membership in the aggregated membership 
function as described in (5). Thus, there is a maximizing 

solution 
*

W (a crisp priority vector) that has a maximum 

degree of membership *λ  (the consistency index), in P
~

 , such 
that : 

 

ijkl  ijkm  ijku  

ijka~  

0  

1  
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A new decision variable λ  is introduced which measures 
the maximum degree of membership in the fuzzy feasible area

P
~

. When the interval judgments are consistent, λ  is equal to 
one. For inconsistent judgments the consistency index λ  takes 
a value between one (meaning complete consistent) and zero 
(meaning complete inconsistent) that depends on the degree of 
inconsistency. The above max-min optimization problem is 
transformed into the following:  
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Since the membership functions )( WRqqµ are linear. The 

prioritization problem (8) is a linear program and can be 
represented as:  
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IV. PROPOSED METHOD FOR FUZZY GROUP PRIORITIZATION 

PROBLEM 

A. The Fuzzy Group Pair-Wise Comparison Judgments 

The FPP method presented in the section III has some 
drawbacks. In the first place, it needs a number of α -levels, 
which transfers the fuzzy judgments into interval series, for 
solving the linear programming (9). Thus, the traditional FPP 
method requires an additional aggregation technique to obtain 
the priority vector at different α -levels. Consequently, this 
process is time consuming due to several computation steps 
needed for applying the α -cuts concept. A further limitation 
is that the FPP method does not consider the DMs’ importance 
weights and ignores the DMs’ expertise. In order to overcome 
these limitations, a non-linear model for fuzzy group 
prioritization problem is proposed, which can derives crisp 
priorities from a fuzzy set of judgments, expressed as TFNs. 

 
 

As in section III, we can define K fuzzy feasible areas,

kPP
~~
∩= , where kP

~
is the intersection of the membership 

functions, corresponding to the k -th DMs’ fuzzy judgments . 

By introducing a new decision variable kλ , which measures 

the maximum degree of membership of a given priority vector 

in the fuzzy feasible area kP
~

, we can introduce membership 

functions that represent the DMs’ satisfaction with different 

crisp solution ratios
j

i

w

w
. Each crisp priority vector 

T

nwwww ),...,,( 21= satisfies: 

ijk

j

i
ijk u

w

w
l ≤≤ ~~

                                                                    (10) 

And can be measured by a membership function [13]: 
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The max-min optimization problem (8) is transformed into 

the following model: 
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where )( WR
k

q

k

qµ are the membership functions of the type 

(11) corresponding to the soft constraints of the k -th DMs. 
For introducing the DMs’ importance weights, let us define 

kI  as the importance weight of the KkDM k ,...,2,1; = , where 

kI are weights related to the fuzzy k -th set of judgments (1). 

For aggregating all individual models of type (12) into a single 
group model a weighted additive goal-programming (WAGP) 
model [15] is applied. 

B. Aggregation Individual Models into a Single Model  

The WAGP model transforms the multi-objective decision-
making problem to a single objective using fuzzy set theory. 
Therefore, it is used in order to combine all individual models 
(12) into a new single model by taking into account the DMs’ 
importance weights.  
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The WAGP model considers the different importance 
weights of gaols and constraints. The WAGP model is:  
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where: 

S
zµ : are membership functions for the p –th fuzzy goal

pszS ,...2,1, = . 

r
gµ : are membership functions the h -th fuzzy constraints

hrgr ,...2,1, = . 

x : is the vector of decision variables. 

s
α :  are weighting coefficients that show the relative 

important of the fuzzy goals.  

rβ : are weighting coefficients that show the relative 

important of the fuzzy constraints. 
A single objective model in WAMP is the maximization of 

the weighted sum of the membership functions 
S

zµ and
r

gµ . 

By identifying new decision variables 
sλ and rγ  , the model 

(13) can be transferred into a crisp single objective model as 
follows: 
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By comparing the model (12) with (14), one can observe 

the similarity between them. However, the proposed FPP 
method (13) does not deal with fuzzy goals; it just represents 
the non-linear fuzzy constraints. Thus, by taking into the 

account the specify form of 0
~≤W

k
qR  , and introducing the 

important weights of the DMs, the problem can be further 
presented into a non-linear program by utilizing WAGP model 
(14) as: 
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where the decision variable
k

λ measures the degree of 

membership of a given priority vector in the fuzzy feasible 

area
kP

~
, 

kI denotes the importance weight of the k -th 

decision makers, Kk ,...2,1 = . In the model (15) the value of 

Z call a consistency index, this measures the overall 
consistency of the initial set of fuzzy judgments. When the set 
of fuzzy judgments is consistent, the optimal value of Z is 
grater or equal to one. For the inconsistent fuzzy judgments, 
the maximum value of Z takes a value less than one. 

V.  NUMERICAL EXAMPLES  

The first example illustrates the solution to the fuzzy group 
prioritization problem for obtaining a priority vector and a 
final group ranking. The second example demonstrates how 
the importance weights of DMs influence the final group 
ranking. 

A. Example 1  

We consider the example in [16], where three DMs ( 3=K ) 
rank three elements ( 3=n ), and the importance weights of 

DMs are 5.0,  2.0,  3.0 321 === III  . The DMs provide an 

incomplete set of five fuzzy judgments ( 5=m ) presented as 
triangular fuzzy numbers: 

 

DM 1: ).4,3,2(  );3,2,1( 131121 == aa  

DM 2: ).5,4,3(  );5.3,5.2,5.1( 132122 == aa  

DM 3: ).4,3,2(123 =a  

 
The prioritization problem is to derive a crisp priority 

vector T
wwwW ),,( 321=  that approximately satisfies the 

following fuzzy constraints: 
 

For DM 1: 4
~~

2   ;  3
~~

1
3

1

2

1 ≤≤≤≤
w

w

w

w
 

For DM 2: 5
~~

3   ;  5.3
~~

5.1
3

1

2

1 ≤≤≤≤
w

w

w

w
 

For DM 3:  4
~~

2
2

1 ≤≤
w

w
 

 
Using the above data and the non-linear optimization model 

(15), the following formulation is obtained: 
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Using LINGO V13.0 software, the solution to the non-

linear problem (16) is found as: 
 

876.0  ,  623.0

,123.0  ,  161.0

,216.0  ,  623.0

32

13

21

==

==

==

λλ

λw

ww

 

 
And the maximum value of the objective function is

600.0=Z . Thus, )161.0,216.0,623.0(=W is a crisp priority 

vector generated from the group fuzzy judgments set by 
selecting the solution that has the highest degree of 
membership of the fuzzy judgments set. Also, it can be seen 
that the consistency index value is 600.0=Z , which means 
that the fuzzy judgments are slightly inconsistent, since the 
consistency index is non-negative ( Z  is less than one). 
 

TABLE I 
RESULTS FROM THE TWO PRIORITIZATION METHODS 

Method 
1w  2w  3w  

Weighted FPP method a 0.615 0.205 0.179 

Non-linear FPP method b 

 
0.623 0.216 0.161 

a The method proposed in [16] with applying α - cut  
b The method proposed in this paper without applying α - cut 

 
This result can be compared with the crisp results from the 

example in [16], as shown in Table I. We may observe that we 

have the same final ranking 321 www ≻≻ , from applying the 

two different prioritization methods. However, the Weighted 
FPP method applies an aggregation procedure for obtaining 
the crisp vector from different values of priorities at different 
α - levels, while, the proposed FPP method in this paper does 

not require an additional aggregation procedure. 
Nevertheless, if the third DM who has the highest important 

weight provides a new fuzzy comparison judgment 

)4,3,2(213 =a which means that the second element is about 

three times more important than the first one. Then, the 
obtained final weights for the three elements are 

069.0  ,620.0  ,  310.0 321 === www and the final ranking is

312 www ≻≻ . Thus, it can be observed that the third DM’s 

judgments strongly influence the final ranking. However, if 
the importance weight of the third DM is lower of equal to the 
first two DMs’ weights, then the new fuzzy comparison 

judgment )4,3,2(213 =a  does not change the final ranking. 

B. Example 2  

This example shows that the importance weights of the 
DMs influence the final group ranking. 

Consider two decision makers DMs ( 2=K ) assess three 
criteria ( 3=n ). The DMs provide an incomplete set of four 
fuzzy judgments ( 4=m ) presented as triangular fuzzy 
numbers: 

DM 1: ).4,3,2();3,2,1( 131121 == aa  

DM 2: ).4,3,2();5,4,3( 312212 == aa  

Two situations are investigated when both DMs have the 
following different weights:  

1. 8.0   ,   2.0 21 == II  

2. 2.0   ,   8.0 21 == II  

For both situations, the final rankings for both individual 
DMs are shown in Tables II and III respectively. The final 
group rankings are shown in Tables II and III (the third row 
for each table). The results are obtained by using LINGO V13. 
Each final group ranking is obtained by solving a non-linear 
program of type (15), which includes eight non-linear 
inequality constraints corresponding to the given DMs’ fuzzy 
comparison judgements. 

It can be observed from Tables II and III that the final group 
ranking tends to be the individual ranking of the DM who has 
the highest importance weights. In more details, it can be seen 
from Table II that the judgements of the second DM with the 

highest importance weight ( 8.02 =I ) influence more strongly 

the final group ranking. On the other hand, the final group 
ranking in Table III depends on the first DM, who has the 

highest importance weight ( 8.01 =I ). 

From examples 1 and 2, we can notice the significance of 
introducing importance weights of the DMs to the fuzzy group 
prioritization problem. It is seen that the final group ranking 
depends on the DMs’ importance weights. 
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TABLE II 

INDIVIDUAL AND GROUP RESULTS ( 8.0   ,   2.0 21 == II ) 

DMs  
1w  2w  3w  

Final ranking  

DM 1 0.545 0.273 0.182 
321 www ≻≻  

DM 2 0.117 0.530 0.353 
132

www ≻≻  

Group  

 
0.117 0.529 0.354 

132
www ≻≻  

 
TABLE III 

INDIVIDUAL AND GROUP RESULTS ( 2.0   ,   8.0 21 == II ) 

DMs  
1w  2w  3w  

Final ranking  

DM 1 0.545 0.272 0.181 
321 www ≻≻  

DM 2 0.117 0.530 0.353 
132

www ≻≻  

Group  

 
0.402 0.397 0.201 

321 www ≻≻  

VI. CONCLUSION  

This paper deals with the fuzzy group prioritization problem 
in the FANP for deriving a crisp priority vector. An extension 
of the non-linear FPP method for group decision making under 
uncertainty is proposed. The main advantage of the proposed 
method for the fuzzy group prioritization problem in the 
FANP is that it considers the DMs’ importance weights based 
on their expertise. Furthermore, it does not require an 
additional aggregation technique because it does not apply the 
α - cut concept. An additional advantage is that it derives 
priorities from an incomplete and inconsistence set of fuzzy 
judgments. Moreover, it is suitable for group decision making 
problem. All these characteristics make the proposed method 
an appropriate alternative to existing fuzzy group prioritization 
methods in the FANP.  

Future work includes considering the different importance 
weights for the DMs by applying fuzzy weights. Then, employ 
the proposed method in the FANP for solving a complex 
network structure. 
 

APPENDIX 
In the ANP, any decision problem is decomposed into a 

network of decision elements, where all the elements 
correspond to clusters and the relevant elements combine into 
the same clusters.  

For a system of N clusters, [17] described the process of 
establishing the super-matrix as the following:  

 

 
 

Where kC is the k -th cluster ( Nk ,...,2,1= ) which has kn  

elements denoted as 
kknkk eee ,....,, 21 .The influence of an 

element in a cluster on another element inside the same cluster 
is judged by ratio scale and places in a pair-wise comparison 

matrix. The typical entry ijW  in the super-matrix is called a 

block of the super-matrix, which represents a relationship, 
between the i -th cluster and the j -th cluster, and is 

illustrated below:  
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Each column of ijW is a local vector of each element that is 

derived from paired comparisons by applying a proper 
prioritization method. Some of entries may be zero 
corresponding to those elements that have no influence (Saaty 
and Vargas, 2006). 
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