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Abstract—Ionic liquids are finding a wide range of applications 

from reaction media to separations and materials processing. In these 

applications, Vapor–Liquid equilibrium (VLE) is the most important 

one. VLE for six systems at 353 K and activity coefficients at infinite 

dilution (��
�) for various solutes (alkanes, alkenes, cycloalkanes, 

cycloalkenes, aromatics, alcohols, ketones, esters, ethers, and water) 

in the ionic liquids (1-ethyl-3-methylimidazolium bis 

(trifluoromethylsulfonyl)imide [EMIM][BTI], 1-hexyl-3-methyl 

imidazolium bis (trifluoromethylsulfonyl) imide [HMIM][BTI], 1-

octyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide 

[OMIM][BTI], and 1-butyl-1-methylpyrrolidinium bis 

(trifluoromethylsulfonyl) imide [BMPYR][BTI]) have been used to 

train neural networks in the temperature range from (303 to 333) K. 

Densities of the ionic liquids, Hildebrant constant of substances, and 

temperature were selected as input of neural networks. The networks 

with different hidden layers were examined. Networks with seven 

neurons in one hidden layer have minimum error and good agreement 

with experimental data.  
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I. INTRODUCTION 

ONIC liquids offer quite unique and superior properties, 

such as (1) high chemical stability, (2) wide liquid 

temperature range (approx. 300 K), (3) good solvents for 

polar, non-polar, organic and inorganic compounds, and (4) 

negligible saturation vapor-pressure and therefore non-

flammability. In particular, their quite small saturation vapor 

pressure is desirable for green chemistry as zero emission 

solvents for use in environmentally friendly chemical 

processes. These novel solvents consist of large organic 

cations and anions. Because of the nearly unlimited possible 

combinations of cations and anions, it is possible to select a 

suitable ionic liquid (designersolvent) for a specific purpose. 

Therefore, in the last years researchers in organic chemistry, 

chemical engineering, electrochemistry, thermodynamics, etc. 

have studied ionic liquids intensively. Useful reviews are 

available for the usage of ionic liquids for chemical reactions 

[1], [2] and other industrial applications [1], [3]. 
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Among the several applications foreseeable for ILs in the 

chemical industry there has been considerable interest in the 

potential of ILs for separation processes as extraction media 

where, among others, ILs have shown promising in the liquid–

liquid extraction of organics from water [5]-[7]. One of the 

main ILs intrinsic attributes is the potential of tuning their 

physical and chemical properties and their solvating ability by 

varying different features of their structure, including the 

cation family, the cation alkyl chain length, and number of 

alkyl groups, and the anion identity [4]. 

As it is unfeasible to experimentally measure all the 

possible combinations of anions and cations in ILs VLE and 

liquid–liquid equilibrium (LLE) systems, it is essential to 

make measurements on selected systems to provide results 

that can be used to develop correlations and to test predictive 

methods. Several models have been used for correlating 

experimental data of phase equilibrium with ILs systems. 

Based on excess free Gibbs energy models, Wilson, 

UNIQUAC and original and modified UNIFAC equations 

have been applied to correlate solid–liquid equilibrium (SLE) 

and VLE of ILs systems [4], [8]-[14]. In particular, original 

and modified UNIFAC was also applied to correlate activity 

coefficients at infinite dilution and excess molar enthalpies of 

systems involving ILs [4], [12]. Another local composition 

model that proved being able to correlate data of ILs systems 

was the nonrandom two-liquid (NRTL) that was applied to 

VLE and LLE systems [4], [11], [14]-[22]. Nonetheless, 

correlations and group-contribution methods (GCMs) are not a 

good option due to the lack of a sufficiently large bank of 

experimental data for systems involving ILs at present. The 

use of equations of state (EoS) requires critical parameters of 

the IL, which can only be obtained indirectly and with large 

uncertainties [4], [23]-[25]. 

The aim of this research is modeling of VLE for dilute 

solution of ionic liquids by neural networks. 

II. EXPERIMENTAL DATA 

Two different techniques [gas–liquid chromatography 

(g.l.c.) and dilutor technique] were used for the measurement 

of the activity coefficients at infinite dilution (γ�
�) in the ionic 

liquids. For the g.l.c. method, the solid support used as 

stationary phase for all measurements was Chromosorb P-

AW-DMCS 60-80 mesh (acid-washed dimethyldichlorosilane-

treated Chromosorb). The carrier material was coated with the 

desired solvent dissolved in methanol. Afterwards methanol 

was totally removed with the help of a rotary evaporator. Then 
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the column (length 250 mm, inner diameter 4.1 mm) was 

carefully filled with the coated solid support and the liquid 

loading (i.e., the amount of ionic liquid on the inert carrier 

material) was determined gravimetrically. A detailed scheme 

of the gas–liquid chromatograph and a description of the 

measurement procedure were already given by [26]. 
 

TABLE I 
IONIC LIQUIDS INVESTIGATED IN THIS WORK 

Name  Structure 

Solvent Abbreviation  Cation Anion 

1-Hexyl-3-methyl-imidazolium 

bis(trifluoromethylsulfonyl)imide 
[HMIM] [BTI]  

 
 

1-Octyl-3-methyl-imidazolium 
bis(trifluoromethylsulfonyl)imide 

[OMIM] [BTI]  
 

 

1-Butyl-1-methylpyrrolidinium 

bis(trifluoromethylsulfonyl)imide 
[BMPYR] [BTI]  

  
 

TABLE ΙΙ 

INFINITE DILUTION ACTIVITY COEFFICIENTS IN [HMIM][BTI] 

 �	
� 

 303.15 K 313.15 K 323.15 K 333.15 K 

n-Pentane 5.95 5.76 5.65 5.52 

n-Hexane 8.23 7.82 7.48 7.27 

n-Heptane 11.2 10.6 10.0 9.67 

n-Octane 15.2 14.3 13.5 13.0 

1-Pentene 3.47 3.40 3.30 3.31 

1-Hexene 4.71 4.61 4.48 4.44 

1-Heptane 6.46 6.28 6.09 5.96 

Cyclopentane 3.64 3.48 3.27 7.90 

Cyclohexane 5.48 5.01 4.90 3.26 

Benzene 0.75 0.76 0.78 0.79 

Toluene 1.01 1.03 1.05 1.08 

m-Xylene 1.40 1.41 1.46 1.50 

p-Xylene 1.42 1.42 1.48 1.51 

Acetone 0.31 0.32 0.34 0.34 

Methanol 1.30 1.19 1.10 1.02 

Ethanol 1.60 1.47 1.36 1.27 

1-Propanol 1.90 1.71 1.57 1.45 

2-Propanol 1.72 1.55 1.44 1.33 

 

The determination of (γ�
�) using the dilutor technique was 

described in detail by [27]. A highly diluted solute (<0.001 

mole fraction) is stripped from the solvent by the carrier gas. 

From the decreasing peak area with time (measured by gas 

chromatography), γ�
� can be calculated. 

The various ionic liquids investigated are shown in Table Ι. 

The experimental activity coefficients at infinite dilution (γ�
�) 

for the various solutes such as alkanes, alkenes, cycloalkanes, 

cycloalkenes, aromatics, alcohols, ketones, esters, ethers, and 

water in the ionic liquids: [HMIM][BTI], [OMIM][BTI] and 

[BMPYR][BTI] were measured over the temperature range 

(303.15 to 333.15) K and are given in Tables II-VI [1]. 
 

TABLE ΙΙΙ 

INFINITE DILUTION ACTIVITY COEFFICIENTS IN [OMIM][BTI] 

 �	
� 

 303.15 K 313.15 K 323.15 K 333.15 K 

n-Pentane 4.07 3.94 3.78 3.60 

n-Hexane 5.32 5.13 4.92 4.80 

n-Heptane 6.82 6.55 6.38 6.21 

n-Octane 8.92 8.43 8.14 7.82 

1-Pentene 2.52 2.53 2.46 2.45 

1-Hexene 3.29 3.27 3.18 3.18 

1-Heptane 4.29 4.23 4.13 4.13 

Cyclopentane 2.68 2.64 2.59 2.56 

Cyclohexane 3.67 3.59 3.36 3.39 

Benzene 0.63 0.65 0.65 0.66 

Toluene 0.82 0.83 0.85 0.85 

m-Xylene 1.13 1.15 1.17 1.19 

o-Xylene 0.98 1.03 1.03 1.05 

p-Xylene 1.11 1.13 1.16 1.16 

Methanol 1.23 1.14 1.03 0.96 

Ethanol 1.46 1.34 1.22 1.12 

1-Propanol 1.67 1.51 1.35 1.24 

Water 3.89 3.52 3.03 2.58 

 

TABLE ΙV 

INFINITE DILUTION ACTIVITY COEFFICIENTS IN [BMPYR] [BTI] 

 �	
� 

 303.15 K 313.15 K 323.15 K 333.15 K 

n-Pentane 9.22 9.18 8.62 8.29 

n-Hexane 13.8 13.3 12.1 11.0 

n-Heptane 20.7 19.3 18.2 17.2 

n-Octane 28.3 26.5 25.2 23.7 

Cyclopentane 6.14 5.70 5.41 5.12 

Cyclohexane 8.75 8.43 7.91 7.42 

Benzene 0.84 0.86 0.88 0.89 

1-Pentene 4.95 4.91 4.81 4.80 

1-Hexene 7.08 6.92 6.82 6.64 

1-Heptane 10.4 9.97 9.69 9.37 

Ethanol 1.84 1.73 1.63 1.50 

2-Propanol 2.11 1.92 1.77 1.63 
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TABLE V 

DENSITIES FOR IONIC LIQUIDS MEASURED IN THE TEMPERATURE RANGE 

FROM 293 TO 358 K 

Temperature (K) 
Density (gr/cm3) 

[BMPYR] [BTI] [HMIM] [BTI] [OMIM] [BTI] 

303.15 K 1.390 1.365 1.320 

313.15 K 1.386 1.356 1.311 

323.15 K 1.381 1.347 1.303 

333.15 K 1.377 1.339 1.339 

 
TABLE VI 

HIDEBRANT CONSTANT OF COMPONENTS 

Component Hildebrant Constant 

n-Pentane 7.020 

n-Hexane 7.266 

n-Heptane 7.430 

n-Octane 7.551 

1-Pentene 7.055 

1-Hexene 7.400 

1-Heptane 7.168 

Cyclopentane 8.010 

Cyclohexane 8.193 

Benzene 9.158 

Toluene 8.914 

o-Xylene 8.987 

m-Xylene 8.818 

p-Xylene 8.769 

Acetone 9.566 

Methanol 14.51 

Ethanol 12.915 

1-Propanol 12.050 

2-Propanol 11.572 

Water 18.000 

III. NEURAL NETWORKS 

Feed-forward back-propagation artificial neural network is 

chosen in the present study since it is the most prevalent and 

generalized neural network currently in use and 

straightforward to implement. It has three input layer, one 

output layer, and one hidden layer. The neurons in hidden 

layer are represented by a weight matrix W, a bias vector B, a 

net input vector E, and an output vector O. The weights 

determine the strength of the connections between 

interconnected neurons. Every node in any hidden layer sums 

its weighted inputs, adds the bias constant, and then the output 

value of this node is calculated by applying a chosen function 

(known as a basis, activation, or transform function) to the 

weighted sum. In this manner, input values are passed through 

the network topology and transformed into one or more output 

values. The output values are then compared to the desired 

values to adjust the weights and bias in the nodes. Thus, the 

final output from the node is calculated using (1). 

 

2 1n n

0 j j 0j ij i

j=1 i=1

y = f w  + w f υ  + υ x
  
  

  
∑ ∑  (1) 

 

where y is the output variable, x is input variable, w and t are 

the connection weights, n1 is the dimension of the input 

vector, and n2 is the number of hidden neurons. In this study, 

a sigmoid function is used as the transformation function: 

 

1
f(x) = 

1 + exp(x)

  (2) 

 

The backward propagation step calculates the error vector, 

E by comparing the calculated outputs, y and the target values, 

d by (3): 

 

E = y - d   (3) 

 

The gradient descent method is used to minimize the total 

error on patterns in the training set. In gradient descent, 

connection weights are changed in proportion to the negative 

of an error derivative with respect to each weight: 

 

j j y j

j

E E
Δw  = -α  = α - f (NET) x  = α δ x

w y

 ∂ ∂
′ ∂ ∂ 

 (4) 

 

where α is a learning rate, and ∂  is an error signal. New sets 

of connection weights are iteratively calculated based on the 

error values until a minimum overall error is obtained. The 

connection weights are analyzed after training. These weights 

relate to the average contributions of each input log to the 

network by (5) [28]: 

 
2

1 2

n

ij

j=1

i n n

kj

k=1 j=1

w

C  = 

w

∑

∑∑

  (5) 

 

where Ci is the average contribution of input variable i and wij 

is the connection weight from input neuron i to hidden neuron 

j. This intelligent computing technique can help engineers in 

solving problems that have not been solved by traditional and 

conventional computing methods. Neural networks do not 

require the specification of a structural relationship between 

the inputs and outputs unlike statistical regression analysis. 

One of the most common problems in training an ANN is 

over fitting; where the error on the training set is reduced but 

the error for predictions using new data is large. This problem 

usually occurs with large networks that have few training 

examples. However, by dividing the data into two sets 

(training and testing) and selecting the best structure among 

them, over fitting can be avoided [28]. In the present study, 

80% of the total data was used for training and testing: 60% 

for training and 20% for testing. The remaining 20% of the 

total data represented the verification or production set. The 

verification set is used to evaluate the accuracy of the newly 

built network by providing the network with a set of data that 

it has never seen. Prior to any modeling, all data were scaled 

to the range [0–1]. Once the training process converged, the 

testing data set was presented to the network. If the testing 

presented good agreement between the actual and the 

estimated VLE data, the bias and weight matrices were saved 

and kept aside. If not, the realization was canceled. This 

process was repeated several times until a satisfactory number 
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of realizations with good testing results were achieved. In this 

work, the network is trained for maximum 200 epochs. 

IV. RESULTS AND DISCUSSIONS 

Compared to the development in experimental techniques, 

the numerical method has been improved. A feed forward 

back propagation network has been developed as a predicting 

model of VLE. It was proved that the trained network could 

well simulate the relation between VLE of ionic liquids as a 

function of temperature and properties of dissolved substance 

such as Hildebrant constant and density of ionic liquid. The 

model has been trained, validated and tested on 192 

experimental data. The network with one hidden layer was 

selected and different neuron in hidden layer was examined. 

The results of different neuron in hidden layer are shown in 

Figs. 2 and 3. 

 

 

Fig. 1 Regression coefficient versus number of epoch in hidden layer 

 

 

Fig. 2 Mean square error versus number of epoch in hidden layer 

 

Figs. 1 and 2 show that neural networks with 7 neurons in 

one hidden layer have minimum MSE and maximum R
2
. In 

order to avoid over fitting, the network with 7 neurons in one 

hidden layer was selected. The result of this network is shown 

in Fig. 3.  

 

 

Fig. 3 Experimental and predicted value of infinite dilution 

coefficient 

 

The training and testing lead to satisfactory results, the 

network was considered to be well trained and generalized and 

ready to predict the VLE. 
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