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Abstract—Protein subchloroplast locations are correlated with its 

functions. In contrast to the large amount of available protein 
sequences, the information of their locations and functions is less 
known. The experiment works for identification of protein locations 
and functions are costly and time consuming. The accurate prediction 
of protein subchloroplast locations can accelerate the study of 
functions of proteins in chloroplast. This study proposes a Random 
Forest based method, ChloroRF, to predict protein subchloroplast 
locations using interpretable physicochemical properties. In addition 
to high prediction accuracy, the ChloroRF is able to select important 
physicochemical properties. The important physicochemical 
properties are also analyzed to provide insights into the underlying 
mechanism.  
 

Keywords—Chloroplast, Physicochemical properties, Protein 
locations, Random Forests.  

I. INTRODUCTION 
HLOROPLASTS are typical  organelles in plant cells and 
are developed and differentiated from proplastids. 

Chloroplasts play important roles in cellular metabolism and 
several biological processes, including amino acid biosynthesis 
and photosynthesis.  Chloroplasts are originated from 
cyanobacteria. But, most of their genes are transferred to the 
nucleus of the cell and their autonomy is lost during evolution 
[1]. The initiations of chloroplast proteome projects [2], [3], [4], 
[5] point out the importance of identification and 
characterization of chloroplast proteins.  

Previous computational studies mainly focus on prediction 
and identification of chloroplast proteins. For example, TargetP 
[6] and ChloroP [7] were developed to predict proteins in 
plastid and chloroplast by recognizing transit peptides. Also, 
some studies applied these tools to identify candidate 
chloroplast proteins in a genome-wide manner [8], [9], [10]. 
However, the information of subchloroplast locations is still 
not available for a large number of chloroplast proteins. Due to 
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the relation between protein subchloroplast locations and 
functions, it is desirable to develop computational methods for 
predicting and analyzing protein subchloroplast locations 

Recently, a tool of SubChlo was developed for predicting 
subchloroplast locations that is based on an 
evidence-theoretic k-nearest neighbor classifier. It can predict 
subchloroplast locations with an accuracy of 67.18% on S60 
dataset consisting of proteins with less than 60% sequence 
similarity. However, the utilized feature of pseudo-amino 
acid composition is hard to provide interpretable information of 
the underlying mechanism of protein localizations [11]. 

Physicochemical properties, one of the most intuitive and 
interpretable features, were applied to predict subchloroplast 
locations of proteins. Physicochemical properties of proteins 
such as hydrophobicity and charge play vital roles in molecular 
recognitions and protein localizations and are extensively used 
in bioinformatics for prediction and analysis of various 
problems. Examples include the prediction and analysis of 
peptide immunogenicity [12], protein ubiquitylation sites [13] 
and HIV coreceptor usage [14]. Most importantly, apart from 
prediction accuracies, physicochemical properties are able to 
provide human interpretable knowledge concerning protein 
sorting mechanisms [15], [16].  

In this study, a method named ChloroRF is proposed to 
predict subchloroplast locations of proteins. ChloroRF based 
on Random Forests (RF) classifiers [17] and 531 
physicochemical properties obtained from AAindex database 
[18] can predict subchloroplast locations with an accuracy of 
67.43% that is comparable with SubChlo. The advantages of 
the RF classifier include less overfitting problems [19], [20] 
and its native method for estimating feature importance. The 
property of avoidance of overfitting problems is especially 
important when analyzing a small dataset in this study.  

In addition to an accurate prediction method, the feature 
importance can provide insights into the underlying mechanism 
of protein sorting in chloroplast. Two criteria of mean 
decreases of accuracy and Gini index are applied to separately 
select the corresponding top 30 physicochemical properties. 
Among the 60 properties, four hydrophobicity-related 
properties are important for determining protein locations and 
three properties are directly associated with membrane 
locations. Finally, a total of 12 physicochemical properties 
found common in the two property sets are identified for 
further analysis. 
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II. METHODS 

A. Dataset 
The dataset of RAW consisting of 737 protein Swissprot IDs 

were obtained from the website of SubChlo [11] 
(http://bioinfo.au.tsinghua.edu.cn/subchlo). The RAW dataset 
was extracted by keyword search on Swissprot database [21]. 
However, because three Swissprot IDs of the RAW dataset are 
incomplete, we retrieved a slightly different dataset of 734 
protein IDs and their sequences were retrieved from Swissprot 
database. The four compartments of plant chloroplast 
associated with proteins of RAW dataset are envelope, stroma, 
thylakoid membrane and thylakoid lumen. Due to the 
preprocessing work of removing proteins annotated with more 
than one compartment [11], each protein of RAW dataset is 
associated with only one compartment of chloroplast. All three 
missing proteins belong to the compartment of thylakoid 
membrane.  

To avoid overestimating the prediction performance, a tool 
CD-HIT [22], [23] is applied to remove highly redundant 
sequences of the RAW dataset. A threshold of 60% the same as 
previous study [11] was applied, and a final dataset S60 
consisting of 261 protein sequences was used for all subsequent 
analyses. Please note that there is only one missing protein 
sequence of the constructed dataset, compared to the reported 
S60 dataset consisting of 262 protein sequences [11]. The 
numbers of proteins of S60 are 40, 49, 128 and 44 for 
compartments of envelope, stroma, thylakoid membrane and 
thylakoid lumen, respectively. 

B. Physicochemical properties 
Due to the importance and interpretability of 

physicochemical properties, they are widely used for prediction 
and analysis in bioinformatics studies [12], [13], [15], [14]. In 
this study, 544 physicochemical properties were retrieved from 
the amino acid indices (AAindex) database of version 9.0 [18]. 
The AAindex database is a collection of many published 
indices representing physicochemical properties of amino 
acids. For each physicochemical property, a set of 20 numerical 
values for amino acids are used to represent the property. A 
total of 531 physicochemical properties are used for the 
following studies by removing 13 physicochemical properties 
having the value ‘NA’ in their amino acid indices.  

To encode a protein sequence for classification and 
prediction, a two-step method is applied as follows. First, given 
a protein sequence of length l, 531 index 
vectors ( )1X ,..., , 1,...,531p lx x p= = , for 531 physicochemical 
properties are obtained by substituting the amino acids with 
corresponding index values. Second, the final feature vector for 
representing a protein sequence is defined as ( )1 531V ,...,v v= , 
where vp is the averaged value of elements in Xp. 

C. Random Forests (RF) 
The Random Forests (RF) classifier based on a large 

ensemble of decision trees is an extensively used ensemble 
learning method [17]. The RF improves prediction 

performances of classification and regression trees (CART, 
[24]) by growing many weak CART trees. Every tree is built by 
using a fixed number of randomly selected features for tree 
splitting and based on a bootstrap sample of the whole training 
dataset. In this study, the number of selected features is set to a 
recommended default value 23, which is nearly equal to the 
square root of the total number of features square root of the 
total number of features (531 physicochemical properties). 

The RF is useful for estimating prediction errors and 
evaluating feature importance. The prediction error is estimated 
by using out-of-bag (OOB) data. For each tree of RF, the OOB 
data consisting of approximately one-third of the training 
dataset is applied to test the decision tree that is constructed by 
using the remaining training dataset with no pruning procedure. 
Finally, the overall prediction error is then calculated by 
majority voting for classification and averaging for regression 
over all trees.  

D. Feature importance 
The feature importance can provide insights into the major 

factors determining a specific problem. There are two indices 
for evaluating feature importance: the means of decreased Gini 
index and accuracy. The feature with largest decreased values 
of means of Gini index or accuracy is the most important 
feature because it contributes most to prediction performances. 

The estimation of feature importance utilizes random 
permutation method on a specific feature to measure the 
corresponding decreased performances. A three-step method is 
applied as follows. First, for each feature, its feature values of 
corresponding OOB data of constructed trees in RF classifier 
are randomly permuted. Second, the permuted OOB data is 
applied to evaluate performances of constructed trees. The 
performance measurement can be accuracy or Gini index. 
Finally, the feature importance can be obtained by calculating 
the difference between the performances using original and 
permuted OOB data. The Gini index is a measure of impurity 
that can be defined as 21 ( | )

j
p j t− ∑ , where ( | )p j t  denotes 

the estimated class probabilities for a node t in a decision tree 
and class  j=1,…,J. In this study, J=4 denotes the four 
subchloroplast locations. 

  

E. Performance evaluation 
Three measurements were used to evaluate ChloroRF using 

five-fold cross-validation (5-CV) on the dataset S60, namely 
percentage accuracy (ACCi) and area under the ROC (receiver 
operating characteristic) curve (AUCi) for the ith compartment, 
i=1, …, 4, and overall accuracy (OA) for all classes: 

TP
ACC 100%

TP FN
i

i
i i

= ×
+

,        (1) 

T P
O A i

N
= ∑ ,                            (2) 

where TPi, TNi, FPi and FNi are the number of true positives, 
true negatives, false positives and false negatives, respectively. 
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N (=261) is the total number of sequences. The AUC is a robust 
measurement for binary-class problem. For multiclass problem, 
a generalized method is applied as following. For each class c, a 
four-class problem is transformed to binary-class problem by 
merging the other three classes and the AUC measurement can 
be applied to the binary-class problem to calculate the 
corresponding AUCi. 

III. RESULTS 

A. Prediction of subchloroplast locations  
The Random Forests (RF) classifier with interpretable 

features of 531 physicochemical properties is applied to 
construct a prediction method named ChloroRF for prediction 
of subchloroplast. The number of trees used in developing 
ChloroRF is 100. The five-fold cross-validation (5-CV) is 
applied to evaluate prediction performances of ChloroRF. The 
5-CV procedure is applied as follows. First, dataset S60 is 
divided into five data subsets. Second, for each test 
fold 1,...,5h = , its prediction accuracy is calculated by applying 
the model constructed by using the other four data subsets to 
independently test data in fold h. Finally, the performances of 
five test folds are averaged to represent 5-CV performances of 
ChloroRF. 

Table I shows the prediction performances using 5-CV in 
terms of ACC, AUC and OA. The overall performance of the 
proposed method ChloroRF is comparable with SubChlo with a 

slightly better OA=67.43% for ChloroRF than OA=67.18% for 
SubChlo. The prediction performances for envelop, stroma, 
thylakoid lumen and thylakoid membrane are 47.50%, 57.14%, 
38.64% and 87.50% for ACC and 0.767, 0.839, 0.838 and 
0.846 for AUC, respectively. 

B. Analysis of important physicochemical properties 
One of the most useful functions of RF classifier is its ability 

to estimate and rank features according to their importance. The 
function is applied to analyze important physicochemical 
properties to give insights into the underlying mechanisms of 
protein sorting in chloroplasts. 

Two measures were applied to estimate the importance of 
physicochemical properties, including mean decrease in 
accuracy and mean decrease in Gini index. The 
physicochemical property with a largest value of mean 
decrease in accuracy or Gini is with highest importance for 

TABLE I 
COMPARISON OF PREDICTION PERFORMANCES USING FIVE-FOLD 

CROSS-VALIDATION 

Compartment 
SubChlo  ChloroRF (%) 
ACC (%) ACC (%) AUC 

Thylakoid lumen 43.18 38.64 0.838 
Stroma 67.35 57.14 0.839 
Thylakoid membrane 83.72 87.50 0.846 
Envelope 40.00 47.50 0.767 
Overall accuracy (OA) 67.18 67.43  

 

Fig. 1 Top 30 physicochemical properties ranked by mean decrease in
accuracy. 

 

Fig. 2 Top 30 physicochemical properties ranked by mean decrease in 
Gini index.  
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protein localization. Fig. 1 and Fig. 2 show the top 30 
properties ranked by using mean decrease in accuracy and Gini, 
respectively. 

The most important properties with AAindex IDs of 
RACS820109 [25] and GRAR740101 [26] represent an 
average relative fractional occurrence in AL (i-1) and a 
composition for sets of accuracy and Gini, respectively. Four 
properties with AAindex IDs of WILM950103 [27], 
KUHL950101 [28], PONP800107 [29] and EISD860102 [30] 
are associated with hydrophobicity that is important for 

determining protein locations. Three properties with AAindex 
IDs of ARGP820103 [31], NAKH920105 [32] and 
CORJ870106 [33] are directly correlated with membrane 
localizations. 

By comparing the property sets for accuracy and Gini, a total 
of 21 properties are selected in both sets (shown in Table II). 
Interestingly, two out of three properties ranked as top 10 in 
both sets associated with propensities of mesophile and 
thermophile (AAindex IDs of FUKS010106[34] and 
KUMS000103[35], respectively) mean that the mesophilicity 
and thermophilicity might play roles in protein localization. 
The other property with AAindex ID of CORJ870106 [33] 
represents an index for detecting amphipathic proteins that is 
associated with membrane proteins. The property with 
AAindex ID of NAKH920105 [32] representing amino acid 
composition of single-spanning proteins is directly related to 
protein subchloroplast locations. 

IV. CONCLUSION 
The accurate prediction of protein subchloroplast locations 

using interpretable features is important to better understand 
protein sorting mechanism and help to annotate proteins of 
unknown functions and locations. This study proposed a 
Random Forest based method named ChloroRF to predict 

subchloroplast locations using interpretable physicochemical 
properties. The ChloroRF with a slightly better overall 
accuracy of 67.43% are comparable with a nearest 
neighbor-based method SubChlo. However, compared to the 
pseudo-amino acid compositions used by SubChlo, the human 
interpretable physicochemical properties used by ChloroRF 
can provide insights into the underlying mechanism of protein 
sorting. 

By using the Random Forests to identify important 
physicochemical properties, seven important properties for 
protein locations can be identified consisting of four 
hydrophobicity-related and three membrane 
localization-related properties. Finally, the comparison of 
property sets selected by mean of accuracy and Gini results in a 
set of 12 important physicochemical properties. The future 
works include the collection of more dataset and dealing with 
proteins annotated with multi-locations. 
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