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Abstract Prediction of viscosity of natural gas is an important 
parameter in the energy industries such as natural gas storage and 
transportation. In this study viscosity of different compositions of 
natural gas is modeled by using an artificial neural network (ANN) 
based on back-propagation method. A reliable database including 
more than 3841 experimental data of viscosity for testing and training 
of ANN is used. The designed neural network can predict the natural 
gas viscosity using pseudo-reduced pressure and pseudo-reduced 
temperature with AARD% of 0.221. The accuracy of designed ANN 
has been compared to other published empirical models. The 
comparison indicates that the proposed method can provide accurate 
results. 
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I. INTRODUCTION 
HE increasing demand for natural gas has led to the need 
to develop a more reliable reservoir characterization and 

simulation. The upstream gas industry, through the gas 
suppliers, is also being faced with increasing demand for 
precision in the monitoring of gas supplies. For the 
exploitation and usage to be optimal, an accurate and reliable 
knowledge of the viscosity, along with other thermophysical 
properties, of natural gas is a prerequisite [1]. 
Viscosity is an important property in the calculations related to 
fluid flow and estimation of other physical properties in liquid 
systems [2]. 

The gas viscosity generally increases with pressure. The 
increase of temperature increases the gas viscosity at low and 
moderate pressure. At high pressures, the gas viscosity 
behavior approaches like that liquid decrease with increase the 
temperature [3]. 

In principle, the viscosity of a fluid can be related to 
molecular motion and intermolecular forces acting among 
molecules.    In practice, there is no rigorous theory that allows 
the complete evaluation of viscosity as a function of 
temperature and pressure [4]. An accurate prediction of natural 
gas viscosity is needed in the appropriate design and operation 
of equipment in industrials and processing. 
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Several attempts have been made to improve the accuracy of 
natural gas viscosity prediction. Carr et al. [5] and Dean et al. 
[6] proposed a correlation for calculation of natural gas as a 
function of reduced pressure, reduced temperature, and 
reduced density of gas and molecular weight. Lee et al. [7] 
proposed a correlation that is the most reliable for determining 
the viscosity of natural gas. Guo et al. [8] presented two 
viscosity models based on Peng-Robinson EOS and Patel-Teja 
EOS and found that their model is capable of satisfactorily 
describing pure component hydrocarbon viscosity. Huber et al. 
[9] presented new correlations for the viscosity of the pure 
fluids n-octane, n-nonane, and n-decane that are valid over a 
wide range of fluid states. Xuan et al. [10] was proposed a new 
model to calculate the viscosity of fluids under the pressure 
ranging from 0.1 to110 MPa. Heydarian et al. [11] presented a 
new and reliable correlation for methane gas viscosity, and 
another method [12] for viscosity accounts for the presence of 
heptane plus and non-hydrocarbon components. Also Sanjari 
et al. [13] reported an accurate method for estimation of 
natural gas viscosity. At the aim of developing models for gas 
viscosity implementing artificial neural network (ANN) 
techniques, AlQuraishi et al. [14] proposed an ANN structure 
for prediction of hydrocarbon viscosity using 800 experimental 
data and accuracy of 3.65%.  

The main focus of this study is designing an appropriate 
ANN with high accuracy to predict the viscosity in desired 
temperature and pressure using a reliable experimental data 
that measured by many of researchers from 1976 to 2010 [15]-
[21]. Finally results of the ANN model is compared to the 
empirical models. 

II.  NATURAL GAS VISCOSITY 
Because of the difficulties of viscosity measurements in 

laboratory, this parameter can be estimated from empirical 
correlations with low deviation. Like all intensive properties, 
viscosity of a natural gas is completely described by the 
following function [22]: 

g = f (P,T,yi)                                                                         (1) 

g is the viscosity of gas phase. The above relationship 
simply states that the viscosity is a function of pressure, 
temperature, and composition. There are numerous 
correlations exist to predict natural gas viscosity, such as 
empirical correlations. It is applicable to highlight and contrast 
the four empirical correlations chosen in this study. For 
briefness only, essential elements of these four methods are 
presented here, and the reader is referred, in each case, to the 
original publications for more details. 
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A. Lee-Gonzalez-Eakin Method (LGE) 
Lee-Gonzalez-Eakin in 1966 presented a semi empirical 

relationship for calculating the viscosity of natural gases [7]. 
The authors expressed the gas viscosity on terms of the 
reservoir temperature, gas density, and the molecular weight of 
the gas. Their proposed equation is given by: 

4.62
exp10 4 g

g

                             

(2)

                                                   

(2)

 

 
and molecular g is the gas density at reservoir 
pressure and temperature in lb/ft3. 

B. Adel Elsharkawy Method 
Adel Elsharkawy in 2004 presented a modification of the 

Lee-Gonzalez-Eakin gas viscosity correlation to account for 
the presents of heptanes plus fraction and non-hydrocarbons 
[23]. This correlation has the following equation: 

)exp(10 3
2

4
1

D
gg DD

                                     (3)   
 

g is the gas density in g/cc, and D1, D2, and D3 are 
dependent parameter as a function of temperature and 
molecular weight. This proposed modification results in 
correcting the original correlation to account for the presence 
of high content of heptane plus fraction, hydrogen sulfide and 
carbon dioxide in natural gases. These corrections are 
calculated by the following equations. 
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C. Carr-Kabayashi-Burrow Method (CKB) 
The correlation of Carr-Kabayashi-Burrow is often used to 

estimate the natural gas viscosity, particularly for gases 
containing significant amount of no-hydrocarbon components 
[5]. It initially estimates the gas viscosity at the atmospheric 
pressure and prevailing temperature. The equation of this 
method is: 
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Where g , Tpr and Ppr are natural gas viscosity, pseudo 
reduced temperature and pseudo reduced pressure, 
respectively. The calculated viscosity at the atmospheric 

l, is then adjusted for pressure, using the gas pseudo 

reduced temperature and pressure, over ranges of 1-3, and 1-
20, respectively, as: 

SHCONh 2221 )()()(                      (8)                   

Where h is calculated as follow:
 

ggh SS log1015.610188.846010062.210709.1 3365
(9)                   

D. Heydarian-Moghadassi-Salarabadi method (HMS) 
Heydarian et al in 2010 developed a new correlation to 

prediction of natural gas viscosity [12]. This method is valid in 
range of 6 Ppr 35 and 1.8 Tpr 2.2. Their proposed equation 
is following by: 
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However the draw backs of these empirical correlations are 
Limited range of application, complexity of calculation, and 
density involving in the calculations. Hence the accuracy of 
viscosity calculations is dependent on the accuracy of density 
estimation. 

E. Sanjari-Nemati Lay-Peymani method (SNP) 
Sanjari et al [13] in 2011 developed a new correlation to 

prediction of natural gas viscosity. This method can predict the 
viscosity of natural gas with AARD% of 2.127% in the range 
of 1.01 Tpr 0.01 Ppr This method is presented 
as follow: 

)()(
)()(

prpr

prpr

TDpC
TBpA

                                                    
(11)

                   

)(ln)ln( 2
54

2
321 rrrr papapapaaA       (12)                   

)(ln 2
7

6
r

r

Ta
T
aB

                                                       
(13)                   

2
81 rpaC                                                                      (14)                   

3
11

2
109

rrr T
a

T
a

T
aD

                                                        
(15)

                   

F. Artificial Neural Network (ANN) 
In order to find relationship between the input and output 

data derived from experimental works, a more powerful 
method than the traditional ones are necessary. ANN is an 
especially efficient algorithm to approximate any function with 
finite number of discontinuities by learning the relationships 
between input and output vectors [24]. The structure of the 
information-processing system is constituted of an assemblage 
of several highly-interconnected elements of processing called 

 information and 
solve the problem.  
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They are the result of scientific investigations that use 
mathematical formulations to model nervous system 
operations. The resulting techniques are being successfully 
applied in a variety of everyday technical, business, industrial, 
and medical applications [25]. 

Fig 1 shows multiple layers arrangement of a typical 
interconnected neural network is consist of an input layer, an 
output layer, and one hidden layer with different roles. Each 
connecting line has an associated weight. 
 
 

 
Fig 1 The Neural Network structure 

 
Artificial neural networks are trained by adjusting the 

connection weights, so that the calculated outputs may be 
approximated by the desired values. The output from a given 
neuron is calculated by applying a transfer function to a 
weighted summation of its input to give an output, which can 
serve as input to other neurons, as follows [26]: 
 

1

1
)1(

kN

i
jkkiijkkjk wF                                    (16)                                                                

Where jk are jth neuron outputs from k th layer and jk is the 
bias weight for neuron j in layer k. The model fitting 
parameters wijk are the connection weights. The nonlinear 
activation transfer functions Fk may have many different 
forms. The classical ones are threshold, sigmoid, Gaussian and 
linear function, etc. [27].  

During training the weights and biases of the network are 
iteratively adjusted to minimize the network performance 
function. One of typical performance function, used for 
training feed forward neural networks, is the network Average 
Absolute Relative Deviation (AARD %) that presented by the 
following equation. 

1001%
1 exp
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AARD                             (17) 

Through different types of neural networks, the back 
propagation learning algorithm is the most commonly used 
algorithm to prediction the properties of natural gas. Several 
back-propagations training methodologies exist, which 
includes the Levenberg Marguardt Algorithm (LMA), the 

Scaled Conjugate Gradient (SCG), the Pola Ribiere Conjugate 
Gradient (CGP) and others. A review of investigations using 
similar applications indicates that the LMA is sufficiently 
robust and produces accurate ANNs [25]. The LMA, that 
similar to Gauss Newton method, is used in a back-
propagation of error manner to reduce the average absolute 
relative deviation of the output.  

The large collection of patterns that needed to make a good 
quality ANN is commonly divided into three subsets, namely: 
training, validation, and test sets. The validation set is used to 
indicate the deviation produced during the training. This set is 
not used to alter the biases and weights, but serves to illustrate 
when the training should stop. Typically the deviation that 
obtained with the set of validation should be reduce during the 
training step, but should increase as the network starts to learn 
the specific training patterns used in the training set. The 
testing set is used to check the quality of the partitioning of the 
whole pattern set into these subsets. Thus, if the error in the 
testing set reaches a minimum value at a significantly various 
iteration number of that in which the minimum occurs with the 
validation set, this might indicate a poor division of the 
original data set . 

A set of data containing pseudo-reduced pressure, pseudo-
reduced temperature, Molecular weight, and viscosity was 
collected from experimental data. These data contain 3841 
points of different natural gas mixtures reported in the 
literatures. The gas mixtures have different molecular weight 
from 16.4 to 20.8 or gas gravity from 0.566 to 0.719. The 
properties of gas mixtures used for training and testing the 
neural network have been reported in Table I. 

Neural network training can be made more efficient if 
certain preprocessing steps are performed on the network 
inputs and targets. The neurons in the hidden layer perform 
two tasks: summing the weighted inputs connected to them and 
passing the result through a nonlinear activation function to the 
output or adjacent neurons of the corresponding hidden layer. 
By using LM algorithm that is more accurate than other back-
propagation methods, more than 70% of data set is used to 
train each ANN and the rest have been used to evaluate their 
accuracy and trend stability using LM algorithm. Number of 
hidden neurons has been systematically varied to obtain a good 
estimate of the trained data.  

III. RESULT AND DISCUSSION 
To find the optimum number of nodes in the hidden layer, 

which provides good estimates of the output, different number 
of neurons was considered. The criterion for selection was 
AARD% between network output and training data. The 
results are illustrated in Fig 2. 
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Fig. 2 Determining the optimum number of neurons 

 
As shown in Figs 2, architecture of ANN having 29 neurons, 

gave the lowest average relative error for the training data set, 
and its AARD% value is 0.221%. Fig 3 shows the network 
architecture with 29 neurons in hidden layer. 

To compare the accuracy of presented model versus 
experimental data, 3841 viscosity data points of different 
mixtures provided from literatures [15]-[21]. 
 

 
Fig. 3 Optimal back-propagation neural network paradigm 

 
For estimation of the accuracy of computed neural network 
data, the calculated values from this model versus 3841 
experimental data points has been showed in Fig 4. 
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Fig. 4 A Comparison between ANN and experimental data 

 
Also Fig 4 showed the difference between viscosity of 

experimental data and output of the neural network in range of 
pr 21 pr . 

TABLE I 
PROPERTIES OF NATURAL GASES USED IN THIS STUDY  

  Minimum Maximum Average 

Composition  (mol 
%)    

Methane 66.25 100 97.2421 

Carbon dioxide 0 2.19 0.2941 

Ethane 0 9.306 1.3825 

Propane 0 4.963 0.2908 

i-butane 0 0.719 0.0596 

n-butane 0 1.279 0.0534 

i-pentane 0 0.226 0.0436 

n-pentane 0 0.249 0.0431 

Hexane 0 0.179 0.0464 

Heptane plus 0 0.136 0.0095 

Argon 0 0.042 0.0010 

Nitrogen 0 9.752 1.0634 

Hydrogen 0 33.75 0.1854 

Helium 0 0.052 0.0012 

Pressure (Mpa) 0.1 97.3 10.96 

Temperature (K) 250 570 371.45 

 95.93 586.63 165.26 
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Fig 5 showed the cumulative frequency of this study 
correlation versus AARD% of method compared to ADEL, 
LGE, HMS, CKB, and SNP models.  
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Fig. 5 cumulative frequency of various methods in calculating 

natural gas viscosity as function of AARD% 
 

According to Fig 3 and by assuming an acceptable 
engineering error is 5%, ANN is more accurate than five 
common correlations. This Fig shows accuracy of presented 
method in prediction of viscosity of the 3841 measurements as 
compared to other methods discussed in this study. The new 
method has successfully predicted 85% of the 3841 
measurements with AARD% of less than 1%, and 95% of the 
data with AARD% of less than 1.5%. Only 1% of the 3841 
viscosity measurements were predicted with AARD% on the 
order of 3 to 10% by the new method. SNP, that is the second 
accurate method, predicted 40% of the viscosity measurements 
with AARD% of less than 1% and 70% of the measurements 
with AARD% of less than 3%. And also LGE, that is the third 
accurate correlation, has less than 1% of AARD to prediction 
only 20% of the experimental data. Hence the neural network 
show its priority over all the methods considered in this study. 

 

 
The average absolute relative deviation percent (AARD %) 

and root mean square deviation percent (RMSD %) for each 
method have been presented in Table II.  

 
 

 
It can be seen from Table II that the ANN model more 

accurate than empirical models. 
Table III reports the average absolute relative deviation 

(AARD %) of the new correlation compare to the most 
commonly used empirical models for different natural gas. The 
Average absolute relative deviation of ANN compared HMS 
correlation show very large deviations, 14.3%, and has its 
limitation range for both pressure and temperature that leads to 
set most of experimental data in out range (O.R.) of 
calculation. Only 87 data points are able to calculate with 
HMS correlation. SNP model shows superiority for pure 
methane substance relative to CKB, ADEL, LGE, and HSM 
methods. However, all the correlations showed relatively large 
deviations for these 3841 experimental data and finally the 
new method has the best accuracy among all mentioned 
methods for natural gas mixtures.  

To estimate the applicability of artificial neural network 
approach for calculating viscosity of natural gas, the viscosity 
experimental data of the sample natural gas [15] that are not 
employed in structure design of ANN are considered and the 
results of all mentioned methods (ANN, SNP, LGE, ADEL, 
and CKB) are compared with experimental viscosities and 
presented in Figs 4 to 6. The composition of this sample 
mixture is presented in Table IV. 

TABLE III 
AVERAGE ABSOLUTE RELATIVE DEVIATION OF ANN COMPARED TO EMPIRICAL 

MODELS 

Gas type ADEL LGE HMS CKB SNP ANN 
Ref 

 

No.2 2.0279 9.5845 17.407 3.7626 2.4761 0.2274 [14] 

No.3 8.6979 3.5062 18.1899 9.2737 1.9253 0.0994 [15] 

No.4 4.3753 7.2971 19.8208 9.6398 2.9619 0.1162 [15] 

No.5 4.2072 7.5699 19.9511 9.4248 2.487 0.1523 [15] 

No.6 2.4419 3.5954 O.R. 8.9967 2.9721 2.0496 [16] 

No.7 1.5459 7.7279 O.R. 7.7456 4.7911 0.7616 [17] 

No.8 1.3918 10.770
4 O.R. 28.2663 4.2566 0.6745 [17] 

No.9 1.0207 7.1625 O.R. 7.4375 5.2335 0.4739 [17] 

No.10 1.8347 1.9373 O.R. 9.151 2.8555 0.3435 [18] 

No.11 4.4431 5.9219 O.R. 12.8676 2.1231 0.139 [18] 

No.12 4.9279 4.0761 14.3019 3.545 1.7427 0.1931 [19]-[20] 

 4.5509 4.9428 18.8399 5.9401 2.1269 0.2208  

TABLE II 
STATISTICAL PARAMETERS OF THIS STUDY COMPARED TO OTHER METHODS 

FOR EXPERIMENTAL DATA POINTS 

Methods AARD% RMSD% 
LGE 4.9428 5.9265 
CKB 5.9401 8.1976 
ADEL 4.5509 5.7361 
HMS 18.8399 28.4532 
SNP 2.1269 3.3233 
ANN 0.2208 0.0171 
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Fig. 4 Experimental data and results of ANN and other method for 

sample mixture in 270K 
 

Figs 4 to 6 are showed experimental and calculated 
viscosity for all method at different pressures and three 
temperatures of 270, 300, and 330K respectively. 

As shown in Figs 4 to 6, the designed ANN is much more 
accurate than other empirical methods for prediction of 
compressibility factors, and there is a very good agreement 
between experimental data and computed ANN data.  
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Fig. 5 Experimental data and results of ANN and other method for 

sample mixture in 300K 
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Fig. 6 Experimental data and results of ANN and other method for 

sample mixture in 330K 
 

Figs 4 to 6 are showed experimental and calculated 
viscosity for all method at different pressures and three 
temperatures of 270, 300, and 330K respectively. 

As shown in Figs 4 to 6, the designed ANN is much more 
accurate than other empirical methods for prediction of 
compressibility factors, and there is a very good agreement 
between experimental data and computed ANN data.  

IV. CONCLUSION 
In this study viscosity of different compositions of natural 

gas are modeled by using an artificial neural network (ANN) 
based on LMA algorithm back-propagation method.  

 

 

TABLE IV 
COMPOSITION OF SAMPLE GAS 

Component mol% 

methane 0.84990 

ethane 0.05529 

propane 0.02008 

isobutane 0.00401 

n-butane 0.00585 

isopentane 0.00169 

n-pentane 0.00147 

n-octane 0.00152 

toluene 0.00090 

methylcyclopentane 0.00102 

nitrogen 0.03496 

carbon dioxide 0.02331 
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A reliable database of viscosity for testing and training of 
ANN has been used. The results of the ANN model are 
compared to the five empirical models. The comparison 
showed that the designed ANN model can predict viscosity of 
natural gas mixtures precisely. 
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