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Abstract—Amount of dissolve oxygen in a river has a great 

direct affect on aquatic macroinvertebrates and this would influence 
on the region ecosystem indirectly. In this paper it is tried to predict 
dissolved oxygen in rivers by employing an easy Fuzzy Logic 
Modeling, Wang Mendel method. This model just uses previous 
records to estimate upcoming values. For this purpose daily and 
hourly records of eight stations in Au Sable watershed in Michigan, 
United States are employed  for 12 years and 50 days period 
respectively. Calculations indicate that for long period prediction it is 
better to increase input intervals. But for filling missed data it is 
advisable to decrease the interval. Increasing partitioning of input and 
output features influence a little on accuracy but make the model too 
time consuming. Increment in number of input data also act like 
number of partitioning. Large amount of train data does not modify 
accuracy essentially, so, an optimum training length should be 
selected.     

 
Keywords—Dissolved Oxygen, Au Sable, Fuzzy Logic 

Modeling, Wang Mendel 
 

I.  INTRODUCTION 
ORECASTING refers to a process by which the future 
behavior of a dynamical system is estimated based on our 

understanding and characterization of the system. If the 
dynamical system is not stable, the initial conditions become 
one of the most important parameters of the time series 
response, i.e. small differences in the start position can lead to 
a completely different time evolution. This is what is called 
sensitive dependence on initial conditions, and is associated 
with chaotic behavior [1,15] for the dynamical system. 

More recently, soft computing [9] methodologies, such as 
neural networks, fuzzy logic, and genetic algorithms, have 
been applied to the problem of forecasting complex time 
series. These methods have shown clear advantages over the 
traditional statistical ones [11]. The main advantage of soft 
computing methodologies is that, we do not need to specify 
the structure of a model a priori, which is clearly needed in the 
classical regression analysis [2]. Also, soft computing models 
are non-linear in nature and they can approximate more easily 
complex dynamical systems, than simple linear statistical 
models. Of course, there are also disadvantages in using soft 
computing models instead of statistical ones. In classical 
regression models, we can use the information given by the 
parameters to understand the process. However, if the main  
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objective if to forecast as closely as possible the time series, 
then the use of soft computing methodologies for prediction is 
clearly justified.  

The use of fuzzy set theory allows the user to include the 
unavoidable imprecision in the data. Fuzzy inference is the 
actual process of mapping from a given set of input variables 
to an output based on a set of fuzzy rules. The essence of the 
modeling is to identify fuzzy rules. Four fundamental units are 
necessary for the successful application of any fuzzy modeling 
approach. These are, namely, the fuzzification unit, the 
knowledge base (which is composed of the database and the 
rule base), the inference engine and defuzzification unit [16, 
17]. The main problem with fuzzy logic modeling is related to 
the choice of the parameters. For this reason some methods 
such as ANFIS (Adaptive Network based Fuzzy Inference 
System), firstly proposed by Jang [18], Wang-Mendel [19] 
and etc. may be applied. Wang-Mendel is one of the easiest 
methods which lay in ad-hoc fuzzy logic modeling category. 
This technique is expressed in detain in section III.  

Dissolved oxygen is one of the best indicators of the health 
of a water ecosystem. Dissolved oxygen can range from 0-18 
parts per million (ppm), but most natural water systems 
require 5-6 parts per million to support a diverse population. 
Oxygen enters the water by direct absorption from the 
atmosphere or by plant photosynthesis. The oxygen is used by 
plants and animals for respiration and by the aerobic bacteria 
which consume oxygen during the process of decomposition. 
When organic matter such as animal waste or improperly 
treated wastewater enters a body of water, algae growth 
increases and the dissolved oxygen levels decrease as the plant 
material dies off and is decomposed through the action of the 
aerobic bacteria.  

Decreases in the dissolved oxygen levels can cause changes 
in the types and numbers of aquatic macroinvertebrates which 
live in a water ecosystem. Species which cannot tolerate 
decreases in dissolved oxygen levels include mayfly nymphs, 
stonefly nymphs, caddisfly larvae and beetle larvae. As the 
dissolved oxygen levels decrease, these pollution-intolerant 
organisms are replaced by the pollution-tolerant worms and 
fly larvae.  

Dissolved oxygen levels change and vary according to the 
time of day, the weather and the temperature. If yearly 
comparisons are made on dissolved oxygen levels, they should 
be done at the same time of day, during the same season and 
on a day with a temperature variation of only 10 degrees 
Celsius from the previous reading. A decrease in the dissolved 
oxygen levels is usually an indication of an influx of some 
type of organic pollutant.  
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In this research it is tried to apply Wang Mendel method as an 
easy and efficient fuzzy logic modeling to predict dissolve 
oxygen in rivers. In order to check the method, records of 
eight stations in Au Sable watershed in Michigan, United 
States, is considered. Data corresponding to these stations 
represent various situations and may used for many purposes.      
  

II.  SITE DESCRIPTION 
The Au Sable River in Michigan runs approximately 

208 km through the northern Lower Peninsula, through the 
towns of Grayling and Mio, and enters Lake Huron at Oscoda. 
It drops approximately 200 meters from its point-of-origin. It 
has a drainage basin of about 5,000 km2 in north-central lower 
Michigan. The basin is approximately 145 km long and 16 to 
48 km wide. The river basin is partially within the Huron 
National Forest and includes parts of Otsego, Montmorency, 
Crawford, Osco, Alcona, Roscommon, Ogemaw, and Iosco 
counties (Fig. 1). There are approximately 762 km of streams 
in the Au Sable River system. The mainstream includes 60 km 

of impoundments. Table I is a list of streams within the 
watershed (a few small unnamed streams are not included). 

 
Physiography 
The topography of the Au Sable river basin is rolling to flat. 

Maximum elevation above sea level is approximately 441 
meter in the extreme western portion and the minimum 
elevation is approximately 183 meter on the extreme eastern 
end. The river basin has an approximate fall of 204 meter. The 
western half of the river basin is generally flat to slightly 
rolling and the eastern half is flat-broken only by stream 
channels.  

Low swamps and marshes are common throughout the 
western half of the river basin, particularly   in the river 
headwaters and margins   (Fig. 2).  The eastern half is drained 
and has relatively few lowland areas. The Au Sable's 
outstanding scenery is presented in dramatic fashion  
 

TABLE I 
AU SABLE STREAMS SYSTEM 

Stream name Length (km) Stream name Length (km) 
Au Sable River (Mainstream) 208 Beaver Creek 5 8 
Bradford Creek 5 8 Big Creek 4 6 
Kolka Creek 8 13 Red Creek 2 3 
East Branch Au Sable 17 27 West Branch Big Creek 14 23 
Barker Creek 3 5 Hunt Creek 3 5 
Wakely Creek 2 3 East Branch Big Creek 11 18 
South Branch Au Sable 37 60 Lost Creek 8 13 
Sauger Creek 2 3 Honeywell Creek 6 10 
Douglas Creek 3 5 Wolf Creek 3 5 
Thayer Creek 5 8 Cherry Creek 7 11 
Hickey Creek 4 6 Loud Creek 2 3 
Beaver Creek 10 16 Perry Creek 9 14 
Robinson Creek 5 8 Couchy Creek 2 3 
Hudson Creek 6 10 Comins Creek 4 6 
East Creek 5 8 Glennie Creek 3 5 
South Creek 2 3 Nine Mile Creek 3 5 
Connors Creek 2 3 Blockhouse Creek 6 10 
North Branch Au Sable 36 58 Wilbur Creek 5 8 
Turtle Creek 4 6 Bamfield Creek 5 8 
Chub Creek 5 8 Smith Creek 5 8 
Big Creek 1 2 Stewart Creek 4 6 
West Branch Big Creek 18 29 Hoppy Creek 3 5 
Middle Branch Big Creek 9 14 South Branch Creek 7 11 
East Branch Creek 14 23 Harper Creek 4 6 
Wright Creek 7 11 Baker Creek 3 5 
Whitewater Creek 2 3 Wildcat Creek 2 3 
Sohn Creek 4 6 TOTAL  762 
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Fig. 1 The Au Sable River map [20]

 
 
by constantly changing topography. Each landform situation 
offers an attractive and varying display of geologic and 
vegetative conditions. High bluffs, lowland swamps, gentle 
slopes, river banks, upland plateaus and marshland often 
fluctuate over relatively short distances and provide 
background for the river's outstanding scenic resources. The 
watershed, like all others in the State of Michigan, shows the 
effects of glacial action. It lies in an area once covered by the 
Michigan Lake of the Pleistocene glacier and is characterized 
by glacial moraines and outwash plains. The basin is underlain 
by glacial drift up to several hundred meters deep with no 
outcroppings of bedrock material. The morainal areas are hilly 
with bold detached ridges. Outwash areas are relatively flat 
undulating plains except where cut by stream channels. The 
ancient lake bed area west of Oscoda is extremely flat and was 
covered during ancient glacial periods by the waters of Lake 
Huron. There are excellent examples of the effects of the ice, 
water, and wind on the landscape. Kettle lakes, oxbow lakes, 
eskers, drumlins, kames, terraces, sandblows, and deltas can 
be observed in the watershed. 

 
Climate 
The Au Sable River basin offers a climate typical of the 

state's "north country". The warm days and cool nights offer a 
pleasant haven for vacationers. The winters provide an 
excellent climate for skiers, snowmobiling, and other winter 
sports. 

Weather data for the Au Sable basin indicates a record high 
of 44.5 Centigrade degrees with the record low of -44 
Centigrade degrees, both recorded at Mio. A temperature of 38 
is reached on an average of once in 10 years. At the other 
extreme, one can expect temperatures to fall below -18 an 
average of 25 days per year. The average yearly temperature 
for the basin is 6.2 Centigrade degrees. Precipitation is 
heaviest during the summer season averaging 63 percent of the  

 
annual total during the six month period, April through 
September. 

Heaviest rainfall for the basin is in September which shows 
an average of 86 millimeters. Lowest rainfall occurs in 
February with an average of 33 millimeters. Annual 
precipitation averages 719 for the 24 years of record. Summer 
skies tend to be generally free of cloud cover and westerly 
breezes are nearly constant. Winter skies are generally cloud 
covered and windy. 
 

 
 

Fig. 2 Aerial picture from Au Sable watershed region 
  
 

Water Quality 
Highly stable water flows of very high quality water may be 

the single most significant trait of the Au Sable River. The 
coarse sand-gravel composition of the watershed allows rapid 
infiltration of water and tends to level precipitation into a 
steady groundwater contribution to stream flow. Water flows 
vary insignificantly throughout the season because most 
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inflow is from groundwater sources. This spring seepage is 
also an important factor to help maintain lower stream 
temperature during the summer months. However, river flow 
rates may respond to very rapid snowmelts and some sections 
will experience increases in water level and turbidity. High or 
dangerous water conditions are rare. The greatest river 
discharge occurs during April following snowmelt with an 
average discharge at Mio from 1961 to 1965 of 36.4 m3/s. The 
average discharge drops to 32.9 m3/s in May; 24.5 in June and 
21.1 in July as compared to annual average of 28.0 m3/s. 

In addition to a stable flow, the water quality of the Au 
Sable River system is very high when compared to other rivers 
in the state. Using the standardized Water Quality Index, the 
Au Sable River at its mouth is shown to average 85.9. Water 
quality index consists of averaging numerical values from 
chemical, physical and biological parameters collected from 
monitoring stations on the river. Parameters used in 
establishing the WQI are: dissolved oxygen (D.O.), Fecal 
Coliforms, PH, Biochemical oxygen demand (BOD5), NO3-N 
(nitrogen), PO4-P (phosphates, temperature, turbidity and 
dissolved solids. Water quality of the Au Sable river system is 
protected for the following uses: (a) total body contact 
recreation; (b) agriculture; (c) industrial water supply; (d) 
navigation; and (e) public water supply. Most of the 
mainstream and tributaries, at least above Loud Dam are 
classed as cold water trout streams. Any designated stretches 
of the river system will governed by the "nondegradation" rule 
of the Water Resources Commission's water quality standards. 
 

III. WANG AND MENDEL’S METHOD 
The ad hoc data-driven RB generation process proposed by 

Wang and Mendel in [19] has been widely known because of 
its simplicity and good performance. It is based on working 
with an input-output data set E = {e1, …, ep} where el = (xl

1; : : 
: ; xl

n; yl), representing the behavior of the problem being 
solved, using a previous definition of the data base composed 
of the input and output primary fuzzy partitions. 

The generation of the rule base is put into effect by means 
of the following steps: 

1. Consider a Fuzzy Partition of the Input Variable Spaces 
It may be obtained from the expert information (if it is 

available) or by a normalization process. If the latter is the 
case, perform a fuzzy partition of the input variable spaces 
dividing each universe of discourse into a number of equal or 
unequal partitions, select a kind of membership function and 
assign one fuzzy set to each subspace. In our case, we will 
work with symmetrical fuzzy partitions of triangular 
membership functions (Fig. 3).  

2. Generate a Candidate Linguistic Rule Set 
This set will be formed by the rule best covering each 

example (input-output data pair) contained in E. Thus, p 
candidate linguistic rules will be obtained. The structure of 
these rules is obtained by taking a specific example, i.e., an n 
+ 1 dimensional real array (n input and 1 output values), and 
setting each one of the variables to the linguistic label 
(associated fuzzy set) best covering every array component. 

 

3. Give an Importance Degree to Each Rule 
Let Rl : IF x1 is A1 and . . . and xn is An THEN y is B be the 

linguistic rule generated from the example el, l = 1, …, p. The 
importance degree associated to it will be obtained as follows: 
 

G(Rl) = μA1(xl
1). … . μAn(xl

n). μB(yl)  (1) 
 

4. Obtain a Final RB from the Candidate Linguistic Rule 
Set 

To do so, the p candidate rules are first grouped in g 
different groups, each one of them composed of all the 
candidate rules presenting the same antecedent. We will note 
by Rij the j-th rule in the i-th group. To compose the final rule 
base, the rule with the highest importance degree is chosen in 
each group i, i = 1, …, g. Hence, g will be both the number of 
different antecedent combinations in the candidate rule set and 
the number of linguistic rules in the final rule base generated.  

The good behavior of the WM-method has been clearly 
demonstrated. However, sometimes the method does not 
perform as good as desired. It is due to a problem related to 
the way in which the rules are selected. One of the most 
interesting features of a Fuzzy Rule Base System (FRBS) is 
the interpolative reasoning it develops. This characteristic 
plays a key role in the high performance of FRBSs and is a 
consequence of the cooperation among the fuzzy rules 
composing the knowledge base. As it is known, the output 
obtained from a FRBS is not usually due to a single fuzzy rule 
but to the cooperative action of several fuzzy rules that have 
been fired because they match the system input to any degree. 
However, the operation mode followed by WM- method is to 
bracket the example data set into fuzzy subspaces (the 
antecedent combinations mentioned in step 4 of the algorithm) 
according to the covering degree, and to obtain afterwards the 
rule with the best performance in each subspace. Therefore, 
the global interaction among the rules of the knowledge base 
is not considered. This causes the finally obtained rule set, in 
spite of presenting a good local behavior, not to cooperate 
suitably. Moreover, the fact of locally processing these rules 
makes the method be more sensitive to noise. 
 

 
Fig. 3 Graphical representation of a uniform fuzzy partition 

 
IV. DATA, ANALYSES AND RESULTS 

The dissolved oxygen record data studied herein were 
collected at eight US Geological Survey stations in Au Sable 
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watershed. Tables IIA,  IIB and IIC present some 
characteristics of the rivers and statistics of daily and hourly 
data. Daily records are available at least for twelve years while 
hourly records are available for at least fifty days. Aerial 
pictures from eight stations are shown in Figs. 4a to 4e.  

TABLE IIA 
SOME CHARACTERISTICS OF THE STATIONS UNDER STUDY 

Station No. Location 
Drainage 

Area 
(km2) 

Datum of 
gag (m) 

above see 
level 

04136000 
Latitude 44°40'37", Longitude 
84°17'33", NEAR RED OAK, 
Oscoda County,  MI 

2870 304.8 

04136500 
Latitude 44°39'36", Longitude 
84°07'52", MIO, Oscoda 
County,  MI 

3525 283.3 

04136900 
Latitude 44°36'46", Longitude 
83°50'16", NEAR MC KINLEY,  
Alcona County, MI 

3919 253.0 

04137005 

Latitude 44°33'39", Longitude 
83°48'10", NEAR 
CURTISVILLE, Alcona 
County, MI 

4139 237.2 

04137020 
Latitude 44°27'48", Longitude 
83°43'17", NEAR SOUTH 
BRANCH, Iosco County, MI 

4374 - 

04137025 
Latitude 44°27'15", Longitude 
83°40'28", NEAR GLENNIE, 
Iosco County, MI 

4393 - 

04137030 
Latitude 44°28'22", Longitude 
83°34'16", NEAR SIDTOWN, 
Iosco County, MI 

4450 - 

04137500 
Latitude 44°26'11", Longitude 
83°26'02", NEAR AU SABLE, 
Iosco County, MI 

4504 178.0 

The available time series are tried to be modeled using 
Wang-Mendel as one of fuzzy modeling techniques. As it was 
mentioned before, Wang Mendel before consists of plenty of 
parameters that affect on efficiency of modeling. Here it is 
attempted to investigate effect of each parameter.  

Increase in input data interval reduces estimation 
approximation but for long periods, it can detect the variation 
trend intuitively. Figs. 5a to 5d show estimation of one and 
two-year periods with different learning periods for the first 
station. In Figs. 5a to 5c input data intervals are considered to 
be 30 days and 5 data are used to estimate the next values. In 
Fig. 5d, input data intervals are considered to be one day and 7 
data are applied to estimate the next values. It can obviously 
observed that overall reduction and increment can be predicted 
by first three figures but in the forth one, even, the overall 
trend can not be predicted. It can be also observed from Figs. 
5a to 5c that increasing in learning period in Wang Mendel 
technique has no significant effect in estimations, but it is 
strongly proposed that learning period consists at least two 
return periods, i.e., years.     

In spite of overall trend, while estimation of just a number 
of values are considered, e.g. filling missed data, decreasing 
input data intervals are recommended. Fig. 6 shows estimation 
of next day dissolved oxygen using previous 7 days values 
with on day interval for daily records of the first station. In 
this case Root Mean Square Error become 0.47 mg/L while for 
30 days interval the amount of RMSE becomes 0.82 which 
shows less accuracy.  

 

TABLE IIB 
STATISTICS OF DAILY RECORDS OF DISSOLVED OXYGEN, TEMPERATURE AND DISCHARGE FROM THE STATIONS 

Station No. 

Maximum DO 
from daily 

records  
(mg/L) 

Minimum DO 
from daily 

records  
(mg/L) 

Mean DO from 
daily records  

 (mg/L) 

Standard 
deviation of DO 

from daily 
records (mg/L) 

Mean 
temperature 
from daily 

records  
 (°C) 

Mean discharge 
from daily 

records  
 (m3/sec) 

04136000 14.8 7 10.78 1.78 8.9 21.1 
04136500 14.3 6.3 10.24 1.93 9.8 26.2 
04136900 15.3 6.1 10.34 1.86 10.3 30.6 
04137005 13.6 4.3 10.01 2.12 9.9 32.1 
04137020 14.0 5.3 10.20 2.28 10.5 - 
04137025 14.5 4.6 10.14 2.29 10.5 - 
04137030 14.5 4.8 9.94 2.37 11.2 - 
04137500 13.5 5.7 9.94 2.18 11.0 37.0 

 
TABLE IIC 

STATISTICS OF DAILY RECORDS OF DISSOLVED OXYGEN, TEMPERATURE AND DISCHARGE FROM THE STATIONS 

Station No. 

Maximum DO 
from hourly 

records  
(mg/L) 

Minimum DO 
from hourly 

records  
(mg/L) 

Mean DO from 
hourly records  

 (mg/L) 

Standard 
deviation of DO 

from hourly 
records (mg/L) 

Mean 
temperature 
from hourly 

records  
 (°C) 

Mean discharge 
from hourly 

records  
 (m3/sec) 

04136000 13.6 11.5 12.64 0.50 2.6 20.7 
04136500 13.4 11.7 12.61 0.36 1.8 28.1 
04136900 14.1 7.9 11.07 1.08 2.2 40.2 
04137005 13.5 11.1 12.05 0.57 1.6 35.0 
04137020 13.8 12.0 12.93 0.48 1.2 - 
04137025 13.3 11.6 12.39 0.24 1.1 - 
04137030 13.7 11.0 13.03 0.55 0.9 - 
04137500 13.4 10.6 11.5 0.59 0.9 36.6 
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Fig. 5a Comparison of  estimated and measured values 
with 3 years learning period and 30-days interval input 

 
Fig. 5b Comparison of  estimated and measured values 
with 4 years learning period and 30-days interval input 

 
Fig. 4a Aerial picture from station 1 

 
Fig. 4b Aerial picture from station 2 

 

 
Fig. 4c Aerial picture from stations 3 and 4 

 
Fig. 4d Aerial picture from stations 5 and 6 

 

 
Fig. 4e Aerial picture from stations 7 and 8
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Fig. 5c Comparison of  estimated and measured values 
with 6 years learning period and 30-days interval input 

 
Fig. 5d Comparison of  estimated and measured values 

with 1-day interval input 

 
Fig. 6 Estimation of any next day value of dissolved oxygen using 7 one-day interval pervious data 

 
Effect of number of output partitioning and input features 

and other parameters of Wang Mendel method are shown in 
Tables IIIA and IIIB. It can be observed that increasing 
number of features twice just make the accuracy 10 percent. 
This makes the period of model run about 10 times. 

V. CONCLUDING REMARKS 
Wang Mendel technique is used in this research to model 

dissolve oxygen in eight stations in Au Sable river. In order to 
increase accuracy of estimation some parameters in WM 
model should be tuned. Imposing this model to the records we 
conclude: 

a. To model a long period such as a year, it is better to 
use long intervals to cover a significant period. 
Number of input data also may help us in this 
purpose. For example 6 input data with 30-days 

interval is suitable, since it cover a half year and is 
enough to detect the trend 

b. In hourly forecasting or short period prediction, the 
upcoming values do not relate to far records so, it is 
convenient to use a limited number of input data with 
close intervals in the model. 

c. Very low and very large number of partitioning in 
input and output features arise some problems. Low 
number of partitioning may result in rough and 
inaccurate outcome. Very large number of 
partitioning increase the run period of the model 
considerably and do not guarantee efficiency of the 
model necessarily. 5 divisions, seems to be suitable 
value for input and output features partitioning. 

     

TABLE IIIA 
ROOT MEAN SQUARE ERROR (RMSE) FOR DAILY AND HOURLY ESTIMATION USING 5 PRIOR RECORDS 

Daily estimation Hourly estimation 
1-day interval 30-day intervals 1-hour interval 12 hours intervals Station No. 

n*=5 n=9 n=5 n=9 n=5 n=9 n=5 n=9 
04136000 0.47 0.42 0.82 0.81 0.14 0.14 0.14 0.15 
04136500 0.43 0.40 0.76 0.64 0.13 0.11 0.14 0.13 
04136900 0.45 0.38 0.79 0.78 0.11 0.12 0.12 0.11 
04137005 0.39 0.35 0.73 0.71 0.12 0.10 0.11 0.12 
04137020 0.42 0.36 0.76 0.73 0.15 0.16 0.13 0.15 
04137025 0.38 0.33 0.72 0.57 0.13 0.14 0.14 0.13 
04137030 0.36 0.29 0.71 0.55 0.16 0.15 0.15 0.17 
04137500 0.37 0.35 0.71 0.56 0.15 0.16 0.15 0.13 

                                 * Number of input and output feature partitioning 
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TABLE IIIB 
ROOT MEAN SQUARE ERROR (RMSE) FOR DAILY AND HOURLY ESTIMATION USING 12 PRIOR RECORDS 

Daily estimation Hourly estimation 
1-day interval 30-day intervals 1-hour interval 12 hours intervals Station No. 

n=5 n=9 n=5 n=9 n=5 n=9 n=5 n=9 
04136000 0.38 0.36 0.53 0.61 0.11 0.12 0.16 0.13 
04136500 0.38 0.38 0.50 0.37 0.12 0.10 0.14 0.13 
04136900 0.39 0.30 0.52 0.69 0.07 0.10 0.11 0.11 
04137005 0.38 0.29 0.49 0.48 0.11 0.09 0.11 0.12 
04137020 0.41 0.28 0.63 0.68 0.11 0.12 0.11 0.14 
04137025 0.29 0.29 0.64 0.36 0.11 0.10 0.13 0.13 
04137030 0.32 0.22 0.45 0.40 0.13 0.10 0.16 0.19 
04137500 0.37 0.27 0.60 0.44 0.14 0.12 0.15 0.11 
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